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Abstract
Some acute inflammatory diseases are often exacerbated during or after hospitalization, leading to some severe manifesta-
tions like systemic inflammatory response syndrome, multiple organ failure, and high mortality. Early clinical predictors 
of disease severity are urgently needed to optimize patient management for better prognosis. The existing clinical scoring 
system and laboratory tests cannot circumvent the problems of low sensitivity and limited specificity. Extracellular vesicles 
(EVs) are heterogeneous nanosecretory vesicles containing various biomolecules related to immune regulation, inflammation 
activation, and inflammation-related complications. This review provides an overview of EVs as inflammatory mediators, 
inflammatory signaling pathway regulators, promoters of inflammatory exacerbation, and markers of severity and prognosis. 
Currently, although relevant biomarkers are clinically available or are in the preclinical research stage, searching for new 
markers and detection methods is still warranted, as the problems of low sensitivity/specificity, cumbersome laboratory 
operation and high cost still plague clinicians. In-depth study of EVs might open a door in the search for novel predictors.
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Introduction

Inflammation is a physiological or pathological process in 
which the body responds to stimulators such as infection, 
tissue stress or dysfunction, and tissue injury and tries to 
restore the internal homeostasis (Medzhitov 2008). In this 
process, leukocytes and inflammation-related plasma pro-
teins are recruited to the lesion and perform various effec-
tor functions to resist infection or injury. However, when 
the body's inflammatory response is excessive, the accu-
mulated inflammatory mediators have a severe destruc-
tive impact on human tissues. These excessive inflamma-
tory reactions often manifest as systemic inflammatory 
response syndrome (SIRS) (Singer et al. 2016), cytokine 
storm (CS) (Ragab et al. 2020) or multiple organ failure 
(MOF) (Beal and Cerra 1994). Patients with these com-
plications often have a significantly higher mortality rate 
than those who do not.

The disease course of the patients with the above-men-
tioned complications often progresses rapidly. Early pre-
diction of disease or stratification of patients by disease 
severity facilitates more active monitoring and treatment 
measures and is anticipated to significantly improve the 
prognosis of patients (Terrasini and Lionetti 2017; Fujita 
et al. 2021). Inaccurate assessment often leads to treatment 
delay, increased mortality or poor prognosis. However, the 
commonly used prediction models and some laboratory 
tests often have limitations, such as poor sensitivity and 
specificity, and cannot make early predictions (Mounzer 
et al. 2012; Germolec et al. 2018). Because organ function 
is often impaired before obvious clinical manifestations 
appear, traditional tools have clear deficiencies. Research-
ers have gradually transitioned from clinical scoring to 
molecular screening of important markers in disease evo-
lution (Staubli et al. 2015).

Paracrine-mediated complex intercellular communi-
cation is very important for maintaining the physiologi-
cal environment required by different distant organs to 
respond to stressors. Dysregulation may occur in the early 
stage of reaching the organ tolerance threshold and lead to 
the extension of single organ dysfunction to other distant 
organs (Husain-Syed et al. 2016). The understanding of 
mechanisms underlying critical illness and the screening 
of related important molecules may be expected to reveal 
corresponding indicators for predicting the early evolu-
tion of organ failure or individual treatment responses. 
Studies have shown that extracellular vesicles (EVs) are 
functionally involved in the progression and aggravation 
of many diseases (Jia et al. 2021; Hassanpour et al. 2020; 
Lanyu and Feilong 2019; Su et al. 2020). The identity 
and quantity of EVs are closely related to disease severity 
(Fujita et al. 2021; Krishnamachary et al. 2021; Letsiou 

et al. 2015; Campbell et al. 2021). EVs can indicate not 
only aggravation of a disease but also the types of compli-
cations (Takei et al. 2019; Panich et al. 2017; Delabranche 
et al. 2016), and EVs are released earlier than other inflam-
matory markers in the blood (Jansen et al. 2016). Previ-
ous reviews have addressed related aspects, including the 
role of EVs in the personalized management of injury and 
repair in critical diseases (Husain-Syed et al. 2016), EVs-
mediated regulation of sepsis and immune system/blood 
coagulation disorders (Qiu et al. 2021; Iba and Ogura 
2018), etc. To avoid repetition, we do not discuss these 
aspects in detail. This review introduces the role of EVs in 
progression of severe acute clinical inflammatory disease, 
analyzes the potential of EVs as predictors of severity, 
which is expected to promote the clinical application of 
EVs as predictive markers.

Brief introduction to EVs

EVs are vesicles composed of a lipid bilayer originating 
from endosomes or plasma membranes. In 1983, the secre-
tion of EVs from sheet reticulocytes was first discovered 
by Pan and Johnstone (Pan and Johnstone 1983), but at that 
time, EVs were considered only a part of the mechanism 
of cell waste disposal. Currently, it has been shown that 
almost all types of mammalian cells secrete EVs (Camussi 
et al. 2011; Timmers et al. 2007; Wang et al. 1950); in addi-
tion, EVs are found in most body fluids (Lee et al. 2012; 
Chaput and Théry 2011; Adeoye and Thomson 2020; Ela 
et al. 2013; Raeven et al. 2018; Rossaint et al. 2019; Chan 
et al. 2019). According to the biogenesis pathway, EVs 
can be classified as exosomes, microvesicles and apoptotic 
bodies (Hassanpour et al. 2020; Lanyu and Feilong 2019). 
Since no specific markers for distinguishing EVs subtypes 
have been identified, determining the biogenesis pathway 
of EVs remains very difficult (Théry et al. 2018). EVs have 
numerous sources and diverse functions. How do they play 
a role in intercellular regulation? The roles of EVs include 
transfer of membrane components, inhibition of translation 
via RNA cargos, activation of coagulation cascades, direct 
signal transduction by receptor recognition, endocytosis 
of vesicles, regulation of transcription factors and antigen 
presentation, etc. (Raeven et al. 2018). As the identity and 
quantity of cargos carried by EVs can reflect the condition 
of their origin cells and are closely related to the pathologi-
cal disease state, they have the potential use as biomarkers 
for clinical diagnosis or prognosis (Urabe et al. 2020; Min 
et al. 2021).
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Exacerbation of acute inflammatory 
processes by EVs

The pathophysiological manifestations of critical inflam-
matory diseases usually include severe acute respiratory 
syndrome (ARDS), shock, systemic inflammatory response 
syndrome (SIRS), multiple organ dysfunction (MODS), 
multiple organ failure (MOF) etc.. It has been reported that 
EVs cause secondary organ failure (SOF) after trauma, inva-
sive treatment or organ transplantation through proinflam-
matory and prothrombotic effects etc. (Eppensteiner et al. 
2018). The pathological factors related to the deterioration 
process with the involvement of EVs will be discussed in 
the following.

Direct dissemination of microbe virulence factors 
by EVs

The pandemic of some infectious diseases can be a global 
health crisis. During the course of severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2) infection, host cells 
would release EVs carrying viral components after virus 
endocytosis. The presence of viral RNA in the EVs can be 
identified by the transcription-droplet digital polymerase 
chain reaction (RT-ddPCR), while no viral material was 
detected in healthy subjects (Barberis et al. 2021). With the 
circulation of EVs in body fluid, they would probably con-
tribute to the infection spread of proximal or distal tissues.

Outer membrane vesicles (OMVs) were observed bud-
ding from the bacterial cell surface in the course of infec-
tion (Gurung et al. 2011). The presence of OMVs has been 
determined in patient samples and tissue biopsies by electron 
microscopy (Namork and Brandtzaeg 2002; Stephens et al. 
1982). And one of the main purposes for OMVs is thought 
to be transported of bacterial toxins (MacDonald and Kuehn 
2012). With the help of proteomics, many virulence factors 
of OMVs has been discovered including phospholipase C, 
proteases, alkaline phosphatase, aminopeptidase, murein 
hydrolases, hemolysins etc (Choi et al. 2011).

Somatic cell injury mediated by EVs through specific 
signaling pathway

Oxidative stress signaling

Acute pancreatititis (AP) is a common acute clinical 
abdominal disease. In most people, the disease is mild, 
but approximately 20% of patients experience moderate or 
severe pancreatitis (Dijk et al. 2017) with persistent single 
or multiple organ failure. The mortality rate of severe cases 
is approximately 30% (Lankisch et al. 2015; Schepers et al. 

2019). Some studies compared inflammatory activation of 
macrophages by plasma-derived EVs from patients with 
mild AP and patients with severe AP and found that EVs 
from patients with severe disease carried more S100A8/
S100A9, which can activate NADPH oxidase and promote 
the production of free radicals, thus promoting inflammatory 
responses (Carrascal et al. 2021).

The terminal stage of Non-alcoholic fatty liver disease 
(NAFLD) known as acute liver failure (ALF) are often 
life-threatening clinical syndromes characterized by rapid 
loss of hepatocyte function in patients without previous 
liver disease (Thawley 2017). Exogenous EVs from mice 
with acetaminophen-induced liver injury were found to be 
internalized into the primary mouse hepatocytes and lead to 
excessive production of reactive oxygen species (Cho et al. 
2018). miR-503 encapsulated in endothelial cells derived 
EVs under the ischemic myocardial scenarios exacerbated 
cardiac injury by directly binding to peroxisome proliferator-
activated receptor gamma coactivator-1β (PGC-1β) and a 
mitochondrial deacetylase, sirtuin 3 (SIRT3), thereby trig-
gering ROS production and mitochondrial metabolic dys-
function (Sun et al. 2022).

Apoptosis signaling

As we know, the severe acute respiratory syndrome is one 
of the most serious complications of Corona Virus Disease 
2019 (COVID-19) and marked by endothelial dysfunction 
and dysregulated immune responses, which was positively 
correlated to disease severity. EVs from COVID-19 patients 
plasma significantly increased caspase 3/7 activity of pul-
monary microvascular endothelial cells and consequently 
induced cell apoptosis in the order of disease severity. As 
discussed above, EVs from mice with acetaminophen-
induced liver injury not only induced production of reac-
tive oxygen species (Cho et al. 2018), but also caused the 
increase of phospho-JNK/JNK, Bax and cleaved caspase-3 
in mouse liver after receiving the EVs.

Inflammasome

The NOD-like receptors (NLR) are a family of cytosolic 
proteins that regulate the cysteine protease caspase-1 within 
a multiprotein complex known as the inflammasome. Acti-
vation of caspase-1 leads to the cleavage and activation of 
pro-inflammatory cytokines such as interleukin-1beta (IL-
1beta) and IL-18, which indicates inflammasome activation 
(Newton and Dixit 2012). NLR has important roles in innate 
immunity as intracellular sensors of microbial components 
and cell injury (Mariathasan and Monack 2007). In sepsis, 
monocyte-derived EVs promote IL-1β and IL-18 secretion 
from resident cardiac macrophages through inflammasome 
activation, resulting in myocardial dysfunction (Wang et al. 
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2021). EVs produced by hepatocytes under heat stress can 
activate the NLR signaling pathway in other hepatocytes 
and lead to liver inflammation and injury (Li et al. 2019). 
Siminarly, NLRP3 inflammasome activation and subsequent 
pyroptosis in alveolar macrophages (AMs) is responsible for 
the lung injury secondary to acute pancreatitis (Wu et al. 
2020).

Coagulopathy associated with EVs

As infection is commonly associated with activation of the 
coagulation system, it is reported that COVID-19 patients 
often present with thrombosis (Campbell et al. 2021). They 
had significantly higher levels of D-dimer, circulating extra-
cellular vesicle tissue factor (EVTF) activity, and active 
PAl-1 compared with healthy controls, which may promote 
thrombosis due to simultaneous activation of coagula-
tion and inhibition of fibrinolysis. Since tissue factor (TF) 
expression is induced in monocytes and endothelial cells, the 
EVTF might be derived from these two cell groups (Camp-
bell et al. 2021). And the EVTF activity was also associated 
with patient severity and mortality (Rosell et al. 2021). In 
addition, sepsis patients have a high rate of thrombosis, too. 
The coagulation disorder contributes to the development 
of disseminated intravascular coagulation (DIC). A recent 
article (Iba and Ogura 2018) has reviewed that EVs not only 
exhibit procoagulant properties during sepsis, but also dis-
seminate prothrombotic activities by transferring their pro-
coagulant properties to distant target cells. To avoid repeti-
tion, we do not discuss these aspects in detail.

Induction of inflammatory cell recruitment 
or differentiation by EVs

In one study about sepsis, EV-associated miRNAs were 
responsible for EV-induced cytokine production via TLR7-
MyD88 signaling. The effects of EVs were resistant to poly-
myxin B (an endotoxin inhibitor) but significantly inhibited 
by anti-miR inhibitors. In addition, in vivo, peritoneal cecum 
ligation and puncture mouse model derived EVs induced 
significant recruitment of neutrophils. And this study proved 
the hypothesis that plasma EVs in sepsis were pro-inflamma-
tory (Xu et al. 1950). Lung damage is a frequent complica-
tion of acute pancreatitis, of which the pathogenic mecha-
nism is still unknown. PKH26-stained EVs obtained under 
inflammatory conditions reached alveolar compartment 
and were internalized by alveolar macrophages. And these 
EVs activated and polarized these macrophages towards 
a pro-inflammatory phenotype in  vitro (Bonjoch et  al. 
2016). Furthermore, related study from another research 
group revealed that acute pancreatitis derived EVs-loaded 
MALAT1 facilitated M1 polarization of macrophages via 
miR-181a-5p/HMGB1/TLR4 (Liu et al. 2021).

Superiority of EVs as disease severity 
predictor

Early occurrence of EVs for disease stratification

As discussed above, many studies have suggested that 
EVs are significantly correlated with the severity of some 
diseases. Besides, EVs are even the initiating factor of 
disease progression. The time at which EVs can be used 
for disease monitoring in patients with different severities 
can be much earlier than that of other inflammatory bio-
markers. Analysis of blood samples from 50 patients with 
SIRS after transcatheter aortic valve implantation (TAVI) 
showed that the endogenous microparticle (EMP) concen-
tration peaked at 4 h after TAVI, while other inflamma-
tory biomarkers peaked at 24 h (PCT, IL-6, IL-8) or 48 h 
(CRP) after surgery. This difference may exist because 
EMPs are released immediately after endothelial injury 
(Jansen et al. 2016).

In a case–control study, the Intensive Care Unit with 
septic shock (SS) patients and matched healthy volunteers 
were recruited and various microparticle subtypes (Annex-
inV+, E-selectin+, thrombomodulin+ , leukocyte-derived 
(CD45+ , CD36+) and platelet-derived MP) from plasma 
were studied to evaluate their possible association with 
severity of illness and sepsis-related complications includ-
ing DIC and acute kidney injury (AKI). It turned out that 
a global response through MP derived from endothelial 
cells, leukocytes and platelets on day 1 of SS was con-
firmed and are useful to evaluate SS severity and DIC 
occurrence, which was earlier than the detection of inflam-
mation related cell activation (Boscolo et al. 2019).

Convenient sampling and detection of EVs‑derived 
markers

In clinic, specially ICU, various scoring systems are often 
used to evaluate the severity of the disease and the most 
commonly used include Acute Physiology and Chronic 
Health Evaluation II (APACHE II), Sequential Organ Fail-
ure Assessment (SOFA), the Rason score etc. And these 
scoring systems are always cumbersome, time-consuming 
and subjective (Mounzer et al. 2012). Laboratory examina-
tion methods to predict diseases by measuring inflamma-
tion-related biomolecules such as cytokines, chemokines 
and acute phase proteins also have issues with limited sen-
sitivity and specificity (Staubli et al. 2015). And conveni-
ent and fast alternatives are urgently needed.

The level of EVs in several body fluids, including 
serum/plasma, urine (Panich et al. 2017), ascites fluid 
(Bonjoch et al. 2016; Jiménez-Alesanco et al. 2019), breast 
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milk (Admyre et al. 1950), saliva (Cheng et al. 2020), and 
alveolar lavage fluid (Soni et al. 2016; Lee et al. 2017), 
was found to be increased in inflammatory pathological 
conditions. Therefore, EVs samples can be obtained by 
noninvasive method. Although clinical application of 
EVs detection methods is challenging because of the low 
concentration, small size and heterogeneity of EVs, vari-
ous emerging technologies are flourishing and impressive 
(Garcia-Cordero and Maerkl 2020; Salafi et al. 2016). 
Above all, EVs-based detection methods are still highly 
expected.

Association with severe complications of EVs

As discussed above, EVs are related to inflammation-
related complications, and patients with these compli-
cations often have a significantly higher mortality and 
rapid disease progression. So, EVs are promising indica-
tors of disease severity. It has been discussed in "Coagu-
lopathy associated with EVs" section that EVs exhibit 
procoagulant properties during sepsis and contributes 
to the development of DIC. In another study, increased 
E-selectin+MPs in subjects who developed sepsis-related 
AKI were observed (Boscolo et al. 2019). Besides, cir-
culating endothelial microparticles (EMPs) expressing 
higher levels of angiotensin-converting enzyme (ACE) on 
admission were significantly increased in septic patients 
who developed ARDS compared with septic patients who 
did not. Therefore, circulating ACE EMPs may be a prog-
nostic marker for the development of ARDS in the septic 
patients (Takei et al. 2019).

Indication of disease severity, prediction 
of hospitalization duration as well as mortality 
by EVs

Acute liver failure (ALF) is a prototypical syndrome of 
systemic inflammatory response syndrome (SIRS) associ-
ated with a procoagulant state. And it has been verified that 
patients with ALF develop increased procoagulant micro-
particles (MPs) in proportion to the severity of systemic 
complications and adverse outcome (Takei et al. 2019). Spe-
cifically, MP concentrations was correlated with laboratory 
predictors of death/liver transplant (LT) (higher phosphate 
and creatinine; lower bicarbonate), and day 1 and 3 MPs 
were higher in patients who died or underwent LT, com-
pared to survivors. Another study on the role of EVs for 
COVID-19 suggested that EVs from critically-ill patients 
with enrichment of proinflammatory and procoagulation 
protein signatures can delineate disease severity and pre-
dict length of hospitalization (Krishnamachary et al. 2021).

Excellent predictive value of EVs for patient 
stratification

The predictive markers for early characterizing the vari-
ability of COVID-19 patients are still lacking, and emerg-
ing evidence indicates that EVs components might be key 
determinants to predict disease severity. The prediction 
accuracy of an EV-related marker EV COPB2, a subunit 
of the Golgi coatomer complex, was systemically studied. 
And EV COPB2 exhibited significantly higher abundance 
in patients remained mild than developed severe/critical 
COVID-19 with a predictive value of AUC 0.85 (95% CI 
0.73–0.97) for early patient stratification (Fujita et al. 2021). 
In clinic, 50% of sepsis patients might develop AKI and sep-
sis patients with AKI had a higher mortality rate. Therefore, 
early sepsis-AKI biomarkers would be indispensable, how-
ever, no specific biomarker for sepsis-AKI is available cur-
rently. In a study, urinary exosomal activating transcriptional 
factor 3 (uATF3) has been compared with the standard AKI 
biomarker serum creatinine (Scr) and potential sepsis-AKI 
marker urinary neutrophil gelatinase associated lipocalin 
(uNGAL). And AUROC of uNGAL and uATF3 were 64% 
(95% CI 0.54–0.74) and 84% (95% CI 0.77–0.91), respec-
tively, which suggested that uATF3 is an interesting sepsis-
AKI biomarker (Panich et al. 2017).

Various cargos on EVs as markers 
for distinguishment of disease severity

EVs contain various bioactive substances, such as lipids, 
proteins and RNAs, and all are widely explored.

Protein

The protein markers are the most widely studied EV-based 
markers. Till now, dozens of research studies have reported 
human EV-derived protein markers to differentiate critical 
inflammatory diseases. Proteomic approach is usually used 
to map the circulating EVs from the patients and healthy 
controls. And the marker molecules reported are involved 
in the immune response, inflammation, activation of the 
coagulation and complement pathways including FIBA, 
C1R (Barberis et al. 2021), TF (Rosell et al. 2021), COPB2 
(Fujita et al. 2021) etc..

microRNA

An overall mortality for patients with community-acquired 
pneumonia (CAP) is 17.3%, and frequent secondary compli-
cations of CAP include sepsis, SS or acute pulmonary failure 
etc. Novel biomarkers for CAP will help to identify patients 
at risk for progress to sepsis and facilitate early intervention 
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and treatment. And expression levels of miR-1246 showed 
significant changes with an increase in overall disease sever-
ity, which is a promising marker for CAP (Hermann et al. 
2020).

As the mortality of SS is approaching 50%, novel bio-
markers served as prompt indicators are urgently needed for 
early diagnosis and treatment as well as patient survival. 
EVs-derived miRNA (miR-125b-5p) contributes signifi-
cantly to sepsis diagnosis and survival prediction and could 
be used as newly identified targets for the development of 
novel sepsis biomarkers (Reithmair et al. 2017).

Lipids

Hitherto evidence has proved that multivesicular bodies 
(MVBs)/late endosomes were implicated in extracellular 
release of viruses, which contributed to virus infection for 
distant cells. Specifically, mature viral particles are released 
by infected cells in the form of transport vesicles from the 
trans-Golgi network (TGN). As the trafficking routes are 
present between TGN and late endosomes, the virus particle 
release might be affected by the homeostasis of some phos-
phate receptor or lipids. One study suggests that COVID-
19 patients with elevating disease severity have increased 
enrichment in monosialodihexosyl gangliosides (GM3)-
containing EVs, and may partake in pathological processes 
of COVID-19 pathogenesis (Song et al. 2020).

Total EVs content

As discussed in "Indication of disease severity, prediction 
of hospitalization duration as well as mortality by EVs" sec-
tion, one research study investigated the role of microparti-
cles in mediating complications and outcome of ALF. MPs 
with size range of 0.1–1.0 μm were enumerated. Total MPs 
(0.15–1.0 μm) were present in nearly 19-fold higher concen-
trations in ALI/ALF patients compared to healthy controls, 
and MPs (0.36–0.64 μm) increased in direct proportion to 
SIRS severity and grade of hepatic encephalopathy (HE) 
(Stravitz et al. 2013).

Discussion

Other than the academic publications mentioned above, 
nearly 10 clinical studies have been initiated for evalu-
ating EVs as sensitive criteria of early evaluation and 
supervision of therapeutic effect for acute disease includ-
ing sepsis, acute lung injury, acute myocardial infarction, 
immune reconstitution syndrome in HIV/TB co-infection, 
traumatic brain injury etc. (Table 1). The study purpose 
and design of these clinical trials may offer a glimpse of 
the potential of EVs derived biomarker for predicting dis-
ease severity and prognosis.

Over the past decade, research on the function of EVs 
in inflammation has increased significantly. Given that 
EVs and inflammation are two complex fields, the exist-
ing research is insufficient to fully reveal their interrela-
tionship. However, two points are certain. First, regarding 
inflammation, EVs play a strong regulatory role in disease 
as inflammatory mediators. Second, the cargos carried by 
inflammatory EVs can reflect the pathological state of 
patients.Concerning the second aspect, EVs can be used 
as diagnostic/prognostic markers of disease and promote 
more accurate and personalized treatment.

Distinction of EVs subtypes is also a development 
direction worthy of attention (Shao et  al. 2018). EVs 
themselves are highly heterogeneous lipid containers 
with diverse sources, sizes, and contents; indeed, they 
perform different functions and even play opposite roles 
in the same disease. For example, epithelial cell-derived 
EVs isolated from intestinal lavage fluid in septic mice 
inhibited inflammation; in contrast, EVs isolated from 
plasma promoted inflammation (Appiah et al. 2020; Gao 
et al. 2019). If these EVs subtypes are not distinguished, 
the conclusions may be puzzling. Therefore, numerous 
novel technologies including single EV analysis (SEA), 
surface-enhanced Raman spectroscopy (SERS), cryo-
transmission electron microscopy (cryo-TEM) and total 
internal reflection fluorescence miscroscopy etc. are on 
their way to development to unveil different components 
and functions of various EV subgroups (Krishnamachary 
et al. 2021; Hosseinkhani et al. 2020). However, due to the 
limitations of separation and characterization technology, 
research on EVs subtypes isolated from a specific body 
fluid (such as plasma) or a specific cell type (such as T 
cells) in the inflammatory state is lacking. It is conceiv-
able that if a specific subtype is selected, the prediction 
ability of EVs-based markers may be increased. Therefore, 
assessing these patterns is a meaningful research direction.
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