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Abstract Thrombospondins (TSPs) -1 and -2 were among
the first protein inhibitors of angiogenesis to be identified, a
property that was subsequently attributed to the interactions
of sequences in their type I repeats with endothelial cell-
surface receptors. The interactions of TSPs-1 and -2 with
cell-surface receptors, proteases, growth factors, and other
bioactive molecules, coupled with the absence of direct
structural functions that can be attributed to these matrix
proteins, qualify them for inclusion in the category of
‘matricellular proteins’. The phenotypes of TSP-1, TSP-2,
and double TSP-1/2-null mice confirm the roles that these
proteins play in the regulation of angiogenesis, and provide
clues to some of the other important functions of these
multi-domain proteins. One of these functions is the ability
of TSP-1 to activate the latent TGFβ1 complex, a property
that is not shared by TSP-2. A major pathway by which
TSP1 or TSP2 inhibits angiogenesis involves an interaction
with CD 36 on endothelial cells, which leads to apoptosis
of both the liganded and adjacent cells. However a
homeostatic mechanism, which inhibits endothelial cell
proliferation, and may be physiologically preferable under
some circumstances, has also been elucidated, and involves
interaction with the very low density lipoprotein receptor
(VLDLR). The interaction of TSP1with its receptor, CD47,
further inhibits angiogenesis by antagonizing nitric oxide
signaling in endothelial and vascular smooth muscle cells.

Paradoxically, there is also evidence that TSP-1 can
function to promote angiogenesis. This apparent contradiction
can be explained by the presence of sequences in different
domains of the protein that interact with different receptors on
endothelial cells. The anti-angiogenic function of TSPs has
spurred interest in their use as anti-tumor agents. Currently,
peptide mimetics, based on sequences in the type I repeats of
TSPs that have been shown to have anti-angiogenic properties,
are undergoing clinical testing.
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Abbreviations
EC endothelial cells
ECM extracellular matrix
FGF2 fibroblast growth factor 2
IAP Integrin-associated protein
MMP matrix metalloproteinase
NO nitric oxide
TSP thrombospondin
TGFβ1 transforming growth factor β1
VLDL very low density lipoprotein
VLDLR VLDL receptor

Introduction

The term ‘thrombospondin’ (TSP) was coined by Jack
Lawler and coworkers to identify a protein that was released
and purified from thrombin-treated platelets (Lawler et al.
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1977, 1978). The protein was concentrated in the ‘particulate’
fraction of platelets, now known to contain theα granules, and
was shown to be composed of three disulfide-bonded chains,
with a total molecular mass of over 4.5×105 daltons. These
studies expanded and corrected earlier work by Baenziger et
al. (1971, 1972) who had identified a ‘thrombin-sensitive
protein’ in platelets. However, exposure of purified throm-
bospondin (TSP) to thrombin failed to show significant
sensitivity to this enzyme (Lawler et al. (1978). Subsequently,
TSP, now known as TSP-1, was shown to be synthesized
and secreted by a wide variety of cells in culture, including
aortic, venous, capillary, and corneal endothelial cells
(EC; McPherson et al. 1981; Sage et al. 1981; Mosher et
al. 1982), and by fibroblasts (Jaffe et al. 1983) and smooth
muscle cells (Raugi et al. 1982).

The TSP ‘family’ consists of five members (Fig. 1). A
second expressed gene was detected by the sequencing of a
mouse genomic clone. The sequence was clearly homologous
to that of the human TSP gene, but when the corresponding
mouse cDNA was sequenced it was evident that the cDNA
was the product of a different gene, Thbs2, encoding TSP-2
(Bornstein et al. 1991). A third member of the TSP family,
TSP-3, was identified shortly thereafter, in both the human
and mouse genomes, as a consequence of its close proximity
to the MUC1/muc1 genes, encoding human and mouse
episialin, respectively. Less than 3 kilobases separate the two
genes in both genomes (Vos et al. 1992).

The structures of all five TSPs are shown schematically
in Fig. 1. As can be seen, TSP-3 differs from TSP-1 and
TSP-2 in lacking the procollagen homology domain and the
three type I repeats. Because the type I repeats play a major
role in the anti-angiogenic properties of TSPs 1 and 2, it is
not surprising that TSP-3 appears to lack this function ( see
review by Hankenson and Delany in this issue). A fourth
TSP, TSP-4, was first identified by Lawler and coworkers
in Xenopus, and subsequently in human tissues (Lawler et

al. 1993). Its molecular structure is similar to that of TSP-3
(Fig. 1). While single nucleotide polymorphisms in TSP-4
have been reported to be associated with coronary artery
disease in some Western populations (Stenina et al. 2004),
there is currently no evidence for an anti-angiogenic
function for this protein. Finally, cloning and sequence
analysis of cartilage oligmeric matrix protein (COMP;
Oldberg et al. 1992; Hedblom et al. 1992) revealed it to
be a member of the TSP family, and homologous to TSP-3
and TSP-4 (Fig. 1). Although the term, COMP, is still used
frequently in the literature, the protein is also expressed in
tendon, ligament, and blood vessels, in addition to cartilage.
Therefore, the term TSP-5 seems more appropriate. Despite
initial published claims to the contrary, there is currently no
good evidence for alternative splicing of TSP mRNAs or
for heteropolymers of the trimeric TSPs. However, hetero-
pentamers of TSP-4 and TSP-5 have been shown to exist in
normal tendon and ligament (Hecht et al. 1998; Södersten
et al. 2006).

The identification of TSP-1 and TSP-2 as inhibitors
of angiogenesis

The involvement of TSP-1 in the regulation of angiogenesis
was first recognized by Good et al. (1990). These workers
purified a factor, secreted by baby hamster kidney (BHK)
cells in culture, that inhibited the migration of bovine
adrenal capillary EC, as well as corneal neo-vascularization
that was stimulated by fibroblast growth factor 2 (FGF2).
Expression of the factor was linked to that of a tumor
suppressor gene in BHK cells (Rastinejad et al. 1989), and
its characterization revealed an identity with a C-terminal
sequence in TSP-1. Good et al. also demonstrated that TSP-1
inhibited EC migration and proliferation in vitro. At about the
same time, Taraboletti et al. (1990) showed that TSP-1 both

Fig. 1 A schematic representation of the structures of the individual
chains in the thrombospondins. TSP-1 and TSP-2 are trimers and
TSP-3, -4, and -5 are pentamers. The sizes and amino acid sequences
of the NH2-terminal domains vary considerably among the TSPs; in
the case of TSP-5 this domain consists of only a few amino acids. The
oligomerization domain, containing the interchain disulfide bonds, is
followed by a procollagen homology domain (PC), also known as a

von Willebrand type C repeat, and in the case of TSP-1 and TSP-2, by
three type I (thrombospondin structural or properdin-like) repeats. All
TSPs have type II (EGF-like) and type III (calcium binding) repeats,
and a COOH-terminal domain. Figure and legend are reproduced with
permission from Bornstein, P. ‘Matricellular Proteins’ in Encyclopedia
of Respiratory Medicine , G.J Laurent and S.D. Shapiro, Eds. Elsevier
Limited, Oxford, UK; Volume 2, pp 175–183, 2006
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induced spreading of bovine aortic EC, and inhibited the
mitogenic effects of serum and FGF2 on pulmonary capillary
EC. These authors therefore also suggested that TSP-1 had
anti-angiogenic properties. Subsequently, Tolsma et al.
(1993) performed limited digestion of TSP-1 with chymo-
trypsin to produce fragments that inhibited rat corneal
vascularization and invasion of polyvinyl sponges implanted
in mice, as well as migration of EC in vitro. These peptides
were derived primarily from the procollagen homology
region and the second and third type I repeats in the 70 kD
central ‘stalk’ region of the protein (see Fig. 1). In
subsequent studies, Iruela-Arispe et al. (1999) used the
chicken chorioallantoic membrane (CAM) and EC prolifer-
ation assays to confirm the inhibition of angiogenesis by the
second and third type I repeats. However, these investigators
found no activity in the first repeat or in the procollagen
homology region. Importantly, the capacity of a particular
sequence to serve as a binding site for an angiogenic agent
depended on the nature of the angiogenic stimulus. Thus,
differences in receptor sequences in TSP-1 were observed for
FGF2 and vascular endothelial growth factor (VEGF). These
findings were supported by the earlier work of Taraboletti et
al. (1997), who showed that FGF2 bound specifically to a
140 kDa fragment of TSP-1. Many of these early studies have
been ably reviewed by Chen et al. (2000). Documentation of
the anti-angiogenic effects of TSP-2 has also been published
(Volpert et al. 1995; Panetti et al. 1997; Noh et al. 2003;
Simantov et al. 2005; see also the Section on the TSP-2-null
mouse below).

Inhibition of angiogenesis is a consequence, in part, of
reorganization of the actin cytoskeleton and disassembly of
focal adhesions in EC by ‘counteradhesive’ proteins such as
TSP-1 and -2, tenascin C, and SPARC (Sage and Bornstein
1991). For TSP-1, these effects are mediated by the
N-terminal domain of the cell-surface protein, calreticulin
(Goicoechea et al. 2000, 2002). More recently, TSP-1 has
been shown to inhibit not only cell-matrix interactions, but
also cell-cell interactions in EC. This function is achieved
by the phosphorylation of components of the cell-to-cell
adherens junction or zonula adherens, and is mediated by
the activation of two protein kinases, EGFR and ErbB2
(Liu et al. 2009).

The phenotypes of TSP-1 and/or TSP-2-null mice
provide important clues to the functions
of these TSPs in the regulation of angiogenesis

Disruption of all five TSP genes, individually, has been
achieved in mice, but the phenotypes of TSP-1 and TSP-2-
null (knockout) mice are most relevant to this review. The
phenotype of the TSP-1 knockout mouse as reported
initially by Lawler et al. (1998) was limited to increased

embryonic lethality, a mild spinal lordosis, and a propensity
for pulmonary infections. While the infections are thought
to reflect the lack of the chemotactic activity of TSP-1 for
inflammatory cells in TSP-1-null mice, these findings did
not reveal the important role that this protein is now known
to play in the regulation of angiogenesis. However,
subsequent studies have expanded our knowledge of this
phenotype considerably. Thus Wang et al. (2003) reported
that retinal vascular density was increased in TSP-1-null
mice, compared with wild-type mice, and that TSP-1-null
mice were less sensitive to hypoxia-mediated vessel
obliteration and had a reduced rate of apoptosis of
endothelial cells. Furthermore, Malek and Olfert (2009)
have recently demonstrated an increased density of capillaries
in cardiac and skeletal muscle in TSP-1-null mice, which was
manifested as an increase in heart mass and in exercise
capacity. These findings are consistent with our current
knowledge of the function of TSP-1 as an important inhibitor
of angiogenesis.

In contrast, the phenotype of the TSP-2 null mouse
(Kyriakides et al. 1998) is marked by obvious abnormalities
in the extracellular matrix (ECM) of skin, tendons and
ligaments, and by increased vascularity in healing wounds
and in the foreign body reaction (Kyriakides et al. 1999;
Kyriakides and Bornstein 2003). As a consequence of this
phenotype, wound healing is accelerated and the performance
of implanted sensors and delivery devices is likely to be
improved. However the importance of TSP-1 was revealed in
the phenotype of double TSP-1/TSP-2 null mice (Agah et al.
2002). In these mice, wound healing is delayed, and the
granulation tissue of healing wounds is not excessively
vascularized. We can therefore conclude that the absence
of TSP-1 determines the course of wound healing in TSP-1/
TSP-2 null mice. Because TSP-1 is expressed earlier than
TSP-2 in the course of wound healing, and the pro-
inflammatory function of TSP-1 is necessary for normal
wound healing, we propose that the complex program of
wound repair, including the influx of blood vessels, is
delayed and disrupted in double-null mice.

The functions of TSP-1 and TSP-2 that regulate
angiogenesis are determined by specific domains
in these modular proteins

The complex domain structures of TSP-1 and TSP-2 are
illustrated in Figs. 1 and 2. As matricellular proteins, TSP-1
and TSP-2 function as regulators of multiple cell-cell and
cell-ECM interactions and also bind directly to growth
factors, cytokines, and proteases (Lawler 2000; Adams
2001; Bornstein 2001; Bornstein and Sage 2002; Lawler
2002). Figure 2 depicts some of the more important
interactions with macromolecules and cell-surface receptors
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that mediate the regulation of angiogenesis by TSP-1 and
TSP-2, and Table 1 provides a more complete list of these
interactions and their functions. Much of this information
has been gathered from the use of synthetic sequences of
TSPs that encompass one or more of these domains, and of
monoclonal antibodies that recognize specific domains in
these proteins (Annis et al. 2006).

The NH2-terminal, heparin-binding domains of TSP-1
and TSP-2 bind heparan sulfate proteoglycans, which
function as co-receptors for the low density lipoprotein
receptor-related protein (LRP1). LRP1 is a scavenger
receptor that functions to clear complexes of TSP-1, or
TSP-2, with MMP2, MMP9, or VEGF from the
pericellular environment of mesenchymal cells (Yang et
al. 2001; Hahn-Dantona et al. 2001; Greenaway et al.
2007). The reduction in protease activity has an inhibitory
effect on angiogenesis (Rodriguez-Manzaneque et al.
2001) and influences the structure of the ECM (Agah et
al. 2005). As shown in Table 1, the NH2-terminal domains
of TSP-1 and TSP-2 also interact with a number of
integrins that have varied effects on the angiogenic
response (see Table 1 for references). For example, the
interaction with α3β1 integrin has been implicated in the
angiogenic functions of TSP-1 (Chandrasekaran et al.
2000; see below)

The type I repeats mediate important interactions of
TSP-1 and TSP-2 that include those with the small latent
TGFβ1 complex (Schultz-Cherry et al. 1995; Crawford
et al. 1998; Ribeiro et al. 1999) and CD36 (see below and

Table 1). TSP-1 has been shown to promote the mobiliza-
tion of matrix-bound FGF-2 by interaction of FGF2 with its
type I repeats, thus inhibiting the proliferation of EC
(Margosio et al. 2003). It is important to note that the
activating sequence, KRFK, in TSP-1 is replaced in TSP-2
by KRIR, which prevents the activation of latent TGFβ1 by
TSP-2 (Schultz-Cherry et al. 1995). This difference
between the two paralogs accounts for a significant fraction
of the differences in their properties. Additional interactions
of the type I repeats are summarized in Table 1. It is of
interest that subdomains of the type I repeats have been
identified that can discriminate, in their inhibitory capacity,
between the stimulation of angiogenesis caused by FGF2 or
VEGF, (Iruela-Arispe et al. 1999).

The type II and type III repeats were thought initially
to be responsible for the adhesion of TSPs to EC, a
property that was attributed chiefly to the RGD sequence
that is present in the third type III repeat in both TSP-1
and TSP-2 (see Fig. 2). However, more recent studies
(see Chandrasekaran et al. 2000) have not confirmed these
findings and suggest that the interaction of β-1 integrins
on the surface of endothelial cells with the N-terminal
domain represents the major mechanism for their adhesion
to TSP-1

The COOH-terminal domain of TSP-1 contains two
sequences that share the adhesion motif, VVM, and are
recognized by CD47, also known as integrin-associated
protein (IAP); Kosfeld and Frazier 1993; Brown and
Frazier 2001). However, only the second VVM sequence

Fig. 2 A schematic representation of a generic TSP1 or TSP2
monomer together with the location of the binding sites for some of
the major receptors with which the protein interacts, based on what
was known in 2001. Changes resulting from more recent information
are in [ ]. The structure of the chain is described in the legend to
Fig. 1. The NH2-terminal heparin-binding domain (HBD) interacts
with cell-surface heparan sulfate proteoglycans (purple), and the low
density lipoprotein receptor-like protein,[LRP1], (yellow circles); the
type 1 repeats bind to α3β1 integrin [as well as to other integrins] and
CD36, [but more avidly with the HBD. Three additional integrins,

α4β1, α6β1, and α9β1 also bind to the HBD]; the RGD sequence in
the last Ca2+-binding type 3 repeat interacts with integrins αvβ3 and
α2bβ3. The COOH-terminal cell-binding domain (CBD) contains two
valine-valine-methionine (VVM) sequences that may interact with two
integrin-associated protein (IAP/CD47) receptors on different cells,
[but these interactions are now controversial]. More information on
these interactions and on interactions with other receptors is provided
in the text and in Table 1. The modified figure legend and figure are
reproduced from Brown and Frazier (2001), with permission from
Trends in Cell Biol
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is exposed in the crystal structure of TSP-1. CD47 in TSP-1
associates with a number of integrins to promote the
spreading of platelets, EC, and other cells. Recently,
CD47 has been shown to be involved in the inhibition of
vascular cell responses to nitric oxide (NO) by TSP-1
(Isenberg et al. 2006; see section on nitric oxide). Since
TSP-2 lacks the second VVM sequence present in TSP-1,
the functions resulting from the interaction of TSP-1with
CD-47 may not be shared by TSP-2.

TSP1 and TSP2 inhibit angiogenesis
by a pro-apoptotic mechanism that is mediated
by their interaction with CD36

Guo et al. (1997) were the first investigators to document
that TSP-1, and peptides derived from its type I repeats,
cause apoptosis in cultured EC. A major source of anti-
angiogenic peptides is the 36 kDa fragments generated by
cleavage of either TSP-1 or TSP-2 by the ADAMTS1
proteinase (Lee et al. 2006). Apoptosis, assessed by
morphological changes and DNA fragmentation, did not
depend on activation by TGF-β1, and was reduced when
cells were confluent or were plated on fibronectin. At about
the same time, Dawson et al. (1997) showed that the

inhibitory effect of TSP-1 on angiogenesis was dependent
on the level of expression of the transmembrane receptor,
CD36, in human umbilical vein endothelial cells. An
88 kDa glycoprotein, CD36 was known to be an adhesion
receptor for TSP-1 (Asch et al. 1993) and serves as a
scavenger receptor for anionic phospholipids, apoptotic
cells, and rod outer segments in the retina (see Dawson et
al. 1997 for references). The clearest evidence that TSP-2
also interacted with CD36 to inhibit angiogenesis has been
provided by Simantov et al. (2005). These authors also
showed that histidine-rich glycoprotein (HRGP), interacted
with TSP-1 and -2, thus acting as a decoy receptor and an
inhibitor of the anti-angiogenic functions of the TSPs. It is
of interest that HRGP contains a so-called CLESH domain,
a region homologous to the binding site for TSPs in CD36.
Some of the earlier history of the pro-apoptotic effects of
TSP-1 has been described in previously published reviews
(Lawler 2002; Armstrong and Bornstein 2003). Compre-
hensive reviews of the molecular mechanisms involved in
the pro-apoptotic functions of TSP-1 and TSP-2, including
the role of CD36 in these processes, have recently been
published (Silverstein and Febbraio 2007; Mirochnik et
al. 2008)

The signaling pathway that leads from engagement of
CD36 by TSP-1 or TSP-2 on one cell to the activation of

Table 1 Interactions and functions of specific domains in TSP-1 and TSP-2 in the regulation of angiogenesis*

Domain Binding Receptors or
Molecules

Functions References

NH2-Terminal HSPGs Adhesion of EC; co-receptor for LRP1 [Adams, 2001; Yang et al, 2001;
Lawler, 2000] [Yang et al, 2001;
Hahn-Dantona et al, 2001]
[Chandrasekaran et al, 2000]

LRP1 Clearance of MMPs 2 and 9

α3β1 Stimulates angiogenesis; adhesion,
spreading and chemotaxis of cells**

Adhesion of HUMVEC to immobilized
TSPs; chemotaxis of EC to soluble
TSPs Stimulates angiogenesis

[Calzada et al, 2003]
α6β1

α9β1

α4β1 Supports adhesion of venous EC and
mediates chemotaxis of microvascular EC

[Staniszewska et al, 2007]

[Calzada et al, 2004a]

Type I Repeats Small latent TGFβ1
complex

Activation of latent TGFβ1** [Schultz-Cherry et al, 1995;
Ribeiro et al, 1999]

CD36 Induces apoptosis in EC in vitro and in
tumor-derived blood vessels in vivo

[Jimenez et al, 2000;
Dawson et al, 1997]

Types I and II Repeats pan-β1 integrins

Type III Repeats αvβ3, αIIbβ3 Modulate EC adhesion, inhibit EC migration [Calzada et al, 2004b; Short et al, 2005]
[Adams, 2001; Lawler & Hynes, 1989]Adhesion of EC

COOH-Terminal CD47/IAP Antagonizes NO-mediated vasodilation [Isenberg et al, 2006]

αvβ3, αIIbβ3 Adhesion and spreading of EC and platelets [Brown and Frazier, 2001]

HSPGs heparan sulfate proteoglycans; HUMVEC human umbilical vein endothelial cells; EC endothelial cells
*Modified and reproduced, with permission, from Angiogenesis: An Integrative Approach from Science to Medicine, Paul Bornstein, Chapter 13.
Edited by William D. Figg and Judah Folkman. Springer Science and Business Media, LLC, 2008
** Function not shared with TSP2
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caspases, both in that cell and in adjacent cells, was
elucidated by Jimenez et al. (2000). An abbreviated scheme
of this pathway is presented in Fig. 3. The binding and
activation of CD36, a process inhibited competitively by
histidine-rich glycoprotein, leads to its interaction with
p59fyn, a member of the Src-family of tyrosine kinases. In
a subsequent step, p59fyn activates p38MAPK and Jun
N-terminal kinase (JNK); this step requires the action of
caspases 3 and 8, members of the group II caspaces that
are associated with apoptosis. An apoptotic cascade is
subsequently triggered by the interaction of Fas ligand
(FasL) on one cell with a Fas receptor on another (Fig. 3).
Recently TSP-1 has been shown to induce apoptosis in
brain microvascular EC by a different pathway that
requires tumor necrosis factor (TNF) receptor 1 and
caspases 3 and 8 (Rege et al. 2009). This mechanism
entails the induction of TNFα mRNA and protein.
Although both TSP-1 and TSP-2 have been shown to be
capable of causing apoptosis in cells in culture, and in
tumor cells in vivo, the ability of these proteins to function

as pro-apoptotic agents in normal cells in vivo remains to
be confirmed.

TSP-1 and TSP-2 also serve a homeostatic function,
mediated by the VLDL receptor, in the regulation
of angiogenesis

The requirement for a homeostatic function for TSP-1
and TSP-2 in a normal adult animal was suggested by
the following considerations. 1) The rate of replication of
aortic EC in healthy adult rats ranges from 2 to
10 months, depending on their anatomical location, and
longer life spans might be expected in humans (see
references in Oganesian et al. 2008 for this and subsequent
points). 2) This quiescence exists despite the fact that plasma
contains sufficient VEGF to stimulate EC growth. 3) In the
event of trauma, it would seem preferable for ECs in the
periphery of a wound to become quiescent rather than to
undergo apoptosis in response to TSP-1 released from
platelets, because the exposure of additional sub-endothelial
matrix could lead to more extensive and undesirable
thrombosis.

Initial work by Armstrong et al. (2002) indicated that
both TSP-1 and TSP-2 can inhibit the proliferation of
human microvascular EC (HMVEC) in the absence of cell
death, and that the mechanisms responsible for inhibition of
cell cycle progression differed from those leading to
apoptosis. More recently, Oganesian et al. (2008) have
established that the homeostatic function of both TSP-1 and
TSP-2 is mediated by the VLDL receptor (VLDLR), a
member of the LRP receptor family. Additional information
regarding the VLDL receptor can be found in Oganesian et
al. (2008). As shown in Fig. 3, the coordinated interaction
of TSP-1 or -2 bound to the VLDLR, and VEGF bound to
the VEGFR, leads to an inhibition of the P13K and MAPK
pathways, and consequently to the inhibition of cell cycle
progression in EC. This scheme is analogous to the co-
receptor function of the platelet-derived growth factor
receptor and LRP1 (Newton et al. 2005).

Recently, the work of Blake et al. (2008) has confirmed
the interaction between the VLDLR and TSP-1. These
workers showed that this interaction induces phosphoryla-
tion of Dab1 in the subventricular zone of the brain, and
that the consequent signaling during the postnatal migration
of neuronal precursors from the subventricular zone to the
olfactory bulb stabilizes subventricular neuronal chains.
Jiang et al (2009) have also reported signaling from the
VLDLR in retinal vascular EC. Although the role of TSPs
was not examined in this study, the fact that angiogenesis
was increased in VLDLR-null mice suggests that TSPs
could inhibit angiogenesis in the retinas of wild-type
mice.

Fig. 3 A scheme that describes the apoptotic (left) and homeostatic
(right) functions of the TSPs. Left: the mechanism, described by
Jimenez et al. (2000), and extended by Rege et al. (2009), for the
apoptotic function of TSP-1 or -2. Activation of CD36 also leads
directly to an increase in transcription of caspaces and the TNF-R.
Right: the coordinate and integrated interaction of TSP-1 or -2 with
theVLDLR and VEGF-bound VEGFR, together with the activation of
Src and the adapter protein, Shc, leads to an inhibition of the PI3K and
MAPK pathways, and consequently, of cell cycle progression in EC.
The bridging of the VLDLR and the VEGFA-ligated VEGFR by TSP-1
or -2 is conjectural. The mechanisms encompassed by the bracket are
based on analogous pathways recently described for the activated PDGF
receptor-beta and LRP1 (see Newton et al. 2005). As indicated by arrow
1, the activated VEGFR phosphorylates an NPXY sequence on the
VLDLR. Arrow 2 indicates that the kinase domain of the VEGFR also
activates Src, which phosphorylates the VLDLR, and Shc, which
bridges the two receptors by virtue of its two docking domains, SH2
and PTB. These reactions lead, by mechanisms that have not yet been
defined, to the inhibition of the P13K/Akt (3) and MAPK (4) pathways,
and the consequent inhibition of cell cycle progression. The modified
and updated figure legend and the figure are reproduced from
Oganesian et al. Mol Biol Cell 19: 1563, 2008 with permission from
The American Society for Cell Biology
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TSP-1 inhibits signaling by nitric oxide (NO):
consequences for vascularity and angiogenesis

NO is a bioactive gas that is produced by conversion of
L-arginine to L-citruline, a reaction catalyzed by three NO
synthases. NO relaxes vascular smooth muscle cells and
thus increases blood vessel diameter and blood flow
(Isenberg et al. 2009a). However, in the context of the
regulation of angiogenesis by TSPs, NO also markedly
increases the inhibitory potency of TSP-1 (see reviews by
Isenberg et al. 2008a, 2009a, b, for details of the function of
NO). TSP-1, by binding to CD47, also known as IAP,
reduces the dilatation of blood vessels by NO. Thus,
Isenberg et al. (2008b) have shown that gene silencing of
CD47, by use of CD47antisensemorpholino oligonucleotides,
or antibody blockade of TSP-1, increases the patency of blood
vessels and can therefore increase the survival of ischemic
tissues. Similar results were achieved in mice that lacked
CD47 (Isenberg et al. 2007a). Since TSP-1 also limits
vascular smooth muscle cell relaxation (Isenberg et al.
2007b), its expression can therefore contribute to tissue
ischemia by different mechanisms.

Recently, the interactions of the ‘signature domains’ of
TSPs-1, -2 and -4 (comprised of the types III repeats and
the C-terminal domain) with CD47, and their capacity to
modulate cGMP signaling, were compared (Isenberg et al.
2009a, b). In these assays, TSP-1was found to be more
effective than either TSP-2 or TSP-4 in the inhibition of
NO-stimulated cGMP synthesis in vascular smooth muscle
cells. Based on these and other experiments, Isenberg et al.
concluded that TSP-1 is the dominant regulator of CD47-
mediated NO/cGMP signaling, and that its role in
limiting responses to acute ischemic injuries is not
shared by TSP-2.

TSP-1 and TSP-2 also subserve an angiogenic function

Despite the extensive experimental data that point to an
anti-angiogenic function for TSP-1 and -2, evidence has
gradually accumulated that, paradoxically, also supports an
angiogenic function for these proteins. In 1994, Nicosia and
Tuszynski described experiments in which rat aortic rings
were implanted in collagen and fibrin matrices containing
TSP-1. In these experiments they observed a concentration-
dependent outgrowth of microvessels from these aortic
explants and concluded that TSP-1 stimulated the outgrowth
of myofibroblasts from the aortic rings, and thereby promoted
the formation of microvessels. However, the mechanisms that
led to the increase in proliferation of the EC, and that would be
required for blood vessel formation in these experiments, were
not characterized. Subsequently, Qian et al. (1997) showed
that the capacity of bovine aortic EC to invade and form

micro-vessel-like tubes in collagen gels was increased at low
concentrations of exogenous TSP-1, but was inhibited at
higher concentrations. This biphasic effect was correlated
with the stimulation of matrix metalloproteinase-9 (MMP-9)
activity by TSP-1. Thus Qian et al. proposed that TSP-1, via
activated MMP-9, was responsible for gel invasion and tube
formation by EC, because these functions were inhibited by
antibodies against either protein. However, these results are
subject to the reservation that bovine aortic EC, rather than
microvascular EC, were used in the experiments. In support
of an angiogenic function for TSP-1, Taraboletti et al. (2000)
used thrombin to digest human platelet TSP-1 into NH2-
terminal heparin-binding fragments of 25 kDa and COOH-
terminal fragments of 140 kDa. In a rabbit corneal assay,
both intact TSP-1 and the 25 kDa fragment promoted the
angiogenesis induced by FGF2, whereas the 140 kDa
fragment did not induce angiogenesis and inhibited the
angiogenic response to FGF2. The authors concluded, on the
basis of these and other experiments, that intact TSP-1 could
be the source of smaller peptides that functioned in a manner
opposite to that of the intact protein.

Additional support for an angiogenic function of TSP-1 has
been contributed by Roberts and coworkers. Chandrasekaran
et al. (2000) showed that the interaction of α3β1 integrin
with immobilized TSP-1 stimulated angiogenesis. This
interaction was inhibited by a soluble peptide from TSP-1
and by the interaction of the α3β1 integrin with VE
cadherin, but was stimulated by the interaction of the α3β1
integrin with CD98. The outcome of these interactions is
further complicated by whether or not the peptide is part of a
larger fragment of TSP-1. More recently, Staniszewska et al.
(2007) showed that TSP-1 also interacts with α9β1 integrin
via its N-terminal domain. α9β1 is expressed on microvas-
cular EC in several organs and its interaction with sequences
from the N-terminal domain of TSP-1 induced neovaculari-
zation in quail chorioallantoic membranes and in a matrigel
plug formation assay in mice. α4β1 and α6β1 have also
been shown to interact with TSP-1 (Calzada et al. 2004a, b),
but the evidence for an angiogenic function for these
interactions is incomplete.

The regulation of angiogenesis by TSP-1 and TSP-2
in tumors

There is ample evidence for inhibition of both tumorigenic
(Hawighorst et al. 2001; see Kazerounian et al. 2008 for a
review) and non-tumorigenic (Cursiefen et al. 2004)
angiogenesis by endogenous TSP-1 and TSP-2. Because
the effects of TSP-1 and TSP-2 on the proliferation of ECs
are predominantly inhibitory, there has been considerable
interest in their potential, and in that of peptides from the
two proteins, as anti-tumor agents. However, in keeping
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with the evidence that TSP-1 can also stimulate angiogenesis,
both inhibitory and stimulatory effects have been reported
(see Roberts 1996 for a review of the early literature).
Furthermore, there are several different sources of endoge-
nous TSP-1 in tumors, including the malignant cells
themselves and the host-derived vasculature and stroma,
and each of these cellular compartments is subject to
different and complex regulation. The outcome of the
addition of exogenous TSP-1 can therefore be difficult to
predict.

Nevertheless, recent advances in molecular and cell
biology have suggested novel means by which the
manipulation of TSP levels can be used in the regulation
of angiogenesis. Thus studies have established that prosa-
posin, a precursor form of the lipid hydrolase activators,
saposin A-D, stimulates the expression of TSP-1 in both
tumors and in normal tissues in a p53-dependent manner
(Kang et al. 2009). These studies confirm earlier findings
by Dameron et al. (1994), that established a role for p53
in the regulation of expression of TSP-1. Furthermore,
there is now evidence that the expression of microRNAs
can be used to regulate angiogenesis (Kuehbacher et al.
2007; Dews et al. 2006) Thus, it is plausible that
manipulation of microRNA levels could be used eventu-
ally to selectively increase TSP levels in tumors and
surrounding tissues.

In 1997, Castle et al. showed that transfection of cDNA
for intact TSP-1, or for its N-terminal domain, into src-NIH
3 T3 cells suppressed angiogenesis and tumor formation
when the transfected cells were injected into nude mice.
Subsequently, Tokunaga et al. (1999) quantified expression
of TSP-1 and TSP-2 by RT-PCR in patients with colon
cancer. More than half of the patients’ cancers expressed
TSP-2, and these patients exhibited a significantly reduced
incidence of hepatic metastases and tumor vascularity in
comparison with patients whose tumors were negative for
TSP-2. A similar correlation with expression of TSP-1 was
not found. Along these lines, de Fraipont et al. (2001)
conducted a survey of 18 published papers in which the
level of expression of TSP-1 or -2 was correlated with
clinical status and outcome. Despite the variables in these
studies, for example studies that used biochemical methods
to quantify TSPs did not distinguish between stromal versus
tumoral sources of the TSPs, the authors concluded that, for
most of the tumors, there was an inverse correlation
between the level of TSP in the tumor and the degree of
its malignancy. However, in keeping with evidence for an
angiogenic function for TSP-1, Tuszynski and Nicosia
(1996) have also summarized the evidence that TSP-1 can
actually promote tumor progression. Additional information
concerning the effects of TSP-1 and TSP-2 in tumor
progression is provided in a review by Lawler and Detmar
(2004).

The potential for use of TSP-1-derived peptides
in clinical anti-angiogenic therapy

There are a number of ways in which the properties of TSP-1
and -2 could be used to inhibit the vascularity and/or growth
and metastasis of tumors. For example, TSP-1 binds VEGF
directly, and the complex can be endocytosed by the
scavenger receptor, LRP1 (Greenaway et al. 2007). This
clearance function is analogous to that by which TSPs
reduce the levels of MMP2 (Yang et al. 2001) and MMP9
(Hahn-Dantona et al. 2001) in the pericellular environment.
Similarly, other anti-angiogenic functions of TSP-1 and -2,
described in this review, could be exploited. However,
approaches that require administration of intact TSP are
clearly not feasible in a clinical setting, and neither are cell-
based therapies or therapies that depend on the use of viruses
as delivery agents (Hahn et al. 2004; see review by
Mirochnik et al. 2008, for a more complete review of the
limitations of therapy with TSP-1).

On the other hand, peptides that mimic sequences in the
type I repeats of TSP-1 show considerable promise as anti-
tumor agents. Haviv et al. (2005) synthesized a series of
peptides based on a sequence in the second type I repeat of
human TSP-1. Selected peptides, modified to increase their
stability in vivo, were then tested for their anti-angiogenic
properties by several criteria: inhibition of tube formation
by human microvascular EC; induction of apoptosis;
inhibition of EC migration; and inhibition of capillary
sprout formation. Two of the peptides, ABT-526 and ABT-
510, which showed the most promise, were then tested for
their effectiveness as inhibitors of angiogenesis and tumor
progression in animals. ABT-526 was found to be effective
in the inhibition of neovascularization in a rat cornea
model, and ABT-510 reduced the growth of a syngeneic
Lewis lung carcinoma in mice (Haviv et al. 2005).

The type I TSP repeats are also present in a number of
related proteins other than the TSPs, such as pigment
epithelium-derived factor (PEDF), WISP-1, and brain
angiogenesis inhibitor-1(BAI-1). PEDF has been shown to
be a potent inhibitor of angiogenesis in the mammalian eye
(Dawson et al. 1999). WISP-1 contains an 18 amino acid
sequence, termed wispostatin-1, which is very similar to the
Mal II and Mal III sequences in the type I repeats of TSP-1.
Cano et al. (2009) found that wispostatin-1 inhibited the
migration and proliferation of human retinal EC, abolished
FGF-induced retinal neo-vascularization in a corneal micro-
pocket assay, and inhibited laser-induced choroidal neo-
vascularization in mice. BAI-1, which contains five TSP
type I repeats, can be cleaved at a conserved proteolytic
cleavage site to release a soluble anti-angiogenic fragment
termed vasculostatin, which contains these repeats (Kaur et
al. 2005). Vasculostatin suppresses the growth of malignant
gliomas in rats and inhibits the migration of human dermal
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microvascular EC, but not that of human umbilical vein
EC. These effects are dependent on the presence of CD36
on EC (Kaur et al. 2009). Most recently, Ren et al. (2009)
have evaluated the ability of a ‘double hit,’ consisting of
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) and a TRAIL receptor 2 agonist antibody
(Lexatumumab), which is directed to the type I repeats in
TSP-1, to inhibit the progression of human colon cancer in
nude mice and to induce apoptosis in human dermal
microvascular EC. Favorable results were observed in both
assays.

Perhaps the most encouraging studies that set the
stage for the use of TSP peptide mimetics in the
treatment of tumors in patients, involve the TSP-1-
derived peptides, ABT-526 and ABT-510, developed by
Haviv et al. (2005). Hoekstra et al. (2006), in a Phase I
study, reported that the inclusion of ABT-510 in a course
of therapy with 5-fluorouracil and leucovorin showed no
ill effects in patients with solid tumors. Two studies in
dogs are also encouraging. ABT-510 and ABT-526 were
used to treat malignant tumors in 242 pet dogs. No
dose-limiting toxicity was observed in any of the animals,
and 42 of the dogs showed a greater than 50% reduction in
tumor size (Rusk et al. 2006a). In a second study of pet
dogs with relapsed non-Hodgkin’s lymphoma, ABT-526
was added to chemotherapy with lomusine. Whereas no
difference was observed in the rate of response, there
was a significant increase in its duration, with no
attendant toxicity (Rusk et al. 2006b). In a different
animal model, Greenaway et al. (2009) showed that
ABT-510 was effective in the induction of apoptosis of
syngeneic mouse epithelial cancer cells, introduced into
the bursa of C57BL/6 mice. Finally, in a recent phase II
study, Baker et al. (2008) treated patients with advanced
soft tissue sarcoma with ABT-510. Although a favorable
safety profile was observed, and the rate of disease control
and overall survival were encouraging, the authors
concluded that compelling evidence for the efficacy of
ABT-510 as a single agent in this disease had not been
achieved.

Additional trials with these two peptide mimetics are
clearly necessary, and are likely to be performed.
Hopefully, a reduction in the morbidity of some human
cancers that results from a combinational therapy,
including TSP derivatives, will be forthcoming.
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