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Abstract
The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there 
is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that 
function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress condi-
tions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take 
advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we 
discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways acti-
vated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate 
decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might 
prove to be an effective cancer therapeutic.
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Introduction

During tumor development and progression, transformed 
cells adapt to their increased demands on protein and 
lipid production required for rapid growth by enhancing 
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endoplasmic reticulum (ER) function and expansion (Bar-
toszewska et al. 2022; Madden et al. 2019). To accomplish 
this, cancer cells take advantage of an adaptive multi-
functional signalling pathway called the unfolded protein 
response (UPR) (Madden et al. 2019). The function of this 
pathway is to protect cells from an accumulation of unfolded 
or misfolded proteins in ER. UPR does this by activating 
three ER transmembrane sensors, inositol-requiring enzyme 
1α (IRE1), protein kinase RNA-like endoplasmic reticulum 
kinase (PERK) and activating transcription factor 6 (ATF6). 
The function of UPR and these signalling pathways is to 
restore proper ER function and thus promote cell survival. If 
cellular homeostasis is difficult or potentially impossible to 
restore, cell death occurs usually through apoptosis (Madden 
et al. 2019; Karagoz et al. 2019; Almanza et al. 2019). Inter-
estingly, cancer cells avoid this UPR transition to apoptosis, 
and therefore strategies that inhibit the survival pathways 
have become an attractive target for anticancer therapies 
(Bartoszewska et al. 2022; Lhomond et al. 2022; Balkwill 
et al. 2012). Although all three UPR sensors provide appeal-
ing therapeutic candidates, recently IRE1 activity has been 
a major focus since elevated levels of IRE1 are associated 
with poor cancer prognosis (Bartoszewska et  al. 2022; 
Lhomond et al. 2022). IRE1 splices an inactive unspliced 
form of XBP1 to generate a highly active prosurvival tran-
scription factor, spliced XBP1 (XBP1s). XBP1s’s function is 
to enhance the expression of ER-resident chaperones and to 
promote ER expansion (Marchant et al. 2010; Bartoszewska 
et al. 2019). IRE1 also cleaves other mRNAs localized to 
the ER membrane through regulated IRE1-dependent decay 
(RIDD) (Hollien et al. 2009). IRE1 activity can serve both 
adaptive and apoptotic branches of UPR (Bartoszewska et al. 
2022; Martinez-Turtos et al. 2022) (Fig. 1), and therefore 

inhibiting IRE1 activity has consequences for both branches 
of UPR, which makes targeting IRE1 in anticancer therapies 
quite challenging (Martinez-Turtos et al. 2022).

The UPR

ER membranes prevent direct coupling between mRNA 
translation and protein folding making this organelle crucial 
for transmembrane and secretory proteins maturation (Bravo 
et al. 2013). However, although maintaining ER homeosta-
sis is an absolute requirement for proper cellular function, 
numerous endogenous and exogenous insults can deregu-
late ER function and lead to ER stress. ER stress results 
from an accumulation of unfolded or incompletely folded 
proteins in the ER lumen and that requires elevated chap-
erones levels (Almanza et al. 2019). Hence, to improve ER 
protein folding, glucose-regulated protein 78 (GRP78 also 
known as BiP (binding immunoglobin protein)) is released 
into the ER lumen from three ER transmembrane sensors: 
PERK, IRE1α, and ATF6 (Almanza et al. 2019; Hetz 2012). 
With BiP removal, these three sensors become activated and 
launch the UPR.

In other words, during basal conditions BiP is associ-
ated with the ER stress sensors, keeping them inactive. 
Under stress, however, BiP is released into ER lumen to 
bind misfolded peptides, and this enables activation of the 
ER stress sensors and consequently initiation of UPR (Hetz 
et al. 2020). Released BiP allows ATF6 to exit the ER and 
traffic to Golgi apparatus where it is cleaved by site 1 and 
site 2 proteases, yielding a nuclear-targeted transcription 
factor ATF6f (p50) (Schroder and Kaufman 2005; Ye and 
Koumenis 2009; Haze et al. 1999).

Fig. 1  Schematic representation 
of the cell fate downstream con-
sequences of ER stress-induced 
IRE1 activation that includes 
(i) the proadaptive XBP1s-
dependent transcriptional 
signaling and (ii) the apoptotic 
RNA degradation (RIDD) and 
JNK pathway activation. The 
stabilization of the oligomeric 
form of IRE1 leads to continu-
ous UPR activation
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IRE1 and PERK share a similar mechanism of activa-
tion (Zhou et al. 2006; Carrara et al. 2015) and loss of BiP 
permits both kinases to self-associate and undergo trans-
autophosphorylation to become active. Activated PERK is 
able to phosphorylate the alpha subunit of the eukaryotic 
initiation factor 2 (eIF2). eIF2 is a GTP-binding protein 
necessary for the cap-dependent mRNA translation since 
it delivers the initiator methionyl-tRNA to the ribosome. 
Although the phosphorylated eIF2 inhibits the activity of 
its own guanine nucleotide exchange factor, this leads to the 
reduction of global rates of protein synthesis (Baird and Wek 
2012). This also allows a subset of mRNAs to be translated 
more efficiently, including growth arrest and DNA damage 
inducible protein (GADD34) that in complex with G-actin 
and protein phosphatase 1 (PP1) dephosphorylates eIF2 to 
restore normal rates of translation when the ER stress is mit-
igated (Novoa et al. 2001). Other mRNAs translated more 
efficiently are the proapoptotic CCAAT/enhancer binding 
homologous protein (CHOP) and activating transcription 

factor 4 (ATF4) (Rutkowski and Kaufman 2003). PERK acti-
vation and its downstream effects have been termed the inte-
grated stress response (ISR) (Calabrese et al. 2007; Rzymski 
and Harris 2007; Blais and Bell 2006; Herman 2006).

IRE1 is a type I transmembrane ER resident protein that 
contains two enzymatic activities, serine/threonine kinase 
and endoribonuclease (RNase) activities. Kinase activity’s 
only function is for autophosphorylation. Trans-autophos-
phorylation activates its endonuclease domain that splices 
the mRNA transcript of X-box binding-protein (XBP) 
transcription factor into a transcriptionally active isoform 
(XBP1s) (Yoshida et al. 2001) and the endonuclease activ-
ity degrades a subset of mRNAs to relieve the ER load of 
newly translated proteins. This latter function is termed 
IRE1-dependent decay (RIDD) (Han et al. 2013; Maurel 
et al. 2014).

As shown in Fig. 2A, the domain structure of IRE1α 
consists of a signal sequence, a BiP-binding domain, a 
transmembrane region, a serine/threonine kinase domain, 

Fig. 2  Domain structure of human IRE1α. A IRE1 contains an 
18-amino acid N-terminal signal sequence directing the protein to 
the endoplasmic reticulum (ER). Lumenal domain of IRE1 is a bind-
ing site for binding immunoglobin protein (BiP). Transmembrane 
domain is a single-pass peptide and is followed by cytoplasmic part, 
consisting of two catalytic domains: serine/threonine protein kinase 
and endoribonuclease (RNase). The only known substrates of IRE1α 
kinase activity are S724, S726, and S729 residues of IRE1 itself. B 

The schematic topology of IRE1 dimer. C The crystal structure of 
the IRE1α lumenal domain dimer (PDB ID: 2HZ6), the side and top 
view. The IRE1 lumenal domain comprises a triangular plate of three 
β-sheet clusters (colored in purple, orange, and cyan) forming an 
extensive dimerization interface. D The crystal structure of the cyto-
plasmic part of the IRE1 dimer (PDB ID: 6W3C). Phosphorylated 
S724, S726, and S729 residues are depicted in red
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and the RNAse domain. (Liu et al. 2003, 2002). The ER 
lumen exposed domain of IRE1 provides binding site 
for BiP (Fig. 2B), and it’s connected thorough a single-
pass transmembrane segment with the catalytically active 
cytoplasmic region of this protein (Fig. 2B) (Zhou et al. 
2006). Upon BiP dissociation, a triangular plate-like 
structure within this domain is formed by three β-sheets 
clusters, and this provides a scaffold for IRE1 dimeriza-
tion (Fig. 2C) (Zhou et al. 2006). Starting from ER mem-
brane, the cytosolic part of IRE1 contains serine/threonine 
protein kinase domain that is responsible for the trans-
autophosphorylation is located within its serine residues 
(S724, S726, and S729) and this is followed by the RNAse 
domain (Fig. 2D) (Ferri et al. 2020).

The main function of UPR is to adjust the cellular sign-
aling pathways in order for stressed cells to survive an 
insult and restore normal ER function (Bartoszewska et al. 
2022; Gebert et al. 2021). The consequence of this is that 
the ER protein influx is reduced, and misfolded proteins 
are degraded by ER-associated degradation (ERAD) (Rug-
giano et al. 2014; Bartoszewski et al. 2016). ATF6f and 
XBP1s promote ER membrane biosynthesis, increased 
folding capacity of the ER and increased expression of 
genes involved in ERAD and N-glycosylation (Baird and 
Wek 2012; Gebert et al. 2021; Zhang and Kaufman 2004; 
Mori et al. 1996; Yoshida et al. 2000). Furthermore, along 
with these transcription factors, ATF4 prevents cell death 
by increasing pro-survival and antiapoptotic signaling 
(Wortel et al. 2017).

If cells are exposed to persistent and intense ER stress 
that prevents effective restoration of ER homeostasis, the 
UPR triggers an intrinsic apoptotic pathway. Although the 
molecular basis of this cell fate switch is still poorly under-
stood, it is mediated by all 3 UPR sensors. This includes 
the accumulation of CHOP (PERK and ATF6f) and the 
activation of the Janus N-terminal kinase (JNK) (IRE1) 
(Hollien et al. 2009; Obiedat et al. 2019; Pozzi et al. 2016; 
Carlesso et al. 2019). Furthermore, UPR cell fate deci-
sions are also determined by a network of apoptotic factors 
such as growth arrest and DNA damage-inducible alpha 
(GADD45A), p53 upregulated modulator of apoptosis 
(PUMA), and phorbol-12-myristate-13-acetate-induced 
protein 1 (PMAIP1, also known as NOXA) (Bartoszewska 
et al. 2022; Gebert et al. 2021, 2018; Reimertz et al. 2003; 
Gupta et al. 2012; Wang et al. 2009; Rosebeck et al. 2011). 
Finally, in addition to the transcriptional and translational 
mechanisms involved in the UPR, posttranscriptional 
miRNA-based modulation of both survival and apoptotic 
activities of this pathway have been reported (Bartosze-
wska et al. 2013, 2017, 2019, 2022; Byrd and Brewer 
2013, 2011; Kim and Croce 2021; Mukherji et al. 2011; 
Maurel and Chevet 2013; Cheung et al. 2008).

Cancer cells benefit from the UPR

Given the critical role of UPR in both maintaining ER 
function and determining cell fate decisions, it is not 
surprising that this complex pathway accompanies many 
human diseases including metabolic disorders, neurologi-
cal disorders, and cancer. In cancer cells, rapid prolifera-
tion requires increased lipid and protein synthesis (Chen 
and Cubillos-Ruiz 2021; Babour et al. 2010), whereas 
solid tumor microenvironments are often limiting in both 
nutrients and oxygen (Lane et al. 2020). Furthermore, the 
oncogenic transformations and chromosomal abnormali-
ties can increase the fraction of misfolded proteins in ER 
lumen. Nevertheless, despite the fact that cancer cells are 
often exposed to persistent ER stress, they benefit from 
deregulation of the prosurvival UPR signals. For example, 
ATF6-related pro-survival signaling was reported in gas-
tric tumors (Jeong et al. 2015) and mutant p53 cancer cells 
(Sicari et al. 2019), whereas both XBP1s and IRE1 allow 
for the cells to tolerate high levels of MYC proto-oncogene 
and to avoid cell death (Tameire et al. 2015; Sheng et al. 
2019; Zhang et al. 2020; Shajahan-Haq et al. 2014).

Multiple myeloma cells frequently overproduce immu-
noglobulins subunits and have become the target of the 
first clinical UPR-targeted therapy to impair ERAD with 
the proteasome inhibitor, bortezomib (Bross et al. 2004; 
Meister et al. 2007; Kane et al. 2003; Obeng et al. 2006). 
Interestingly, bortezomib treatments lead to ER stress 
that is above the limits these cancers cells can adapt and 
therefore this leads to cell death and clinical improvement 
(Wang et al. 2009; Bross et al. 2004; Auner et al. 2013). 
That being said, cancer stem cells survive these treat-
ments due to their lower translational needs and eventually 
mutate the proteasome proteins to acquire drug resistance 
that leads to the cancer relapse (Oerlemans et al. 2008; 
Balsas et al. 2012; Uyuklu et al. 2007). Furthermore, pro-
teasome inhibition was also promising in vitro against 
glioblastoma multiform cells (Yoo et al. 2017; Lee et al. 
2017). Currently, besides bortezomib, two other protea-
some inhibitors are in clinical use (carfilzomib and ixa-
zomib). In contrast, indirect approaches to limit ERAD 
have failed clinical trials due to off-target effects or poor 
specificity (Marciniak et al. 2022; Zhai et al. 2021; Ding 
et al. 2022; Alrasheed et al. 2021).

PERK activity has also been utilized by cancer cells 
to adjust the proliferation-related rate of protein synthe-
sis to modulate growth rates (Atkins et al. 2013; Bi et al. 
2005). Furthermore, in glycolytic cancer cells, PERK 
activity induces carbonic anhydrase 9 (CA9) and thus 
prevents cells acidosis (Beucken et al. 2009). Whereas 
ATF4 and CHOP enhance defense against redox distur-
bance and reactive oxygen species (ROS) (Rouschop et al. 
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2013; Harding et al. 2003; Baker et al. 2012; Melber and 
Haynes 2018; Shpilka and Haynes 2018; Loinard et al. 
2012). In agreement with these findings, PERK and ATF4 
have been shown to protect glioblastoma cells from radio-
therapy and hypoxia-related oxidative damage (Mujcic 
et al. 2013; Mudassar et al. 2020). Both PERK and ATF4 
were also shown to support autophagy in many hypoxic 
and nutrient-deprived tumors and cell lines (Rzymski 
et al. 2010; Rouschop et al. 2010; Singleton and Harris 
2012). Interestingly, in some tumors CHOP expression was 
modest and did not accelerate cell death (Koumenis et al. 
2002), whereas in the others hypoxic tumors accumulation 
of CHOP resulted in increased ROS production (Marciniak 
et al. 2004). Hence, further studies are needed to clarify 
the background and consequences of CHOP activity in 
tumors. Taken together, the PERK pathway is an extremely 
attractive target for cancer therapies. However, despite the 
fact that the PERK inhibitor (GSK2656157) effectively 
prevented tumor growth in preclinical models, the toxic-
ity of this molecule against pancreatic β-cells prevented 
it from reaching the clinic (Atkins et al. 2013; Magnaghi 
et al. 2013, 2012). This failure of PERK inhibition as 
a cancer therapeutic was expected since both mice and 
humans with a genetic loss of PERK suffer from rapid 
β-cell death (Harding et al. 2001; Zhang et al. 2002). Nota-
bly, the integrated stress response inhibitor (ISRIB, in pre-
clinical development), unlike PERK inhibitors, limits the 
ISR activated by chronic low-level stress, but preserves 
enough activity to protect against acute stress. In other 
words, ISRIB rescues translation only if eIF2 phospho-
rylation is below the threshold and reduces tumor size in 
transgenic mice and in patient-derived xenografts without 
provoking type 1 diabetes (Rabouw et al. 2019).

Notably, UPR branches are only partially independent 
of each other, and therefore the effectiveness of approaches 
that inhibit the activity of PERK or IRE1 and their off-
target effects are difficult to accomplish. For example, 
prostate cancer cells often have loss of phosphatase and 
tensin homolog (PTEN) that is accompanied by IRE1-
driven MYC hyperactivation (in fatal-metastatic cases) 
(Sheng et al. 2019). Although such a phenotype would be 
expected to increase protein synthesis, the overexpression 
of Myc in a Pten knockdown murine model of prostate 
cancer resulted in a PERK-dependent reduction of trans-
lation (Nguyen et al. 2018). It has been also reported that 
proteasome inhibition is more effective against glioblas-
toma cells in vitro when accompanied by STK047915, a 
putative inhibitor of the IRE1–ASK–JNK pathway (Kim 
et al. 2009). Taken together the complexity of the UPR 
signaling and cancer specific mutations remain serious 
obstacles for the development of anticancer therapies.

The role of IRE1 in cell fate decisions

Ire1 is the only major UPR sensor that is present in bud-
ding yeast, plants, and metazoans, and is often referred to 
as the most conserved UPR branch (Hollien 2013). The 
original studies identified the UPR function of Ire1 in 
Saccharomyces cerevisiae (Cox et al. 1993; Mori et al. 
1993). Ire1 activation allows it to cleave at two specific 
sites in the mRNA encoding Hac1 (Mori et al. 1996; Cox 
and Walter 1996) that removes a regulatory intron from 
the message to form transcriptionally active Hac1p pro-
tein. Hac1p upregulates expression of genes responsible 
for the secretory pathway as well as BiP (Travers et al. 
2000). This pathway is conserved in most eukaryotes and 
homologous to IRE1-XBP1 branch in mammals (Hollien 
2013). Two isoforms of Ire1 have been identified in mam-
mals. Ire1α that we refer to here as IRE1 and is expressed 
ubiquitously (Tirasophon et al. 1998) and essential for 
both embryonic development and the UPR (Iwawaki et al. 
2009). The second is Ire1β whose expression is limited 
to intestinal epithelial cells and its deletion sensitizes 
mice to colitis (Bertolotti et al. 2001). Notably, although 
both these isoforms can splice XBP1 mRNA (Calfon et al. 
2002), Ire1α is the more efficient, however, Ire1β exerts a 
stronger RIDD activity (Imagawa et al. 2008).

IRE1 RNase activity is the most prominent activity and 
has two distinct signaling outcomes, XBP1 splicing and 
RIDD induction (Iwakoshi et al. 2003). Furthermore, the 
cytoprotective effects are mainly related to XBP1 splicing, 
whereas apoptosis is RIDD-related (Iwakoshi et al. 2003). 
Importantly, it has been shown that initially XBP1 mRNA 
splicing prevails over the RIDD, but at the time when the 
maximum levels of XBP1 are reached, RIDD activity 
increases until apoptosis occurs (Iwakoshi et al. 2003). 
This suggests that although stress intensity enhances 
RIDD to favor cell death, this IRE1 activity may have 
other functions (Iwakoshi et al. 2003). Thus, IRE1 activ-
ity with two distinct outcomes indicates IRE1’s important 
role in determining cell fate during ER stress.

Production of XBP1s mRNA is a result of IRE1 cata-
lyzed removal of a 26-nucleotide intron from XBP1 mRNA 
and ligation of the remaining fragments by the tRNA ligase 
RtcB (Yoshida et al. 2001, 2000). The resulting XBP1s 
mRNA, due to the splicing-related frameshift (upon splic-
ing 3’UTR fragment becomes a coding sequence) provides 
a template for a longer and transcriptionally active XBP1s 
protein. Thus, the XBP1s protein (~ 48 kDa) has the same 
N-terminus, but a longer and distinct C-terminus which 
contains the transactivation domain (Yoshida et al. 2001, 
2000). In the absence of IRE1 activity, the unspliced XBP1 
protein (~ 29 kDa) is rapidly degraded (Tirosh et al. 2006), 
while during ER stress, XBP1 transcription is enhanced 
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by ATF6f (Yoshida et al. 2001, 2000). XBP1s enhances 
expression of ERAD components (EDEM1), chaperones 
(HSPA5, DNAJB9, and DNAJC3), and vesicle-trafficking 
components (SEC23B) (Bartoszewska et al. 2019, 2017; 
Gebert et al. 2021; Lee et al. 2003; Misiewicz et al. 2013). 
The activity of XBP1s cooperates or overlaps with ATF6f, 
and ATF6f in islet cells has been shown to be necessary 
to fully activate XBP1s targets. In contrast XBP1s was 
not required for the activation of ATF6f targets (Sharma 
et al. 2020). However, genes that contain unfolded protein 
response elements (UPRE) in their promoter sequences 
depend solely on XBP1 (Yamamoto et al. 2004). Moreo-
ver, XBP1s has been shown to regulate genes involved in 
the inflammatory responses (Shaffer et al. 2004), as well 
as genes not related to UPR pathways including adipo-
cyte and myogenic differentiation (C/EBP and MIST1) in 
a tissue-dependent manner (He et al. 2010).

In a recent study, we demonstrated that elevating XBP1s 
expression during ER stress using an inducible cell line cor-
related with a clear prosurvival effect and reduced PERK-
related proapoptotic PUMA protein expression (Gebert et al. 
2021). We also identified a novel negative-feedback regula-
tory loop between XBP1 and IRE1 and showed that XBP1s 
attenuates ERN1 expression and thus reduces IRE1 activity, 
further evidence that XBP1s is crucial for the UPR cell fate 
decisions (Gebert et al. 2021).

RIDD is IRE1-mediated cleavage of ER-bound RNA 
(mRNA, miRNA, and rRNA) and was first described in 
Drosophila melanogaster (Hollien and Weissman 2006), 
and later found to be conserved in mammals (Hollien et al. 
2009). RIDD was first believed to be a sequence-specific 
process in which ER-localized mRNAs were cleaved at a 
consensus motif similar to XBP1 splicing sites (Hollien 
et al. 2009; Maurel et al. 2014; Tirasophon et al. 2000). The 
free ends of generated mRNA fragments are then substrates 
for cellular exoribonucleases that rapidly degrade them 
(Iqbal et al. 2008). Although a later report questioned the 
requirement of the splicing motif and suggested RIDD to be 
a default pathway for ER-localized mRNA (Gaddam et al. 
2013). To date, there is no experimental proof that IRE1 is 
able to cleave at a non-XBP1-like site (Maurel et al. 2014). 
Nevertheless, several studies have identified RIDD-degraded 
mRNAs that encode cytosolic or nuclear proteins (including 
XBP1), illustrating that the IRE1 substrates do not neces-
sarily require an ER a signal sequence (Kraut-Cohen and 
Gerst 2010; Pyhtila et al. 2008; Lerner et al. 2003; Diehn 
et al. 2000). Importantly, IRE1 has also been shown to 
degrade several pre-miRNAs (Upton et al. 2012; Gebert 
et al. 2023) and to facilitate maturation of miRNA precur-
sors in a DICER-independent manner (Avril and Chevet 
2020). Because IRE1 is also localized in the inner nuclear 
envelope (Schroder and Kaufman 2005), these precursors 
could be processed as they encounter IRE1 while traversing 

the nuclear pore on their way to the cytoplasm (Upton et al. 
2012).

Given that miRNA expression profiles are strongly 
affected by the ER stress (Gebert et al. 2018; Maurel and 
Chevet 2013; Bartoszewska et al. 2013), RIDD may indi-
rectly fine tune a variety of UPR outputs at the posttranscrip-
tional level. Mouse miRNAs were shown to be degraded 
by RIDD and this action was proposed to permit increased 
expression of caspase-2 (Lerner et al. 2012). Follow-up 
studies, however, questioned this miRNA-CASP2 mRNA 
interaction (Sandow et  al. 2014). Nevertheless, RIDD-
dependent degradation of one of these miRNAs precursors, 
pre-miR-17, was shown to enhance the expression of the 
pro-oxidant thioredoxin-interacting protein (TXNIP) that 
led to an inflammatory response-related cell death (Lerner 
et al. 2012). Although more detailed studies are required 
to understand miRNA-related consequences of RIDD, this 
aspect of IRE1 activity seems to accelerate cell death. In 
support of this, examples of cells under irremediable ER 
stress indicate that IRE1 becomes hyperactive and besides 
enhancing RIDD, also serves as a scaffold for the activation 
of proinflammatory and apoptotic ASK1-JNK and NF-κB 
pathways (Zeng et al. 2015; Ghosh et al. 2014).

A number of reports have indicated that RIDD activity 
allows for the degradation of mRNAs encoding growth-
promoting proteins and linked to proliferation, and thus 
lead to cell death (Hetz 2012; Maurel et al. 2014). Since 
RIDD activity has been also shown crucial for the acceler-
ated cell death of glioblastoma multiform and triple nega-
tive breast cancer (Lhomond et al. 2022; Martinez-Turtos 
et al. 2022), this aspect of IRE1 activity might be consid-
ered to be an important candidate for anticancer therapies. 
However, such a RIDD-oriented approach may be limited 
by the basal activity of this pathway and potential off-tar-
gets effects. In mammals under no stress conditions, RIDD 
remains active and can serve a cytoprotective role and this 
is termed basal RIDD (Dejeans et al. 2012; Pluquet et al. 
2013; So et al. 2012). Our studies have indicated that while 
IRE1 RNAse activity supports HIF-1α accumulation in 
hypoxia exposed human endothelial cells, XBP1 splicing 
is absent (Moszynska et al. 2020). Thus, RIDD modulates 
the adaptive response to hypoxia (Moszynska et al. 2020). 
RIDD-mediated degradation of transcripts encoding P450 
cytochrome variants prevents liver cells from acetami-
nophen-induced toxicity and modulates proinsulin secre-
tion (Hur et al. 2012; Lipson et al. 2006). Furthermore, 
IRE1β-related RIDD has been shown to be significantly 
active in the presence or absence of ER stress. Taking 
into an account that RIDD activity increases progressively 
with ER stress intensity/duration, this suggests that UPR is 
the only mechanism for enhancing RIDD activity (Hollien 
et al. 2009; Pluquet et al. 2013). Furthermore, the XBP1 
deficient models display enhanced RIDD, suggesting that 
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there is crosstalk mechanism between these two RNase 
activities (So et  al. 2012; Osorio et  al. 2014). Taken 
together, basal RIDD modulates the entry of proteins into 
the ER in response to the cellular requirements and pro-
vides a physiological way of maintaining ER homeosta-
sis (Maurel et al. 2014). Under ER stress, however, basal 
RIDD is inefficient and therefore IRE1’s XBP1s splicing 
activity is initiated, whereas RIDD gradually increases. If 
the stress is too strong or persistent and this fails, RIDD 
remains hyperactive despite the inactivation of XBP1s 
signaling and this leads to cell death (Maurel et al. 2014). 
Taken together, the RIDD activity threshold controls the 
switch between survival and apoptotic function of this 
IRE1 activity.

Deregulation of IRE1 signaling, including overactivation 
of XBP1 splicing, has been reported as promoting prolifera-
tion of several cancer types, including glioblastoma, breast, 
prostate, and pancreas (Sheng et al. 2019; Chen et al. 2014; 
Pommier et al. 2018). Notably, this IRE1-related cancer-
promoting mechanism is not limited to UPR but also include 
immunomodulation (Logue et al. 2018; Obacz et al. 2019). 
In this regard, activation of IRE1 signaling may protect 
tumors from the immune system by interfering with immune 
responses (Chen and Cubillos-Ruiz 2021). For example, 
XBP1s has been shown to reduce major histocompatibil-
ity complex class I (MHC-I) surface presentation (Almeida 
et al. 2007) and XBP1s-induced miR-346 has been shown 
to inhibit MHC-I assembly (Bartoszewski et  al. 2011). 
Numerous studies have also connected the altered function 
of immune cells against cancer cells through XBP1s-medi-
ated expression of the proinflammatory factors (Logue et al. 
2018; Obiedat et al. 2019; Chopra et al. 2019; Thevenot 
et al. 2014; Mohamed et al. 2020; Harnoss et al. 2020; Hurst 
et al. 2019; Bottcher and Sousa 2018). Breast cancer cells, 
including triple negative breast cancer, upon pharmacologi-
cal IRE1 inhibition, display reduced expression of immune 
modulators such as interleukin 8 (IL-8), C-X-C Motif 
Chemokine Ligand 1 (CXCL1), or transforming growth 
factor-beta 2 (TGF2) (Logue et al. 2018). Interestingly, some 
anticancer drugs like paclitaxel can increase XBP1s levels 
and the secretion of the above-mentioned cytokines, and lead 
to restored cancer proliferation following the chemotherapy 
(Marciniak et al. 2022; Raymundo et al. 2020). This would 
agree with the report from triple-negative breast cancer 
mouse xenografts cotreated with both paclitaxel and an IRE1 
inhibitor (MKC8866) (Sanches et al. 2014). Although the 
IRE1 inhibitor was inefficient alone, its combination with 
paclitaxel delayed the time to tumor regrowth after stopping 
the treatment (Marciniak et al. 2022; Raymundo et al. 2020). 
Furthermore, some cetumximab-treated cancer cells that 
are resistant to immunogenic cell death, display increased 
XBP1s expression, and inhibition of XBP1 splicing restored 
tumor immunogenicity (Huo et al. 2020; Pozzi et al. 2016).

Pharmacological targeting of IRE1 
in anticancer approaches

Gaining pharmacological control over IRE1 activities 
has been the focus of several anticancer drug develop-
ment strategies, and these can be divided into two main 
approaches: (i) inhibiting IRE1 activity to impair adapt-
ability of tumor cells to challenging tumor microenvi-
ronment and (ii) activating or hyperactivating IRE1 to 
initiate its RIDD that leads to cell death. Furthermore, 
downstream IRE1 signaling components have also been 
shown to be of interest to drug discovery programs (Mar-
ciniak et al. 2022; Raymundo et al. 2020; Carlesso et al. 
2019, 2020; Mahdizadeh et al. 2020, 2021; Doultsinos 
et al. 2021; Mercado and Hetz 2017; Dufey et al. 2020).

Preventing IRE1 involvement in the cancer UPR with 
small molecules represents the main course of drug devel-
opment pipelines. Their goal is to identify compounds 
targeting either the kinase domain or the RNase domain 
(Table 1). Since IRE1 phosphorylation is required for the 
activation of endoribonuclease-based production of proa-
daptive XBP1s, an ATP-competitive inhibitor such as 
type II kinase-inhibiting RNase-attenuators (KIRAs) has 
been shown to be effective in reducing the IRE1 RNase 
activity (Ghosh et al. 2014; Wang et al. 2012; Papandreou 
et al. 2011; Morita et al. 2017) (reviewed in Raymundo 
et al. (2020). Furthermore, other compounds with a dif-
ferent mechanism of action were selected based on the 
high throughput screening approaches (Doultsinos et al. 
2017). Many of these molecules are direct inhibitors 
(including 4μ8C) that specifically target at lysine 907 in 
RNAse domain and this impairs RNA splicing (Sanches 
et al. 2014; Sun et al. 2016; Tang et al. 2014; Mimura et al. 
2012). Notably one of these compounds, STF-083010, has 
been shown to block IRE1 endonuclease activity with-
out affecting its kinase activity and it displays selective 
cytotoxicity towards cancer cells including breast can-
cer (Papandreou et al. 2011). In contrast to STF-083010, 
4μ8C inhibits the IRE1 autophosphorylation by interac-
tion with lysine 599 in the kinase domain (Stewart et al. 
2017; Cross et al. 2012). Another class of compounds, 
salicylaldehydes, was shown to compete against the XBP1 
stem-loop RNA substrate (Volkmann et al. 2011). Moreo-
ver, although other compounds (including toyocamycin, 
doxorubicin, quinotrierixin, and trierixin) were reported to 
inhibit IRE1/XBP1s activity in vitro and in vivo, but their 
mode of action remains unknown (Raymundo et al. 2020).

Some kinase type I inhibitors such as sunitinib have 
been shown to activate IRE1 RNase activity by promot-
ing oligomerization of this enzyme (Feldman et al. 2016a; 
Korennykh et al. 2009). Another IRE1 activating com-
pound, CXC195, interacts with cysteine 645 in the kinase 
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Table 1  Molecules targeting IRE1 (inhibitors and activators)

Compound Kinase activity RNase activity RIDD Comments References

Compound 3 Inhibits Inhibits ? Type II inhibitor Carlesso et al. (2018)
Impairs IRE1 oligomeri-

zation
Compound 6 Inhibits Inhibits ? Type II inhibitor Feldman et al. (2019)

IRE1α selective
Compound 15 Inhibits Inhibits ? Type II inhibitor Feldman et al. (2019)

IRE1β selective
KIRA6 (compound 3 

analogue)
Inhibits Inhibits Inhibits Type II inhibitor Ghosh et al. (2014); Morita 

et al. (2017); Mahameed 
et al. (2019)

Preclinical development

KIRA7 (compound 3 
analogue)

Inhibits Inhibits Inhibits Type II inhibitor Ferri et al. (2020); Thamsen 
et al. (2019)Preclinical development

KIRA8 (AMG-18) Inhibits Inhibits Inhibits Type II inhibitor Ferri et al. (2020); Morita 
et al. (2017); Morita et al. 
(2017); Feldman et al. 
(2016b)

Preclinical development

AD60 Inhibits Inhibits ? Type II inhibitor Mendez et al. (2015)
Preclinical development

Compound 31 Inhibits Inhibits ? Direct inhibitor Colombano et al. (2019)
GSK2850163 (GlaxoS-

mithKline)
Inhibits Inhibits ? Type III inhibitor Concha et al. (2015)

Preclinical development
STF-083010 No effect Inhibits Inhibits Direct inhibitor Sun et al. (2016)
HNA ? Inhibits ? Direct inhibitor Sun et al. (2016)
B-I09 (4μ8C analogue) ? Inhibition of XBP1 splic-

ing
? Direct inhibitor Tang et al. (2014)

4μ8C Inhibits Inhibits Inhibits Direct inhibitor Cross et al. (2012)
OICR573 No effect Inhibits ? Direct inhibitor Sanches et al. (2014)
OICR464 No effect Inhibits ? Direct inhibitor Sanches et al. (2014)
MKC-3946 No effect on 

auto-phospho-
rylation

Inhibits ? Direct inhibitor Mimura et al. (2012)

MKC9989 ? Inhibits ? Direct inhibitor Sanches et al. (2014)
MKC8866 ? Inhibits Inhibits Direct inhibitor Sanches et al. (2014)
MK018693 ? Inhibits ? Direct inhibitor Volkmann et al. (2011)
C-1305 No effect Inhibits ? Direct inhibitor Bartoszewska et al. (2021)
Doxorubicin ? Inhibits No effect Anthracycline antibiotic Jiang et al. (2016)
3-methoxy-6-bromosal-

icylaldehyde
? Inhibits ? – Volkmann et al. (2011)

Trierixin Inhibits ? ? – Tashiro et al. (2007)
APY24 Activates ? ? Type I kinase inhibitor Mendez et al. (2015)
APY29 (APY24 analogue) Activates ? ? Type I kinase inhibitor Korennykh et al. (2009)
IPA (APY24 analogue) Activates ? ? Type I kinase inhibitor Mendez et al. (2015)
CRUK-3 (originally 

named compound 3)
Inhibits Activates ? Type I kinase inhibitor Joshi et al. (2015)

G-1749 (KIRA8 analogue) Activates ? ? Type I kinase inhibitor Ferri et al. (2020)
G-9807 Activates ? ? Type I kinase inhibitor Ferri et al. (2020)
Sunitinib (Pfizer) Inhibits Activates ? Tyrosine kinase (RTK) 

inhibitor
Feldman et al. (2016a); 

Korennykh et al. (2009)
In clinical use

CXC195 ? Stabilization of IRE1-
TRAF2-ASK1 complex

? Binds IRE1 dimers Chen et al. (2015)



1153Dual RNase activity of IRE1 as a target for anticancer therapies  

1 3

domain and leads to increased IRE1 scaffolding activity 
(Rosen et al. 2019; Chen et al. 2015). Many of the IRE1 
targeting compounds were not originally identified as 
such. For example, sunitinib malate (Pfizer Sutent®) was 
identified as an oral multi-kinase inhibitor preventing the 
growth, proliferation, and spread of cancers by targeting 
vascular endothelial growth factor receptor (VEGFR) and 
platelet-derived growth factor receptor (PDGFR) (Ray-
mond et al. 2011). In our study, we identified triazoloacri-
done C-1305, a microtubule stabilizing agent that also has 
topoisomerase II inhibitory activity, to also be a direct 
IRE1’s RNase inhibitor (Kroliczewski et al. 2020; Barto-
szewska et al. 2021; Switalska et al. 2022). However, the 
wide range of other activities that many IRE1 targeting 
compounds have may increase the risk of off-target effects, 
and thus this may limit their clinical application.

In summary, many attempts have been made to trans-
late IRE1 targeting compounds into anticancer therapies 
(Table 1). Both treatments with IRE1 inhibitors alone or 
in combination with other cancer drugs have been shown 
to be effective against many tumors in both in vitro and 
in vivo models as well as some in clinical treatments 
(Table 1) (Logue et al. 2018; Sun et al. 2016; Ri et al. 
2012; Jiang et al. 2016; Harnoss et al. 2019). Notably, 
adjuvant use of MKC8866 was found to be supportive in 
anti-glioblastoma multiform therapy (Reste et al. 2019).

Furthermore, in recent years numerous natural com-
pounds have been reported to activate UPR-related cell 
death signaling pathways in different types of cancer cells 
(reviewed in Limonta et al. 2019). Notably, some of these 
compounds were reported to affect IRE1 levels and sign-
aling and thus they may provide a starting point for the 
next generation of IRE1 inhibitors or activators (Table 2). 
However, further studies to define the pharmacological 
properties of these compounds as well as molecular mech-
anisms associated with their impact on IRE1 expression 
and activity are required before therapeutic approaches can 
be tested and utilized.

Besides IRE1’s potential role in cancer, this enzyme is 
crucial for human metabolic regulation, and therefore alter-
ations in function can lead to metabolic diseases (Huang 
et al. 2019) as well as neurological disorders (Marciniak 
et al. 2022; Vasquez et al. 2022). Indeed, the UPR has been 
associated with obesity-related metabolic disorders, insu-
lin resistance, and inflammatory responses. IRE1 signaling 
has also been recognized as crucial for the integration of 
metabolic stress signals (reviewed in Huang et al. 2019). 
Thus, pharmacological strategies that aim to restore balance 
between IRE1s’ XBP1s and RIDD activities are not only 
limited to anticancer therapies but can also be crucial for 
effective treatments of metabolic disorders such as diabe-
tes. Nevertheless, gaining specific control over both types 
of IRE1 activities remains a major challenge for therapeutic 
strategies. For example, this can be seen in mouse pancre-
atic islet cells, where both continuous Xbp1s overexpres-
sion or Xbp1 knockdown result in impaired insulin secre-
tion, increased RIDD activity, and β cells death (Allagnat 
et al. 2010; Lee et al. 2011). Basal IRE1 activity is essential 
for pancreatic islet growth and oxidative stress resistance 
(Hassler et al. 2015; Tsuchiya et al. 2018; Xu et al. 2014). 
Taken together, these studies demonstrate that IRE1-related 
therapeutic approaches that aim to restore β cells homeosta-
sis and increase their ability to produce insulin will require 
careful modulation of both XBP1s splicing and RIDD activ-
ity. Furthermore, the importance of UPR is highlighted by 
the fact that basal IRE1 activity and XBP1s production is 
required for brain homeostasis, and this suggests a novel 
therapeutic strategy for aging-related neurodegeration (Kru-
kowski et al. 2020; Cabral-Miranda et al. 2022). However, 
the complexity of the UPR pathway remains the major chal-
lenge of dedicated therapies, limiting the number of dedi-
cated compounds that make it to clinical use (as reviewed 
in Marciniak et al. 2022). Currently, there is only one mar-
keted IRE1 inhibitor (sunitinib), and the other UPR-related 
drugs are either specific protein-dedicated pharmacological 
chaperones (lumacaftor for cystic fibrosis transmembrane 

Type I kinase inhibitors bind to the active conformation, type II kinase inhibitors bind to the inactive/closed conformation, and type III kinase 
inhibitors bind next to the ATP site

Table 1  (continued)

Compound Kinase activity RNase activity RIDD Comments References

IXA4 No effect Activates ? Requires IRE1 phospho-
rylation

Grandjean et al. (2020)

XBP1s specific
IXA6 No effect Activates ? Requires IRE1 phospho-

rylation
Grandjean et al. (2020)

XBP1s specific
Quercetin (flavanol) Activates ? ? Wiseman et al. (2010)
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conductance regulator (CFTR)) or proteasome inhibitors 
(like bortezomib, ixazmomib, and carfilzomib) (Marciniak 
et al. 2022). Hopefully, ongoing clinical trials will expand 
this list.

Conclusions

Despite the ongoing research studies on UPR, the complex-
ity of this pathway impedes its straightforward application in 
anticancer therapies. The molecular crosstalk between UPR 
branches in both nonmalignant and cancer cells remains 
understudied and is at this point beyond therapeutic control. 
The main research barriers include the incredible variability 
of the different cancers, the complexity of their microenvi-
ronments, and how this complexity affects the UPR output 
signaling.

Even though all the UPR branches provide attractive 
anticancer therapeutic targets, IRE1 pathways appear to 
have the most potential given their clear role in cell fate 
decisions. Since XBP1 splicing has a prosurvival output, 
which is often overactive in cancer, it remains a promis-
ing target. Targeting RIDD activity, however, with all of 
its different targets makes it potentially more complex at 

least at this point. Furthermore, it should not be ignored 
that the basal RIDD is crucial for maintaining ER home-
ostasis, and thus further studies of this aspect of IRE1 
function are required to minimize the risk of off-target 
effects. That being said, the identification of compounds 
that would selectively activate or inhibit a specific aspect 
of IRE1 RNAse activities is of foremost importance. 
Finally, although numerous compounds that modulate 
IRE1 activity are known, their clinical use remains lim-
ited (Raymundo et al. 2020), and therefore the search for 
alternative solutions that will prevent XBP1 splicing or 
hyperactivate RIDD are clearly needed.
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Table 2  Natural compounds that affect IRE1 expression or signaling

Compound Type Impact on 
IRE1 activity

IRE1 related  
mechanism

Comments References

Curcumin Polyphenol ? ? Increased expression of 
IRE1

Rivera et al. (2017)

Bisdemethoxycurcumin Polyphenol ? ? Increased expression of 
IRE1

Yang et al. (2016)

Demethoxycurcumin Polyphenol ? ? Increased expression of 
IRE1β

Ko et al. (2015)

Resveratrol Polyphenol ? ? Increased expression of 
IRE1

Chow et al. (2014)

(-)-Epigallocatechin-3-gallate Polyphenol ? ? Increased levels of XBP1s Martinotti et al. (2018)
γ-Tocotrienol Tocotrienols ? ? Increased levels of XBP1s 

and DR5
Park et al. (2010); Comitato 

et al. (2016); Montagnani 
Marelli et al. (2016)

δ-Tocotrienol Tocotrienols ? ? Increased levels of XBP1s 
and DR5

Park et al. (2010); Comitato 
et al. (2016); Montagnani 
Marelli et al. (2016)

Garcinone-E Xantone ? ? Increased levels of XBP1s Xu et al. (2017)
Gambogic acid Xantone ? ? Increased levels of XBP1s 

mRNA
Krajarng et al. (2015)

Pristimerin Terpenoid ? ? Increased expression of 
IRE1

Cevatemre et al. (2018)

4-Nerolidylcatechol Sesquiterpenoid ? ? Increased expression of 
IRE1

Alves-Fernandes et al.  
(2019)

Quercetin Falvonol Activates Activates kinase  
activity

Wiseman et al. (2010)
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