Skip to main content
Log in

The network map of urotensin-II mediated signaling pathway in physiological and pathological conditions

  • NUTS and BOLTS
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database (https://www.wikipathways.org/index.php/Pathway:WP5158). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Ohlstein EH, Bergsma DJ, Douglas SA (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401(6750):282–286

    Article  CAS  Google Scholar 

  • Bousette N, Hu F, Ohlstein EH, Dhanak D, Douglas SA, Giaid A (2006) Urotensin-II blockade with SB-611812 attenuates cardiac dysfunction in a rat model of coronary artery ligation. J Mol Cell Cardiol 41(2):285–295

    Article  CAS  Google Scholar 

  • Brule C, Perzo N, Joubert JE, Sainsily X, Leduc R, Castel H, Prezeau L (2014) Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors. FASEB J 28(12):5148–5162

    Article  CAS  Google Scholar 

  • Carlson LE, Childress DS (1975) The lift lock: a device to increase the lifting ability of dual-control prostheses. Bull Prosthet Res 1975(01/01):158–168

    Google Scholar 

  • Castel H, Desrues L, Joubert JE, Tonon MC, Prezeau L, Chabbert M, Morin F, Gandolfo P (2017) The G protein-coupled receptor UT of the neuropeptide urotensin II displays structural and functional chemokine features. Front Endocrinol (Lausanne) 8:76

    Article  Google Scholar 

  • Chao HH, Sung LC, Chen CH, Liu JC, Chen JJ, Cheng TH (2014) Lycopene inhibits urotensin-II-induced cardiomyocyte hypertrophy in neonatal rat cardiomyocytes. Evid Based Complement Alternat Med 2014:724670

    Article  Google Scholar 

  • Chen YL, Tsai YT, Lee CY, Lee CH, Chen CY, Liu CM, Chen JJ, Loh SH, Tsai CS (2014) Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway. PLoS ONE 9(9):e106812

    Article  Google Scholar 

  • Chen S, Wang Y, Wan Y (2017) Urotensin II enhances transforming growth factorbeta1 expression and secretion in the kidney during aristolochic acid nephropathy. Mol Med Rep 16(5):6904–6909

    Article  CAS  Google Scholar 

  • Cirillo P, De Rosa S, Pacileo M, Gargiulo A, Angri V, Fiorentino I, Prevete N, Petrillo G, De Palma R, Leonardi A, De Paulis A, Chiariello M (2008) Human urotensin II induces tissue factor and cellular adhesion molecules expression in human coronary endothelial cells: an emerging role for urotensin II in cardiovascular disease. J Thromb Haemost 6(5):726–736

    Article  CAS  Google Scholar 

  • Clozel M, Binkert C, Birker-Robaczewska M, Boukhadra C, Ding SS, Fischli W, Hess P, Mathys B, Morrison K, Muller C, Muller C, Nayler O, Qiu C, Rey M, Scherz MW, Velker J, Weller T, Xi JF, Ziltener P (2004) Pharmacology of the urotensin-II receptor antagonist palosuran (ACT-058362; 1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulfate salt): first demonstration of a pathophysiological role of the urotensin system. J Pharmacol Exp Ther 311(1):204–212

    Article  CAS  Google Scholar 

  • Dagamajalu S, Rex DAB, Gopalakrishnan L, Karthikkeyan G, Gurtoo S, Modi PK, Mohanty V, Mujeeburahiman M, Soman S, Raju R, Tiwari V, Prasad TSK (2021) A network map of endothelin mediated signaling pathway. J Cell Commun Signal 15(2):277–282

    Article  CAS  Google Scholar 

  • Dagamajalu S, Rex DAB, Philem PD, Rainey JK, Keshava Prasad TS (2022a) A network map of apelin-mediated signaling. J Cell Commun Signal 16(1):137–143

    Article  CAS  Google Scholar 

  • Dagamajalu S, Rex DAB, Suchitha GP, Rai AB, Rainey JK, Prasad TSK (2022b) The network map of Elabela signaling pathway in physiological and pathological conditions. J Cell Commun Signal 16(1):145–154

    Article  CAS  Google Scholar 

  • Diebold I, Petry A, Burger M, Hess J, Gorlach A (2011) NOX4 mediates activation of FoxO3a and matrix metalloproteinase-2 expression by urotensin-II. Mol Biol Cell 22(22):4424–4434

    Article  CAS  Google Scholar 

  • Djordjevic T, Gorlach A (2007) Urotensin-II in the lung: a matter for vascular remodelling and pulmonary hypertension? Thromb Haemost 98(5):952–962

    Article  CAS  Google Scholar 

  • Douglas SA, Ohlstein EH (2000) Human urotensin-II, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease. Trends Cardiovasc Med 10(6):229–237

    Article  CAS  Google Scholar 

  • Douglas SA, Dhanak D, Johns DG (2004) From ‘gills to pills’: urotensin-II as a regulator of mammalian cardiorenal function. Trends Pharmacol Sci 25(2):76–85

    Article  CAS  Google Scholar 

  • Federico A, Zappavigna S, Dallio M, Misso G, Merlino F, Loguercio C, Novellino E, Grieco P, Caraglia M (2017) Urotensin-II receptor: a double identity receptor involved in vasoconstriction and in the development of digestive tract cancers and other tumors. Curr Cancer Drug Targets 17(2):109–121

    Article  CAS  Google Scholar 

  • Filipeanu CM, Brailoiu E, Le Dun S, Dun NJ (2002) Urotensin-II regulates intracellular calcium in dissociated rat spinal cord neurons. J Neurochem 83(4):879–884

    Article  CAS  Google Scholar 

  • Gibson A, Conyers S, Bern HA (1988) The influence of urotensin II on calcium flux in rat aorta. J Pharm Pharmacol 40(12):893–895

    Article  CAS  Google Scholar 

  • Goldberg AA, Joung KB, Mansuri A, Kang Y, Echavarria R, Nikolajev L, Sun Y, Yu JJ, Laporte SA, Schwertani A, Kristof AS (2016) Oncogenic effects of urotensin-II in cells lacking tuberous sclerosis complex-2. Oncotarget 7(38):61152–61165

    Article  Google Scholar 

  • Gruson D, Ginion A, Decroly N, Lause P, Vanoverschelde JL, Ketelslegers JM, Bertrand L, Thissen JP (2010) Urotensin II induction of adult cardiomyocytes hypertrophy involves the Akt/GSK-3beta signaling pathway. Peptides 31(7):1326–1333

    Article  CAS  Google Scholar 

  • Herold CL, Behm DJ, Buckley PT, Foley JJ, Wixted WE, Sarau HM, Douglas SA (2003) The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors. Br J Pharmacol 139(2):203–207

    Article  CAS  Google Scholar 

  • Johns DG, Ao Z, Naselsky D, Herold CL, Maniscalco K, Sarov-Blat L, Steplewski K, Aiyar N, Douglas SA (2004) Urotensin-II-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators. Naunyn Schmiedebergs Arch Pharmacol 370(4):238–250

    Article  CAS  Google Scholar 

  • Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Ramachandra YL, Rahiman BA, Prasad TS, Lin JX, Houtman JC, Desiderio S, Renauld JC, Constantinescu SN, Ohara O, Hirano T, Kubo M, Singh S, Khatri P, Draghici S, Bader GD, Sander C, Leonard WJ, Pandey A (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11(1):R3

    Article  Google Scholar 

  • Kim MY, Ilyosbek S, Lee BH, Yi KY, Jung YS (2017a) A novel urotensin II receptor antagonist, KR-36676, prevents ABCA1 repression via ERK/IL-1beta pathway. Eur J Pharmacol 803:174–178

    Article  CAS  Google Scholar 

  • Kim TH, Lee DG, Kim YA, Lee BH, Yi KY, Jung YS (2017b) A novel urotensin II receptor antagonist, KR-36996 inhibits smooth muscle proliferation through ERK/ROS pathway. Biomol Ther (Seoul) 25(3):308–314

    Article  Google Scholar 

  • Langham RG, Kelly DJ, Gow RM, Zhang Y, Dowling JK, Thomson NM, Gilbert RE (2004) Increased expression of urotensin II and urotensin II receptor in human diabetic nephropathy. Am J Kidney Dis 44(5):826–831

    Article  CAS  Google Scholar 

  • Lawson EC, Luci DK, Ghosh S, Kinney WA, Reynolds CH, Qi J, Smith CE, Wang Y, Minor LK, Haertlein BJ, Parry TJ, Damiano BP, Maryanoff BE (2009) Nonpeptide urotensin-II receptor antagonists: a new ligand class based on piperazino-phthalimide and piperazino-isoindolinone subunits. J Med Chem 52(23):7432–7445

    Article  CAS  Google Scholar 

  • Li W, Cai Z, Liu M, Zhao C, Li D, Lv C, Wang Y, Xu T (2015) Urotensin II contributes to collagen synthesis and up-regulates Egr-1 expression in cultured pulmonary arterial smooth muscle cells through the ERK1/2 pathway. Biochem Biophys Res Commun 467(4):1076–1082

    Article  CAS  Google Scholar 

  • Li YY, Shi ZM, Yu XY, Feng P, Wang XJ (2016) Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells. World J Gastroenterol 22(25):5769–5779

    Article  CAS  Google Scholar 

  • Li YY, Shi ZM, Yu XT, Feng P, Wang XJ (2017) The effects of urotensin II on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-Jun N-terminal kinase pathway in human hepatoma cells. Peptides 88:106–114

    Article  CAS  Google Scholar 

  • Liang DY, Liu LM, Ye CG, Zhao L, Yu FP, Gao DY, Wang YY, Yang ZW, Wang YY (2014) Inhibition of UII/UTR system relieves acute inflammation of liver through preventing activation of NF-kappaB pathway in ALF mice. PLoS ONE 8(6):e64895

    Article  Google Scholar 

  • Liao TL, Chen YM, Hsieh CW, Chen HH, Lee HC, Hung WT, Tang KT, Chen DY (2017) Upregulation of circulating microRNA-134 in adult-onset Still’s disease and its use as potential biomarker. Sci Rep 7(1):4214

    Article  Google Scholar 

  • Liu JC, Chen CH, Chen JJ, Cheng TH (2009) Urotensin II induces rat cardiomyocyte hypertrophy via the transient oxidization of Src homology 2-containing tyrosine phosphatase and transactivation of epidermal growth factor receptor. Mol Pharmacol 76(6):1186–1195

    Article  CAS  Google Scholar 

  • Liu LM, Liang DY, Ye CG, Tu WJ, Zhu T (2015a) The UII/UT system mediates upregulation of proinflammatory cytokines through p38 MAPK and NF-kappaB pathways in LPS-stimulated Kupffer cells. PLoS ONE 10(3):e0121383

    Article  Google Scholar 

  • Liu W, Han Q, Liu Q, Liang G, Wang J, Liu C (2015b) An investigation into the expression and mechanism of action of urotensin II in chronic pressure-overloaded rat hearts. Mol Med Rep 12(5):6626–6634

    Article  CAS  Google Scholar 

  • Liu LM, Tu WJ, Zhu T, Wang XT, Tan ZL, Zhong H, Gao DY, Liang DY (2016) IRF3 is an important molecule in the UII/UT system and mediates immune inflammatory injury in acute liver failure. Oncotarget 7(31):49027–49041

    Article  Google Scholar 

  • Lu D, Peng F, Li J, Zhao J, Ye X, Li B, Ding W (2019) Urotensin II promotes secretion of LTB4 through 5-lipoxygenase via the UT-ROS-Akt pathway in RAW264.7 macrophages. Arch Med Sci 15(4):1065–1072

    Article  CAS  Google Scholar 

  • Muravenko OV, Gizatullin RZ, Al-Amin AN, Protopopov AI, Kashuba VI, Zelenin AV, Zabarovsky ER (2000) Human ALY/BEF gene Map position 17q25.3. Chromosome Res 8(6):562

    Article  CAS  Google Scholar 

  • Ong KL, Lam KS, Cheung BM (2005) Urotensin II: its function in health and its role in disease. Cardiovasc Drugs Ther 19(1):65–75

    Article  CAS  Google Scholar 

  • Pang XX, Bai Q, Wu F, Chen GJ, Zhang AH, Tang CS (2016) Urotensin II induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Kidney Blood Press Res 41(4):434–449

    Article  CAS  Google Scholar 

  • Park CH, Lee JH, Lee MY, Lee JH, Lee BH, Oh KS (2016) A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2UT cells. Mol Cell Biochem 422(1–2):151–160

    Article  CAS  Google Scholar 

  • Patacchini R, Santicioli P, Giuliani S, Grieco P, Novellino E, Rovero P, Maggi CA (2003) Urantide: an ultrapotent urotensin II antagonist peptide in the rat aorta. Br J Pharmacol 140(7):1155–1158

    Article  CAS  Google Scholar 

  • Pearson D, Shively JE, Clark BR, Geschwind II, Barkley M, Nishioka RS, Bern HA (1980) Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes. Proc Natl Acad Sci USA 77(8):5021–5024

    Article  CAS  Google Scholar 

  • Saetrum Opgaard O, Nothacker H, Ehlert FJ, Krause DN (2000) Human urotensin II mediates vasoconstriction via an increase in inositol phosphates. Eur J Pharmacol 406(2):265–271

    Article  CAS  Google Scholar 

  • Shi H, Han Q, Xu J, Liu W, Chu T, Zhao L (2016) Urotensin II induction of neonatal cardiomyocyte hypertrophy involves the CaMKII/PLN/SERCA 2a signaling pathway. Gene 583(1):8–14

    Article  CAS  Google Scholar 

  • Song W, McDonald J, Camarda V, Calo G, Guerrini R, Marzola E, Thompson JP, Rowbotham DJ, Lambert DG (2006) Cell and tissue responses of a range of urotensin II analogs at cloned and native urotensin II receptors. Evidence for coupling promiscuity. Naunyn Schmiedebergs Arch Pharmacol 373(2):148–157

    Article  CAS  Google Scholar 

  • Soni H, Adebiyi A (2017) Urotensin II-induced store-operated Ca(2+) entry contributes to glomerular mesangial cell proliferation and extracellular matrix protein production under high glucose conditions. Sci Rep 7(1):18049

    Article  Google Scholar 

  • Staff PO (2015) Correction: urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway. PLoS ONE 10(3):e0118879

    Article  Google Scholar 

  • Sun SL, Liu LM (2019) Urotensin II: an inflammatory cytokine. J Endocrinol. https://doi.org/10.1530/JOE-18-0505

    Article  Google Scholar 

  • Tian L, Fu P, Zhou M, Gu Y, Li Y, Qi J (2016) Role of urotensin II in advanced glycation end product-induced extracellular matrix synthesis in rat proximal tubular epithelial cells. Int J Mol Med 38(6):1831–1838

    Article  CAS  Google Scholar 

  • Tostivint H, Joly L, Lihrmann I, Parmentier C, Lebon A, Morisson M, Calas A, Ekker M, Vaudry H (2006) Comparative genomics provides evidence for close evolutionary relationships between the urotensin II and somatostatin gene families. Proc Natl Acad Sci USA 103(7):2237–2242

    Article  CAS  Google Scholar 

  • Tran L, Kompa AR, Kemp W, Phrommintikul A, Wang BH, Krum H (2010) Chronic urotensin-II infusion induces diastolic dysfunction and enhances collagen production in rats. Am J Physiol Heart Circ Physiol 298(2):H608–H613

    Article  CAS  Google Scholar 

  • Tsoukas P, Kane E, Giaid A (2011) Potential clinical implications of the urotensin II receptor antagonists. Front Pharmacol 2:38

    Article  CAS  Google Scholar 

  • Tzanidis A, Hannan RD, Thomas WG, Onan D, Autelitano DJ, See F, Kelly DJ, Gilbert RE, Krum H (2003) Direct actions of urotensin II on the heart: implications for cardiac fibrosis and hypertrophy. Circ Res 93(3):246–253

    Article  CAS  Google Scholar 

  • van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399

    Article  Google Scholar 

  • Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A, Tonon MC, Pelletier G, Conlon JM, Leprince J (2010) Urotensin II, from fish to human. Ann N Y Acad Sci 1200:53–66

    Article  CAS  Google Scholar 

  • Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mevel JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D (2015) International union of basic and clinical pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 67(1):214–258

    Article  CAS  Google Scholar 

  • Wang Y, Wu JF, Tang YY, Zhang M, Li Y, Chen K, Zeng MY, Yao F, Xie W, Zheng XL, Zeng GF, Tang CK (2014) Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-kappaB pathway in THP-1 macrophages. Biochem Biophys Res Commun 452(4):998–1003

    Article  CAS  Google Scholar 

  • Wang T, Xie YQ, Miao GX, Cui HP, Liu K, Li Y, Li Y, Zhao J (2020) Urotensin receptor antagonist urantide improves atherosclerosis-related kidney injury by inhibiting JAK2/STAT3 signaling pathway in rats. Life Sci 247:117421

    Article  CAS  Google Scholar 

  • Watanabe T, Suguro T, Kanome T, Sakamoto Y, Kodate S, Hagiwara T, Hongo S, Hirano T, Adachi M, Miyazaki A (2005) Human urotensin II accelerates foam cell formation in human monocyte-derived macrophages. Hypertension 46(4):738–744

    Article  CAS  Google Scholar 

  • Yu XT, Wang PY, Shi ZM, Dong K, Feng P, Wang HX, Wang XJ (2014) Up-regulation of urotensin ii and its receptor contributes to human hepatocellular carcinoma growth via activation of the PKC ERK1/2 and p38 MAPK signaling pathways. Molecules 19(12):20768–20779. https://doi.org/10.3390/molecules191220768

    Article  CAS  Google Scholar 

  • Yu X, Wang P, Shi Z, Dong K, Feng P, Wang H, Wang X (2015) Urotensin-II-mediated reactive oxygen species generation via NADPH oxidase pathway contributes to hepatic oval cell proliferation. PLoS ONE 10(12):e0144433

    Article  Google Scholar 

  • Zhang Y, Ying J, Jiang D, Chang Z, Li H, Zhang G, Gong S, Jiang X, Tao J (2015) Urotensin-II receptor stimulation of cardiac L-type Ca2+ channels requires the betagamma subunits of Gi/o-protein and phosphatidylinositol 3-kinase-dependent protein kinase C beta1 isoform. J Biol Chem 290(13):8644–8655

    Article  CAS  Google Scholar 

  • Zhao J, Ding W, Song N, Dong X, Di B, Peng F, Tang C (2013) Urotensin II-induced collagen synthesis in cultured smooth muscle cells from rat aortic media and a possible involvement of transforming growth factor-beta1/Smad2/3 signaling pathway. Regul Pept 182:53–58

    Article  CAS  Google Scholar 

  • Zhao J, Miao G, Wang T, Li J, Xie L (2020) Urantide attenuates myocardial damage in atherosclerotic rats by regulating the MAPK signalling pathway. Life Sci 262:118551

    Article  CAS  Google Scholar 

  • Zhou CH, Wan YY, Chu XH, Song Z, Xing SH, Wu YQ, Yin XX (2012) Urotensin II contributes to the formation of lung adenocarcinoma inflammatory microenvironment through the NF-kappaB pathway in tumor-bearing nude mice. Oncol Lett 4(6):1259–1263

    Article  CAS  Google Scholar 

  • Zhu YC, Zhu YZ, Moore PK (2006) The role of urotensin II in cardiovascular and renal physiology and diseases. Br J Pharmacol 148(7):884–901

    Article  CAS  Google Scholar 

  • Zou Y, Nagai R, Yamazaki T (2001) Urotensin II induces hypertrophic responses in cultured cardiomyocytes from neonatal rats. FEBS Lett 508(1):57–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka, for the support to the Center for Systems Biology and Molecular Medicine at Yenepoya (Deemed to be University) under the Biotechnology Skill Enhancement Programme in Multiomics Technology (BiSEP GO ITD 02 MDA 2017). RDAB is a recipient of the Senior Research Fellowship from the Indian Council of Medical Research (ICMR), Government of India. AP is a recipient of the Junior Research Fellowship from the University Grants Commission (UGC), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. S. Keshava Prasad or Shobha Dagamajalu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rex, D.A.B., Suchitha, G.P., Palollathil, A. et al. The network map of urotensin-II mediated signaling pathway in physiological and pathological conditions. J. Cell Commun. Signal. 16, 601–608 (2022). https://doi.org/10.1007/s12079-022-00672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-022-00672-4

Keywords

Navigation