Skip to main content
Log in

Interleukin-1 alpha and high mobility group box-1 secretion in polyinosinic:polycytidylic-induced colorectal cancer cells occur via RIPK1-dependent mechanism and participate in tumourigenesis

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Pathogenic infections have significant roles in the pathogenesis of colorectal cancer (CRC). These infections induce the secretion of various damage-associated molecular patterns (DAMPs) including interleukin-1 alpha (IL-1α) and high mobility group box-1 (HMGB1). Despite their implication in CRC pathogenesis, the mechanism(s) that modulate the secretion of IL-1α and HMGB1, along with their roles in promoting CRC tumourigenesis remain poorly understood. To understand the secretory mechanism, HT-29 and SW480 cells were stimulated with infectious mimetics; polyinosinic:polycytidylic acid [Poly(I:C)], lipopolysaccharide (LPS) and pro-inflammatory stimuli; tumour necrosis factor-alpha (TNF-α). IL-1α and HMGB1 secretion levels upon stimulation were determined via ELISA. Mechanism(s) mediating IL-1α and HMGB1 secretion in CRC cells were characterized using pharmacological inhibitors and CRISPR-Cas9 gene editing targeting relevant pathways. Recombinant IL-1α and HMGB1 were utilized to determine their impact in modulating pro-tumourigenic properties of CRC cells. Pharmacological inhibition showed that Poly(I:C)-induced IL-1α secretion was mediated through endoplasmic reticulum (ER) stress and RIPK1 signalling pathway. The secretion of HMGB1 was RIPK1-dependent but independent of ER stress. RIPK1-targeted CRC cell pools exhibited decreased cell viability upon Poly(I:C) stimulation, suggesting a potential role of RIPK1 in CRC cells survival. IL-1α has both growth-promoting capabilities and stimulates the production of pro-metastatic mediators, while HMGB1 only exhibits the latter; with its redox status having influence. We demonstrated a potential role of RIPK1-dependent signalling pathway in mediating the secretion of IL-1α and HMGB1 in CRC cells, which in turn enhances CRC tumorigenesis. RIPK1, IL-1α and HMGB1 may serve as potential therapeutic targets to mitigate CRC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antonic V, Stojadinovic A, Kester KE, Weina PJ, Brücher BL, Protic M, Avital I, Izadjoo M (2013) Significance of infectious agents in colorectal cancer development. J Cancer 4:227–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, Capriotti C, Cook M, Finger J, Hughes-Earle A, Harris PA, Kaiser WJ, Mocarski ES, Bertin J, Gough PJ (2014) Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol 192:5476–5480

    Article  CAS  PubMed  Google Scholar 

  • Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, Cavener D, Diehl JA (2010) PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 29:3881–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer NPM, Bos ACRK, Lemmens VEPP, Tanis PJ, Hugen N, Nagtegaal ID, de Wilt JHW, Verhoeven RHA (2018) An overview of 25 years of incidence, treatment and outcome of colorectal cancer patients. Int J Cancer 143:2758–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchrieser J, Oliva-Martin MJ, Moore MD, Long JCD, Cowley SA, Perez-Simón JA, James W, Venero JL (2018) RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation. Cell Death Dis 9:973

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A, Ibrahim ZA (2020) HMGB1: an overview of its versatile roles in the pathogenesis of colorectal cancer. Cell Oncol (dordr) 43:177–193

    Article  CAS  PubMed  Google Scholar 

  • Cheng KJ, Mejia Mohammed EH, Khong TL, Mohd Zain S, Thavagnanam S, Ibrahim ZA (2021) IL-1α and colorectal cancer pathogenesis: enthralling candidate for anti-cancer therapy. Crit Rev Oncol Hematol 163:103398

    Article  PubMed  Google Scholar 

  • Chiu JW, Binte Hanafi Z, Chew LCY, Mei Y, Liu H (2021) IL-1α processing, signaling and its role in cancer progression. Cells 10:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J-A, Song C-H (2020) Insights into the role of endoplasmic reticulum stress in infectious diseases. Front Immunol. https://doi.org/10.3389/fimmu.2019.03147

    Article  PubMed  PubMed Central  Google Scholar 

  • Collett GP, Redman CW, Sargent IL, Vatish M (2018) Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules. Oncotarget 9:6707–6717

    Article  PubMed  PubMed Central  Google Scholar 

  • Corazzari M, Gagliardi M, Fimia GM, Piacentini M (2017) Endoplasmic reticulum stress unfolded protein response, and cancer cell fate. Front Oncol. https://doi.org/10.3389/fonc.2017.00078

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Paolo NC, Shayakhmetov DM (2016) Interleukin 1α and the inflammatory process. Nat Immunol 17:906–913

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Maggio S, Milano G, De Marchis F, D’Ambrosio A, Bertolotti M, Palacios BS, Badi I, Sommariva E, Pompilio G, Capogrossi MC, Raucci A (2017) Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochim Biophys Acta (BBA) Mol Basis Dis 1863:2693–2704

    Article  Google Scholar 

  • Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong Y-N, Janke LJ, Kelliher MA, Kanneganti T-D, Green DR (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157:1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estornes Y, Aguileta MA, Dubuisson C, De Keyser J, Goossens V, Kersse K, Samali A, Vandenabeele P, Bertrand MJM (2014) RIPK1 promotes death receptor-independent caspase-8-mediated apoptosis under unresolved ER stress conditions. Cell Death Dis 5:e1555–e1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Jiang C, Zhong B, Sheng J, Chen T, Chen Q, Li J, Zhao H (2018) Matrine ameliorates colorectal cancer in rats via inhibition of HMGB1 signaling and downregulation of IL-6, TNF-α, and HMGB1. J Immunol Res 2018:5408324

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    Article  CAS  PubMed  Google Scholar 

  • Gelfo V, Mazzeschi M, Grilli G, Lindzen M, Santi S, D’Uva G, Győrffy B, Ardizzoni A, Yarden Y, Lauriola M (2018) A novel role for the interleukin-1 receptor axis in resistance to anti-EGFR therapy. Cancers (basel) 10:355

    Article  CAS  PubMed  Google Scholar 

  • Geng J, Ito Y, Shi L, Amin P, Chu J, Ouchida AT, Mookhtiar AK, Zhao H, Xu D, Shan B, Najafov A, Gao G, Akira S, Yuan J (2017) Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat Commun 8:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51:27–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günther C, Ruder B, Stolzer I, Dorner H, He GW, Chiriac MT, Aden K, Strigli A, Bittel M, Zeissig S, Rosenstiel P, Atreya R, Neurath MF, Wirtz S, Becker C (2019) Interferon lambda promotes paneth cell death via STAT1 signaling in mice and is increased in inflamed ileal tissues of patients with Crohn’s disease. Gastroenterology 157:1310-1322.e13

    Article  PubMed  Google Scholar 

  • Ha TK, Hansen AH, Kildegaard HF, Lee GM (2019) BiP inducer X: An ER stress inhibitor for enhancing recombinant antibody production in CHO cell culture. Biotechnol J 14:e1900130

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hillenbrand A, Fassler J, Huber N, Xu P, Henne-Bruns D, Templin M, Schrezenmeier H, Wolf AM, Knippschild U (2012) Changed adipocytokine concentrations in colorectal tumor patients and morbidly obese patients compared to healthy controls. BMC Cancer 12:545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hreggvidsdottir HS, Ostberg T, Wähämaa H, Schierbeck H, Aveberger AC, Klevenvall L, Palmblad K, Ottosson L, Andersson U, Harris HE (2009) The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol 86:655–662

    Article  CAS  PubMed  Google Scholar 

  • Hreggvidsdóttir HS, Lundberg AM, Aveberger A-C, Klevenvall L, Andersson U, Harris HE (2012) High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med 18:224–230

    Article  PubMed  Google Scholar 

  • Hu C-L, Zhang Y-J, Zhang X-F, Fei X, Zhang H, Li C-G, Sun B (2021) 3D culture of circulating tumor cells for evaluating early recurrence and metastasis in patients with hepatocellular carcinoma. Onco Targets Ther 14:2673–2688

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhao H, Dong H, Wu Y, Yao L, Zou F, Cai S (2016) High-mobility group box 1 impairs airway epithelial barrier function through the activation of the RAGE/ERK pathway. Int J Mol Med 37:1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yang W, Zeng H, Hu C, Zhang Y, Ding N, Fan G, Shao L, Kuang B (2018) Droxinostat sensitizes human colon cancer cells to apoptotic cell death via induction of oxidative stress. Cell Mol Biol Lett 23:34–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishaq M, Natarajan V (2016) Integrated stress response signaling pathways induced by supraphysiological concentrations of thyroid hormone inhibit viral replication. Signal Transduct Insights. https://doi.org/10.4137/STI.S39844

    Article  Google Scholar 

  • Jurida L, Soelch J, Bartkuhn M, Handschick K, Müller H, Newel D, Weber A, Dittrich-Breiholz O, Schneider H, Bhuju S, Saul Vera V, Schmitz ML, Kracht M (2015) The activation of IL-1-induced enhancers depends on TAK1 kinase activity and NF-κB p65. Cell Rep 10:726–739

    Article  CAS  PubMed  Google Scholar 

  • Kandel-Kfir M, Almog T, Shaish A, Shlomai G, Anafi L, Avivi C, Barshack I, Grosskopf I, Harats D, Kamari Y (2015) Interleukin-1α deficiency attenuates endoplasmic reticulum stress-induced liver damage and CHOP expression in mice. J Hepatol 63:926–933

    Article  CAS  PubMed  Google Scholar 

  • Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar APN (2010) The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer 9:212–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Kearney CJ, Cullen SP, Clancy D, Martin SJ (2014) RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. FEBS J 281:4921–4934

    Article  CAS  PubMed  Google Scholar 

  • Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K (2004) A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 167:445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15:364–375

    Article  CAS  PubMed  Google Scholar 

  • le Rolle A-F, Chiu TK, Fara M, Shia J, Zeng Z, Weiser MR, Paty PB, Chiu VK (2015) The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Transl Med 13:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Song M, Shin N, Shin CH, Min BS, Kim HS, Yoo JS, Kim H (2012) Diagnostic significance of serum HMGB1 in colorectal carcinomas. PLoS ONE 7:e34318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenna S, Chrobak I, Farina GA, Rodriguez-Pascual F, Lamas S, Lafyatis R, Scorza R, Trojanowska M (2013) HLA-B35 and dsRNA induce endothelin-1 via activation of ATF4 in human microvascular endothelial cells. PLoS ONE 8:e56123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CW, Liao MY, Lin WW, Wang YP, Lu TY, Wu HC (2012) Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition gene expression in colon cancer. J Biol Chem 287:39449–39459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZY, Wu B, Guo YS, Zhou YH, Fu ZG, Xu BQ, Li JH, Jing L, Jiang JL, Tang J, Chen ZN (2015) Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. Am J Cancer Res 5:3174–3185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Zhang H, Jiang X, Qian C, Liu Z, Luo D (2017) Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol Cancer 16:176–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhang D, Luo M, Jia F, Peng L, Li X, Xia Y (2021) TNF-like weak inducer of apoptosis promotes angiogenesis, thereby exacerbating cutaneous psoriatic disease. J Investig Dermatol 141:1356-1360.e8

    Article  CAS  PubMed  Google Scholar 

  • Łukaszewicz-Zając M, Pączek S, Mroczko P, Kulczyńska-Przybik A (2020) The significance of CXCL1 and CXCL8 as well as their specific receptors in colorectal cancer. Cancer Manag Res 12:8435–8443

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukens JR, Vogel P, Johnson GR, Kelliher MA, Iwakura Y, Lamkanfi M, Kanneganti T-D (2013) RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498:224–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik A, Sharma D, Zhu Q, Karki R, Guy CS, Vogel P, Kanneganti T-D (2016) IL-33 regulates the IgA-microbiota axis to restrain IL-1α-dependent colitis and tumorigenesis. J Clin Invest 126:4469–4481

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuo Y, Sawai H, Ma J, Xu D, Ochi N, Yasuda A, Takahashi H, Funahashi H, Takeyama H (2009) IL-1alpha secreted by colon cancer cells enhances angiogenesis: the relationship between IL-1alpha release and tumor cells’ potential for liver metastasis. J Surg Oncol 99:361–367

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK (2015) Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis 6:e1636–e1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murao A, Aziz M, Wang H, Brenner M, Wang P (2021) Release mechanisms of major DAMPs. Apoptosis 26:152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton K (2015) RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol 25:347–353

    Article  CAS  PubMed  Google Scholar 

  • Nie X, Xia F, Liu Y, Zhou Y, Ye W, Hean P, Meng J, Liu H, Liu L, Wen J, Ren X, Chen W-D, Wang Y-D (2019) Downregulation of Wnt3 suppresses colorectal cancer development through inhibiting cell proliferation and migration. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01110

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D, LaBonte MJ, Wilson PM, Ladner RD, Lenz H-J (2011) Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 128:2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park IA, Heo S-H, Song IH, Kim Y-A, Park HS, Bang WS, Park SY, Jo J-H, Lee HJ, Gong G (2016) Endoplasmic reticulum stress induces secretion of high-mobility group proteins and is associated with tumor-infiltrating lymphocytes in triple-negative breast cancer. Oncotarget 7:59957–59964

    Article  PubMed  PubMed Central  Google Scholar 

  • Powan P, Luanpitpong S, He X, Rojanasakul Y, Chanvorachote P (2017) Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells. Am J Physiol Cell Physiol 313:C556–C566

    Article  PubMed  PubMed Central  Google Scholar 

  • Reithmeier A, Panizza E, Krumpel M, Orre LM, Branca RMM, Lehtiö J, Ek-Rylander B, Andersson G (2017) Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes metastasis-related properties via TGFβ2/TβR and CD44 in MDA-MB-231 breast cancer cells. BMC Cancer 17:650–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saveljeva S, Mc Laughlin SL, Vandenabeele P, Samali A, Bertrand MJM (2015) Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis 6:e1587–e1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt M, Greten FR (2021) The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol 21:653–667

    Article  CAS  PubMed  Google Scholar 

  • Simpson J, Loh Z, Ullah MA, Lynch JP, Werder RB, Collinson N, Zhang V, Dondelinger Y, Bertrand MJM, Everard ML, Blyth CC, Hartel G, Van Oosterhout AJ, Gough PJ, Bertin J, Upham JW, Spann KM, Phipps S (2020) Respiratory syncytial virus infection promotes necroptosis and HMGB1 release by airway epithelial cells. Am J Respir Crit Care Med 201:1358–1371

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MRM, Yagita H (2003) Nature’s TRAIL—on a path to cancer immunotherapy. Immunity 18:1–6

    Article  CAS  PubMed  Google Scholar 

  • Soto-Díaz K, Juda MB, Blackmore S, Walsh C, Steelman AJ (2020) TAK1 inhibition in mouse astrocyte cultures ameliorates cytokine-induced chemokine production and neutrophil migration. J Neurochem 152:697–709

    Article  PubMed  Google Scholar 

  • Suda J, Dara L, Yang L, Aghajan M, Song Y, Kaplowitz N, Liu ZX (2016) Knockdown of RIPK1 markedly exacerbates murine immune-mediated liver injury through massive apoptosis of hepatocytes, independent of necroptosis and inhibition of NF-κB. J Immunol 197:3120–3129

    Article  CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  • Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, Warren AY, Stewart GD, Eisen T, Bihary D, Samarajiwa SA, Vanharanta S (2019) A KLF6-driven transcriptional network links lipid homeostasis and tumour growth in renal carcinoma. Nat Commun 10:1152

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao L, Lin H, Wen J, Sun Q, Gao Y, Xu X, Wang J, Zhang J, Weng D (2018) The kinase receptor-interacting protein 1 is required for inflammasome activation induced by endoplasmic reticulum stress. Cell Death Dis 9:641–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Shrinet K, Kumar A (2019) HMGB1 protein as a novel target for cancer. Toxicol Rep 6:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, Liu J, Antonelli A, Preti A, Raeli L, Shams SS, Yang H, Varani L, Andersson U, Tracey KJ, Bachi A, Uguccioni M, Bianchi ME (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209:1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wähämaa H, Schierbeck H, Hreggvidsdottir HS, Palmblad K, Aveberger AC, Andersson U, Harris HE (2011) High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res Ther 13:R136

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jiang W, Yan Y, Gong T, Han J, Tian Z, Zhou R (2014) RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat Immunol 15:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang Y, Du Q, Lu P, Fan H, Lu J, Hu R (2016) Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells. Exp Cell Res 342:184–192

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wu W, Li W, Huang S, Li Z, Liu R, Shan Z, Zhang C, Li W, Wang S (2018) Activation of NLRP3 inflammasome promotes foam cell formation in vascular smooth muscle cells and atherogenesis via HMGB1. J Am Heart Assoc 7:e008596

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C-Q, Huang B-F, Wang Y, Tang C-H, Jin H-C, Shao F, Shao J-K, Wang Q, Zeng Y (2020) Subcellular localization of HMGB1 in colorectal cancer impacts on tumor grade and survival prognosis. Sci Rep 10:18587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ (2021) Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Mol Med 27:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Liu H, Song Z, Jiang Y, Kim H, Samavati L, Nguyen HM, Yang Z-Q (2020) The UPR transducer IRE1 promotes breast cancer malignancy by degrading tumor suppressor microRNAs. iScience. https://doi.org/10.1016/j.isci.2020.101503

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Ou B, Han D, Wang P, Zong Y, Zhu C, Liu D, Zheng M, Sun J, Feng H, Lu A (2017) Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer 16:70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universiti Malaya Faculty Research Grant (Grant No: GPF006C-2019) and the Malaysia Toray Science Foundation, Science and Technology Research Grant (STRG0069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaridatul Aini Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K.J., Mohamed, E.H.M., Syafruddin, S.E. et al. Interleukin-1 alpha and high mobility group box-1 secretion in polyinosinic:polycytidylic-induced colorectal cancer cells occur via RIPK1-dependent mechanism and participate in tumourigenesis. J. Cell Commun. Signal. 17, 189–208 (2023). https://doi.org/10.1007/s12079-022-00681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-022-00681-3

Keywords

Navigation