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Abstract The CCN (cyr61, ctgf, nov) family of modular
proteins regulate diverse biological affects including cell
adhesion, matrix production, tissue remodelling, prolifera-
tion and differentiation. Recent targeted gene disruption
studies have demonstrated the CCN family to be develop-
mentally essential for chondrogenesis, osteogenesis and
angiogenesis. CCN2 is induced by agents such as angio-
tensin II, endothelin-1, glucocorticoids, HGF, TGFβ, and
VEGF, and by hypoxia and biomechanical and shear stress.
Dysregulated expression of CCN2 has also been widely
documented in many fibroproliferative diseases. This mini-
review will focus on CCN2, and the recent progress in
understanding CCN2 gene regulation in health and disease.
That CCN2 should be considered a novel and informative
surrogate clinical bio-marker for fibroproliferative disease
is discussed.
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Introduction

The CCN (cyr61, ctgf, nov) family comprises six members
(CCN1–6). These proteins act through integrin- and
heparan sulfate proteoglycan-mediated adhesive signaling
to directly modulate adhesion and indirectly modulate the
functional activities of other extracellular ligands such as
cytokines, growth factors, morphogens and matrix compo-
nents (Leask and Abraham 2006). Of these, connective
tissue growth factor (CTGF, CCN2) is perhaps the best
studied family member.

CCN2 was initially identified as a protein secreted by
cultured human endothelial cells (Bradham et al. 1991). In
adult mammals, CCN2 exhibits a restricted expression,
produced only by hepatic stellate cells (Paradis et al. 1999;
Chen et al. 2001) and kidney mesangial cells (Ito et al.
1998; Chen et al. 2002). Although CCN2 is not normally
expressed by other mesenchymal cells, it is rapidly induced
during the tissue repair process, for example upon injury
(Igarashi et al. 1993; Kapoor et al. 2008). The most potent
inducer of CCN2 expression thus far identified is TGFβ.
The induction of CCN2 by TGFβ is restricted to the
mesenchymal cell lineages (e.g. tissue fibroblasts, myofi-
broblasts, pericytes) and generally not in epithelial cells
(Leask et al. 2001, 2003; Kantarci et al. 2006). However,
CCN2 is expressed in response to TGFβ in renal proximal
tubule epithelial cells (Phanish et al. 2005). These results
indicate that CCN2 gene regulation in response to TGFβ
can differ based on the cell type examined.

CCN2 is over-expressed in connective tissue pathologies
such as in excessive scarring and fibrosis and in stroma
surrounding tumors (Blom et al. 2002). Data examining the
location of CCN2 expression and the use of genetically
modified cells has led to a hypothesis that CCN2
selectively mediates or sustains the specific actions of
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TGFβ in mesenchymal cells (Grotendorst 1997; Leask et
al. 2004). CCN2 may exert its stimulating effect on TGFβ
signaling by decreasing Smad7 availability and increasing
Smad2 (Qi et al. 2007). However, CCN2-deficient fibro-
blasts show only a partial impairment of TGFβ responses
and no defect in Smad3-dependent responses (Shi-wen et
al. 2006). In this review, we summarize recent key
observations concerning the regulation of the expression
of the CCN2 gene, insights derived from these observations
into the potential contribution that CCN2 may make to cell
biology, and evaluate the potential use of CCN2 as a
fibrogenic bio-marker.

CCN2 gene expression in health and disease

CCN2 is principally regulated at the level of transcription
(Grotendorst et al. 1996). The CCN2 proximal promoter is
induced by a number of specific factors such as endothelin-1
(ET-1) and TGFβ in addition to changes such as hypoxia
(Holmes et al. 2001; Leask et al. 2001, 2003; Shi-wen et
al. 2004; Higgins et al. 2004). TGFβ induction of CCN2
mRNA in fibroblasts is immediate-early, occurring within
30 min of TGFβ treatment, in a fashion that does not
involve de novo protein synthesis (Grotendorst et al.
1996). This induction is severely impaired in the fibro-
blasts deficient in Smad3 (Holmes et al. 2001). Consistent
with this observation, a functional Smad element resides
within the CCN2 promoter (Holmes et al. 2001; Fig. 1).
However, the ability of TGFβ to fully induce the CCN2
promoter and protein also requires protein kinase C and
the ras/MEK/ERK MAP kinase cascade (Chen et al. 2002;
Leask et al. 2003; Fig. 1).

As for all Smad-responsive promoters, additional basal
transcription factors (co-activators/co-repressors) are required
for complete coordinated regulation of CCN2 expression by
TGFβ. The Smad element of the CCN2 promoter is not
sufficient to confer TGFβ-responsiveness to a heterologous
promoter (Leask et al. 2001), but rather acts in concert with a
tandem repeat of an element similar to an Ets/TEF
recognition motif (Leask et al. 2003). The protein(s) which
bind to this element are enriched in fibroblasts relative to
keratinocytes, suggesting that this protein directly contributes
to the specific induction of CCN2 in different cell types
(Leask et al. 2003). Recently, we have shown this motif to be
a functional ETS binding element; Ets-1 is required for the
ability of TGFβ to induce CCN2 expression. siRNA
recognizing Ets-1 ablates the ability of TGFβ to induce
CCN2 (van Beek et al. 2006; Fig. 1). Moreover, the
oncogenic transcriptional co-activator YAP also operates
through this site (14). Additional elements, including a BCE-
1 (basal control element-1) site and a Sp1 site (Holmes et al.
2001, 2003), have been shown to play a role in basal activity

of the CCN2 promoter (Fig. 1) and hence are indirectly
required for TGFβ induced CCN2 gene expression. Sp1,
similar to factors binding to a TATA box, though required for
formation of a functional transcriptional complex is not
directly required for TGFβ induced CCN2 expression
(Holmes et al. 2003). The BCE-1 site was originally thought
to be involved with the TGFβ-induction of CCN2, but has
subsequently been shown to be involved with basal promoter
activity (Grotendorst et al. 1996; Leask et al. 2001; Holmes
et al. 2001) and in response of the CCN2 promoter to ET-1,
through ras/MEK/ERK signal transduction cascade (Shi-wen
et al. 2004). Since TGFβ induces ET-1 and ET-1 is essential
for the ability of TGFβ to induce CCN2 (Shi-wen et al.
2007b), this element appears to be, albeit indirectly, a TGFβ
response element (Grotendorst et al. 1996). Finally, Wnt3a
induces CCN2 through a β-catenin-dependent mechanism,
although the promoter sequences mediating this action are
unknown, they reside within in the first 805 base pairs of the
CCN2 proximal promoter (Luo et al. 2004; Chen et al.
2007).

It is now appreciated that post-transcriptional controls
also contribute to CCN2 gene regulation. The chicken ccn2
gene is regulated not only at the transcriptional level, but
also by the interaction between a post-transcriptional
element in the 3′-untranslated region (3′-UTR) and a
nucleophosmin (NPM/B23) cofactor (Mukudai et al. 2008).
The 3′-untranslated region (3′-UTR) has a suppressive effect
on CCN2 gene expression via a minimal RNA element in the
3′-UTR, which acts as a cis-acting element of structure-
anchored repression (CAESAR) (Kubota et al. 2000).
Moreover, hypoxia increases stability of CCN2 mRNA in
chondrosarcoma cells (Kondo et al. 2006). Finally, the
unusually long 5′UTRs of CCNs 1, 2, and 4 harbor cryptic
promoters that show varying degrees of activity in different
cell types (Huang et al. 2007).

In fibrotic fibroblasts isolated from the involved skin
area of scleroderma patients, CCN2 is over-expressed
independent of TGFβ and Smads but is dependent on
BCE-1, Sp1 and endothelin-1 (Holmes et al. 2001, 2003;
Chen et al. 2006; Shi-wen et al. 2007a). Finally, a
functional polymorphism has been found in some sclero-
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Fig. 1 Elements in the CCN2 promoter involved with its expression in
normal mesenchymal cells. HIF-1=hypoxia inducible factor-1; BCE-
1=basal control element-1; TEF/ets=transcription enhancer factor;
CAESAR=cis-acting element of structure-anchored repression
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derma patients which results in increased Sp1-dependent
transcription (Fonseca et al. 2007). However, increased
expression of CCN2 in cell-culture activated hepatic stellate
cells is dependent on TGFβ (Leask et al. 2008). Intrigu-
ingly, elective disruption of TβRII in mouse skin fibro-
blasts increases constitutive expression CTGF/CCN2
(Denton et al. 2009). It remains to be established whether
the rise in CCN2 expression in patients correlates with the
increased expression of ET-1 or TGFβ. Overall, these data
reveal that the regulation of CCN2 expression in fibrotic
conditions is complex and is perhaps disease/organ specific.

Inhibitors of CCN2 expression

It has long been suggested that agents that inhibit CCN2
expression may be used as anti-fibrotic therapies (Blom et
al. 2002). As discussed above, inhibitors of TGFβ or
endothelin receptors may be used to reduce CCN2
expression in activated hepatic stellate cells or scleroderma
fibroblasts, respectively (Leask et al. 2008; Shi-wen et al.
2007a). Moreover, prostaglandins [PGE(2)] and prostacy-
clins (such as the synthetic prostacyclin Iloprost) can
antagonize CCN2 expression, including in scleroderma
fibroblasts (Ricupero et al. 1999; Stratton et al. 2001,
2002). It has been shown that 9-cis-retinoic acid reduced
CCN2 expression in scleroderma fibroblasts, possibly
through its ability to produce PGE(2) production (Xiao et
al. 2008). Iloprost works, at least in part, by antagonizing
MEK/ERK signaling (Stratton et al. 2002) and, indeed, the
MEK inhibitor U0126 reduces CCN2 expression in
response to TGFβ and ET-1 in fibroblasts as well as
constitutive over-expression of CCN2 in the pancreatic
cancer cell line PANC-1 (Pickles and Leask 2007). TNFα
suppresses TGFβ-induced gene expression in fibroblasts
but has no appreciable effect on the constitutive CCN2
expression in scleroderma fibroblasts (Abraham et al.
2000). Caffeine also reduces TGFβ-induced CCN2 expres-
sion in hepatocytes by blocking Smad activation (Gressner
et al. 2008; Leask 2008). Finally, it has been shown
recently that the addition of the lipid second messenger C2-
ceramide can also reduce TGFβ-induced CCN2 expression
in human foreskin fibroblasts (Kennedy et al. 2008).

CCN2 as a surrogate marker of fibroproliferative
disease

As discussed above, CCN2 is over-expressed in fibrotic
disorders. Early studies examining the kinetics of CCN2
induction showed that, in the anti-Thy-1.1 antibody model
of rat kidney fibrosis, CCN2 induction paralleled the
progression of fibrogenesis and repair (Ito et al. 2001;

Table 1). Subsequent studies have established that CCN2
levels in biological fluids correlate with the levels of
fibrosis in patient samples (Table 1). For example, urinary
CCN2 levels appear at both stage nephropathy and appear
to predict those patients who are destined for progressive
glomerulosclerosis and end-stage renal disease (Riser et al.
2003). In addition, glomerular basement membrane thickness
correlates with tubular and total CCN2 levels (Thomson et
al. 2008)

In particular, studies using an enzyme-linked immuno-
sorbent assay (ELISA) to examining the appearance of
amino-terminal fragments of CCN2 appear especially
promising as potential diagnostic tools to show the severity
of fibrosis. An ELISA detecting amino-terminal CCN2
appears to be superior to ELISAs detecting full-length of
carboxy-terminal CCN2 as the latter moieties of CCN2
bind the cell surface and are internalized through the
heparin- and integrin-binding carboxy-terminal domain of
CCN2. The advantage of these ELISAs is that CCN2 can
be readily detected in body fluids (e.g., urine, blood, blister
fluid). Amino-terminal CCN2 ELISAs may be especially
useful in diagnosing fibrosis associated with diabetes or,
alternatively, in clinical trials testing the efficacy of anti-
fibrotic compounds. For example, in type 1 diabetic
patients with incipient and overt diabetic nephropathy, the
magnitude of urinary amino-terminal excretion relates to
the severity of diabetic nephropathy (Gilbert et al. 2003).
Similarly, NH2-terminal CCN2 is also increased in the
vitreous of patients with active progressive diabetic
proliferative vitreoretinopathy, suggesting that it represents
a surrogate marker of fibrosis in the disorder (Hinton et al.
2002). Indeed, plasma CCN2 levels contribute significantly
to prediction of end-stage renal disease and mortality in
patients with type 1 diabetic nephropathy (Nguyen et al.
2008). Such a diagnostic tool may not merely be limited to
diabetes. N-terminal CCN2 levels in plasma and dermal
interstitial fluid correlated with severity of skin disease of

Table 1 CCN2 levels as a surrogate marker of fibrosis: Diseases in
which CCN2 levels, detected by ELISA, correlate with severity of
fibrosis

Hepatic fibrosis in biliary atresia (Tamatani et al. 1998)
Pulmonary fibrosis in scleroderma (Sato et al. 2000)
diabetic nephropathy (Gilbert et al. 2003)
proliferative vitreoretinopathy (Hinton et al. 2002).
skin fibrosis in scleroderma (Dziadzio et al. 2005)
Kidney allograft fibrosis (Cheng et al 2006)
liver fibrosis (Gressner et al. 2006)
chronic viral hepatitis (Gressner et al. 2006)
Fibrotic carcinoid tumors (Kidd et al 2007)
diabetic retinopathy (Kuiper et al 2008)
End-stage renal disease (Nguyen et al. 2006)
myocardial fibrosis (Koitabashi et al. 2008)
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scleroderma and (negatively) with disease duration (Dziadzio
et al. 2005). Moreover in liver fibrosis, the mean concentra-
tion of total CCN2 is highest in the fibrosis group (5.2-fold)
and in the chronic viral hepatitis group (4.3-fold) but lower
in those patients with fully developed cirrhosis (Gressner
et al. 2006). Similarly, CCN2 concentration appears to
predict myocardial fibrosis in chronic heart failure patients
(Koitabashi et al. 2008).

Conclusion

CCN2 was identified over 15 years ago; however, the actual
physiological relevance of CCN2 is only just beginning to
emerge. However, it remains clear that studies on CCN2
expression have established that CCN2 is an effective marker
of fibroproliferative disease. Thus ELISAs examining CCN2
levels in patients are warranted as diagnostic tools for fibrosis
as well as in investigating the efficacy of drugs in clinical trials.
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