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Abstract
Background Overt hepatic encephalopathy (HE) should be predicted preoperatively to identify suitable candidates for 
transjugular intrahepatic portosystemic shunt (TIPS) instead of first-line treatment. This study aimed to construct a 3D 
assessment-based model to predict post-TIPS overt HE.
Methods In this multi-center cohort study, 487 patients who underwent TIPS were subdivided into a training dataset (390 
cases from three hospitals) and an external validation dataset (97 cases from another two hospitals). Candidate factors 
included clinical, vascular, and 2D and 3D data. Combining the least absolute shrinkage and operator method, support vec-
tor machine, and probability calibration by isotonic regression, we constructed four predictive models: clinical, 2D, 3D, 
and combined models. Their discrimination and calibration were compared to identify the optimal model, with subgroup 
analysis performed.
Results The 3D model showed better discrimination than did the 2D model (training: 0.719 vs. 0.691; validation: 0.730 vs. 
0.622). The model combining clinical and 3D factors outperformed the clinical and 3D models (training: 0.802 vs. 0.735 
vs. 0.719; validation: 0.816 vs. 0.723 vs. 0.730; all p < 0.050). Moreover, the combined model had the best calibration. The 
performance of the best model was not affected by the total bilirubin level, Child–Pugh score, ammonia level, or the indica-
tion for TIPS.
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Conclusion 3D assessment of the liver and the spleen provided additional information to predict overt HE, improving the 
chance of TIPS for suitable patients. 3D assessment could also be used in similar studies related to cirrhosis.

Graphical abstract

Keywords Transjugular intrahepatic portosystemic shunt · Overt HE · 3D assessment · 2D factors · 3D factors · Prediction · 
2D model · 3D model · Optimal model · Applet

Introduction

Portal hypertension due to cirrhosis can lead to variceal 
bleeding and refractory ascites [1]. Transjugular intra-
hepatic portosystemic shunt (TIPS), which establishes a 
channel between the portal and hepatic veins, is one of the 
alternative treatments for variceal bleeding and ascites [2, 
3]. However, American, Chinese, and European guidelines 
recommend endoscopic therapy, non-selective β-blockers, 
and paracentesis for portal hypertension-related variceal 
bleeding and ascites; TIPS is considered an alternative 
option [4–7]. This is because TIPS can cause overt hepatic 
encephalopathy (HE), negatively impacting patients’ qual-
ity of life and increasing mortality [2, 8]. Post-TIPS overt 
HE incidence ranges from 10 to 50% [9]. Moreover, con-
sidering that overt HE may reoccur, even after multiple 
treatments, a more reasonable decision making method is 
to identify the low-risk population prior to TIPS [10]. By 

stratifying patients for risk of post-TIPS overt HE, suitable 
patients for TIPS can be selected.

Several clinical and biological factors are related to overt 
HE, such as the Child–Pugh score [11] and interleukin-6 lev-
els [12]. Recently, conventional computed tomography (CT) 
imaging has attracted attention in cirrhosis-related diseases 
[13, 14]. Some researchers focus on morphological assess-
ments of the liver, such as the liver surface nodularity score 
[15]. However, to take full advantage of the abovementioned 
methods, a 3D assessment may outperform 2D ones by 
avoiding bias from slice selection and increasing assessment 
comprehensiveness. More recently, deep learning methods 
based on convolutional neural networks have been widely 
used in medical image segmentation tasks [16–18], such as 
U-Net. Among them, nnU-Net, a self-adjusting framework 
designed from U-Net, has achieved impressive performance 
in many segmentation tasks, including pancreas and kidney 
segmentation [19]. Therefore, if 3D segmentation by nnU-
Net is possible, the morphological and high-dimensional 
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data can be extracted in 3D to achieve a more precise model 
to predict post-TIPS overt HE.

Considering the significance of overt HE in patient selec-
tion for TIPS, this study involved clinical challenge iden-
tification, data collection, model comparison, and model 
interpretation. We aimed to construct a 3D assessment-based 
model to predict post-TIPS overt HE.

Materials and methods

Patient selection

Patients treated with TIPS between January 2012 and Janu-
ary 2021 were identified. Data was collected from five hos-
pitals in China: Nanfang Hospital (NFH), Shenzhen People’s 
Hospital (SPH), The Third Affiliated Hospital of Sun Yat-
sen University (SYSUTAH), The First Affiliated Hospital of 
the University of Science and Technology of China (STC-
UAPH), and Zhuhai People’s Hospital (ZPH). All patients 
underwent TIPS treatment for variceal rebleeding and/or 
refractory ascites. The inclusion criteria were: (1) regular 
follow-up for at least 1 year; (2) at least one variceal rebleed-
ing or refractory ascites after therapies such as endoscopic 
treatment, vasoactive drugs, or large-volume paracentesis; 
(3) TIPS performed by puncture from the right hepatic vein 
to the bifurcation of the left and right branches of the portal 

vein; (4) Child–Pugh score ≤ 13 points; (5) ≥ 18 years old; 
(6) a portosystemic pressure gradient (PPG) decrease < 50% 
from baseline or < 12 mmHg after TIPS [5, 7]. The exclu-
sion criteria were: (1) TIPS performed to prevent failure 
or rebleeding after initial pharmacological and endoscopic 
therapy (early TIPS); (2) hepatocellular carcinoma that did 
not accord with the Milan criteria for transplantation i.e., 
a single lesion < 3 cm or fewer than three lesions with the 
largest measuring ≤ 3 cm (per the Milan criteria [20], an 
HCC patient is eligible for liver transplantation if they have 
either a single lesion ≤ 5 cm in size or two to three lesions, 
each ≤ 3 cm in size); (3) stent stenosis or occlusion during 
follow-up; (4) liver cancer on the liver surface hampering 
liver depression evaluation; (5) liver and/or spleen resection 
did not acquire total liver and/or spleen volume. Ultimately, 
487 cases were enrolled in our study (Fig. 1).

The study protocols were approved by the Ethics Review 
Committee of the Zhuhai People’s Hospital. Informed con-
sent was waived because the patients’ data were collected 
retrospectively. All patient data were anonymized before 
analysis.

Preoperative treatment

Based on the guidelines, the following preoperative treat-
ments were performed if necessary: (1) anemia and coag-
ulopathy were corrected to ensure patient safety during 

Fig. 1  Inclusion and exclusion 
flowcharts
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TIPS treatment (hemoglobin > 7  g/dL and prothrombin 
time < 25 s); (2) abdominal paracentesis was performed 
before TIPS to prevent massive hemorrhage; (3) vasoac-
tive drugs (terlipressin [2 mg/4 h], somatostatin [250 to 
500 μg/h] or octreotide [25 to 50 μg/h]), and prophylactic 
antibiotics (ceftriaxone [1 g/24 h]) were administered before 
the TIPS [2].

Procedures of TIPS

All the procedures were performed by physicians with at 
least 10 years of experience in interventional radiology. 
The procedure was performed as follows: (1) after general 
anesthesia, the bifurcation of the main trunk and the left 
and right branches of the portal vein was punctured from 
the right hepatic vein, and the preoperative PPG was meas-
ured before stent deployment; (2) before stent implantation 
a 6-mm balloon was used to expand the puncture channel 
and an 8-mm polytetrafluoroethylene-covered stent was 
implanted; (3) to prevent stent dilation after TIPS, an 8-mm 
balloon was used to perform dilatation again to ensure that 
the stent was expanded to 8 mm; (4) after stent insertion, 
petrography was performed to enable visualization of the 
left and right branches of the portal vein; and, (5) finally, 
postoperative PPG was measured. PPG reductions of more 
than 50% from baseline or < 12 mmHg were considered suc-
cessful [2].

Follow‑up and outcomes

Following the guidelines, patients were not given oral medi-
cines, such as lactulose or rifaximin, after TIPS until HE 
occurred. None of the patients received any pharmacologi-
cal treatment to prevent the occurrence of HE [9]. For the 
included patients, the baseline demographic characteristics 
and CT images were collected within 7 days before the TIPS. 
Follow-up was performed once per week in the outpatient 
department for the first month; subsequently, follow-up, 
including telephone interviews, outpatient visits, or hospital 
visits, was scheduled every 4 weeks. Patients and their fami-
lies were asked to contact a physician immediately upon any 
alteration in the patient’s mental state. HE symptoms such 
as lethargy, apathy, and obvious personality changes were 
recorded in detail. After repeated confirmation, the stage and 
degree of HE were evaluated.

The outcome of this study was post-TIPS overt HE, 
defined as grades II, III, or IV according to the West Haven 
Criteria (detailed in Supplementary Table 1) [9]. For patients 
without overt HE, follow-up was continued every 4 weeks 
until liver transplantation, death, or the end of the study (July 
2022).

Image acquisition and 3D segmentation

The CT scanning and contrast agency injection parameters 
in each collaborative hospital are listed in Supplementary 
Table 2. As the veins had a clearer boundary in the por-
tal phase than in other phases, we used the CT images of 
the portal phase for analytical imaging. CT scan coverage 
ranged from the dome to the lower edges of the liver and the 
spleen. The image data was transferred directly to the picture 
archiving and communication system. All the image data 
were exported in DICOM format for image 3D segmenta-
tion and data extraction. The nnU-Net, a popular medical 
image segmentation framework, improved from U-Net [21], 
and was used to achieve automatic liver and spleen segmen-
tation. Moreover, a dynamic training strategy was used to 
ensure segmentation performance (detailed in Supplemen-
tary Text 1 and Fig. 2a).

Data extraction

Candidate clinical factors are listed in Supplementary 
Table 3. To assess the morphologic changes of the liver and 
the spleen, we used two categories of parameters. The first 
was related to changes in diameter or volume, such as the 
maximum diameter of the liver or the spleen volume (Sup-
plementary Table 4). To control the bias introduced by the 
physiological differences between individuals, we used the 
diameters of the portal and splenic vasculature to standard-
ize them. Considering the complexity and variability of 
the portal and splenic vasculature, we used the previously 
reported method to assess morphological changes of the vas-
culature [22, 23], such as the ratio of the maximum diame-
ters of the liver and the portal vein (Supplementary Table 3). 
Both the original and standardized parameters were included 
in the analysis to test the necessity of standardization. The 
second category was related to changes in CT attenuation. 
Similarly, self-comparison (such as the Mean CT attenuation 
ratio between the liver and the spleen) was used to control 
individual-related bias, besides original mean value-related 
parameters (Supplementary Table 4).

The second category included high-dimensional factors, 
which may also provide useful information. Since radiomics 
could capture quantitative imaging features which reflected 
the underlying tissue characteristics [24–26], we used radi-
omics to extract high-dimensional information. In total, we 
extracted 863 3D features and 479 2D features of the liver 
and the spleen, including shape-based, histogram, and tex-
tural features (Fig. 2b).

Statistical analysis

To confirm the generalization ability of the prediction model, 
external validation was performed in this study. The patients 
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from three centers, NFH, SPH, and SYSUTAH, were con-
sidered training datasets, while the remaining patients from 
the other two centers, STCUAPH and ZPH, were used as 
validation datasets. Quantitative data are expressed as means 
(standard deviations) or medians (interquartile ranges) based 
on their distribution. Distributions between groups were 
compared using the t-test or Wilcoxon rank sum test, as 
appropriate. Similarly, categorical variables are displayed 
as percentages, compared using Pearson’s Chi-squared test 
or Fisher’s exact test.

After dividing the patient data into training and exter-
nal validation datasets, first, we used the least absolute 
shrinkage and selection operator (LASSO) regression for 
preliminary screening of the clinical and 2D and 3D data 
(including morphologic and high-dimensional data). The 
data that passed the screening were further selected by the 
grid search method and tenfold cross-validation. Second, 
we used the support vector machine (SVM) to combine the 
selected factors to construct a clinical model  (ModelC), a 
2D model  (Model2D), and a 3D model  (Model3D). Since 
the SVM could not directly predict the risk of overt HE, a 
probability calibration with isotonic regression was used 
to predict the risk. Third, we compared the discrimination 

and calibration of  Model2D and  Model3D to prove the 
advantages of 3D segmentation. Fourth, the selected clini-
cal and 3D factors were combined to construct  ModelC-3D. 
We then compared the discrimination and calibration of 
 ModelC,  Model3D, and  ModelC-3D. During the abovemen-
tioned steps, discrimination was tested by the Delong test, 
net reclassification improvement (NRI), and integrated 
discrimination improvement (IDI), with calibration com-
pared using calibration plots. Finally, for the best model, 
we performed decision curve analysis (DCA) to show the 
net benefit, with an applet constructed to facilitate future 
application. We also performed subgroup analysis to test 
its performance in different patient subgroups (Fig. 2c).

All algorithms involving features and model building 
were implemented using Python (version 3.6), and all 
statistical analyses were performed in R (version 4.2.1). 
SVM was performed by using the “scikit-learn” package 
(https:// scikit- learn. org/ stable/). All statistical tests were 
two-sided, and p < 0.050 was considered statistically 
significant. The report of our study strictly followed the 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis statement.

Fig. 2  Workflow for model construction. Workflow for model con-
struction. a Segmentation of liver and spleen on CT images using 
nnU-Net. b After extracting 2D and 3D factors (including morpho-
logic and high-dimensional factors), we constructed 2D and 3D mod-

els. c Since the 3D model performed better than did the 2D model, 
we used the clinical and 3D factors to construct the combined model 
using the support vector machine. CT computed tomography

https://scikit-learn.org/stable/
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Results

Study population and baseline

A total of 487 patients were included in our study. They 
were divided into a training dataset (390 patients from 
three hospitals) and an external validation dataset (97 
patients from another two hospitals). Symptoms leading 
to TIPS included variceal bleeding (390 patients; training: 
336 patients; validation: 54 patients) and refractory ascites 
(97 patients; training: 77 patients; validation: 20 patients). 
There were no statistical differences between the training 
and validation datasets regarding the demographic factors. 
The baseline characteristics of the patients are reported in 
Table 1. Overt HE occurred in 152 patients (training: 101 
patients; validation: 51 patients) (Supplementary Table 5).

Model construction

After LASSO regression, 1394 preliminary factors were 
identified, including 20 clinical factors, three vascular fac-
tors, 488 2D factors (nine morphologic factors and 479 high-
dimensional factors), and 883 3D factors (20 morphologic 
factors and 863 high-dimensional factors). After SVM, five 
clinical factors, two vascular factors, six 2D factors, and 
seven 3D factors were used to construct  ModelC,  Model2D, 
 Model3D, and  ModelC-3D (Supplementary Table 6 and Sup-
plementary Table 7).

Comparison between the  Model2D and  Model3D

When the 2D and 3D models were compared,  Model3D had 
a better area under the curve (AUC) than did  Model2D in the 
training (AUC = 0.719 vs. 0.691, Supplementary Fig. 1-a) 

Table 1  Baseline demographics 
of patients

Normally distributed factors are expressed using means ± standard deviations; non-normally distributed 
factors are expressed as medians (interquartile ranges)
ALT Alanine aminotransferase, AST Aspartate aminotransferase, INR International normalized ratio
*With a p < 0.050

Clinical factors Training dataset (N = 390) Validation dataset (N = 97) p Value

Age (year) 51.8 ± 11.8 55.2 ± 14.5 0.012*
Sex (N) 0.062
 Male 308 68
 Female 82 29

Etiology (N) 0.820
 Alcohol 163 26
 Hepatitis B/C 144 47
 Cholestatic 11 1
 Others 72 23

Child–Pugh score (point) 8 (6, 9) 7 (7, 9) 0.880
ALT 20.0 (14.0, 30.0) 21.0 (15.0, 36.0) 0.222
AST 28.0 (22.0, 41.0) 29.0 (21.5, 46.5) 0.177
Direct bilirubin (μmol/L) 8.7 (5.5, 14. 2) 9.6 (6.0, 17.7) 0.122
Indirect bilirubin (μmol/L) 9.1 (6.4, 13.4) 10.0 (7.1, 16.8) 0.216
Serum sodium (mmol/L) 140.0(138.0, 142.0) 139.0 (136.0, 142.0) 0.015*
INR 1.3 (1. 2, 1.5) 1.3 (1.2, 1.4) 0.497
Ammonia (μmol/L) 0.552
  < 72.0 349 85
  ≥ 72.0 41 12

Indication for TIPS (N) 0.096
 Variceal bleeding 336 77
 Refractory ascites 54 20

Liver cancer 0.961
 Yes 53 13
 No 337 84

Diabetes 0.764
 Yes 83 22
 No 307 75
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and validation (AUC = 0.730 vs. 0.622, Supplementary 
Fig. 1-b) datasets, with the result of Delong test, NRI, and/
or IDI displayed in Supplementary Table 8. For calibration, 
 Model3D and  Model2D displayed similar curves (Supplemen-
tary Fig. 1-c, 1-d). Based on these results, we used 3D fac-
tors to construct the combined model.

Comparison among the  ModelC,  Model3D, 
and  ModelC‑3D

When the clinical, 3D, and combined models were com-
pared,  ModelC-3D had a better AUC than  ModelC and 
 Model3D in both datasets (training: 0.802 vs. 0.735 vs. 
0.719; validation: 0.816 vs. 0.723 vs. 0.730; Supplemen-
tary Fig. 2-a, 2-b), with statistical differences regarding 
the Delong test, NRI, and/or IDI (Supplementary Table 8). 
Regarding calibration,  ModelC-3D performed better than 
 ModelC and  Model3D (Supplementary Fig. 2-c, 2-d). Based 
on these results,  ModelC-3D was identified as the optimal 
model, with its confusion matrix and DCA curve displayed 
(Supplementary Fig. 3, Fig. 3c).

Subgroup analysis

To assess comparability among different subgroups, we 
tested whether total bilirubin (TBIL) level, Child–Pugh 
score, ammonia level, and the indication for TIPS could 
influence the performance of  ModelC-3D. The results 
showed that no statistical difference existed among the sub-
groups (Supplementary Table 9): total bilirubin < 18.9 vs. 
total bilirubin ≥ 18.9 (0.832 vs. 0.802, p = 0.478; Fig. 4a); 
Child–Pugh score < 8 vs. Child–Pugh score ≥ 8 (0.830 vs. 
0.787; p = 0.322; Fig. 4b); preoperative ammonia < 72.0 vs. 
preoperative ammonia ≥ 72.0 (0.830 vs. 0.787; p = 0.383; 
Fig. 4c); and variceal bleeding vs. refractory ascites (0.819 
vs. 0.820; p = 0.995; Fig. 4d). Accordingly, an applet for 
 ModelC-3D was constructed, and patients identified as low-
risk (Fig. 3d) and high-risk (Fig. 3e) were displayed. (https:// 
drive. google. com/ drive/ folde rs/ 15WQa e0MyR t61ND 0KUI8 
Uzcnz Z5ORX 0e_).

Discussion

For the prediction of post-TIPS overt HE, 3D-based assess-
ment for the liver and the spleen significantly improved the 
performance of the model for both discrimination and cali-
bration (Fig. 5). Based on these results, the 3D-based assess-
ment could be used to assist patient selection for TIPS; fur-
thermore, it might provide additional information for studies 
related to TIPS, and even cirrhosis.

First-line treatments for variceal bleeding and ascites 
caused by portal hypertension include large-volume 

paracentesis [27] and non-selective β-blockers [28]; TIPS 
is an alternative option [1]. Since the pressure in the portal 
vein is not controlled, patients who accept first-line treat-
ment have a high recurrence rate for variceal bleeding and 
ascites. However, considering the risk of post-TIPS overt 
HE, the guidelines recommend TIPS only as a second-line 
treatment [4–6]. Previously, we demonstrated that post-TIPS 
overt HE could be predicted [22, 23], which could allow 
more patients to accept TIPS. However, the results could 
only be internally validated with a small sample size. More 
importantly, the 2D-based manual measurement had several 
limitations: potential bias due to slice selection, concerns 
about comprehensiveness and representation, time and labor 
costs, and the lack of assessment of cirrhosis-impacted 
organs other than the liver (such as the spleen). Consider-
ing the need to predict post-TIPS overt HE, we conducted 
this study with a 3D assessment of both the liver and the 
spleen and with external validation, aiming to construct a 
more elaborate and precise model.

Automatic segmentation and data extraction were key 
steps to perform 3D assessments of the liver and the spleen. 
For automatic segmentation, deep learning is a promising 
pathway. However, the performance of deep learning meth-
ods largely depends on the preprocessing methods, model 
structure, and training strategy [29]. Compared to other 
frameworks, nnU-Net can automatically achieve the opti-
mal configuration of the aforementioned settings to obtain 
excellent results [22], and has been widely used in similar 
studies [19]. For data extraction, parameters based on the 
traditional visual system can provide information on mor-
phological changes. Meanwhile, high-dimensional data, such 
as radiomic features, can provide information overlooked by 
traditional methods [30]. Therefore, we combined these two 
sets of data in this study.

As expected, 3D segmentation achieved sufficient preci-
sion for the assessment. The 3D model  (Model3D) outper-
formed  Model2D in discrimination, especially in the valida-
tion dataset (0.730 vs. 0.622). However, it did not achieve 
sufficient calibration. Meanwhile, the clinical model had 
unsatisfactory discrimination (0.735 in the training dataset 
and 0.723 in the validation dataset). Thus, we combined the 
clinical and 3D factors. The combined  ModelC-3D demon-
strated significantly improved discrimination and calibra-
tion. These results showed that the technological improve-
ment from 2D assessment to 3D assessment was essential 
and that a combination of clinical and radiological factors 
remained a reasonable means to construct a precise model 
to predict post-TIPS overt HE.

In the combined model  (ModelC-3D), the clinical factors 
included age [1], serum sodium [23], aspartate aminotrans-
ferase [5], creatinine [5], and the Child–Pugh score [1], con-
sistent with the previous study. Parameters related to mor-
phological changes in the liver and the spleen vasculature, 

https://drive.google.com/drive/folders/15WQae0MyRt61ND0KUI8UzcnzZ5ORX0e_
https://drive.google.com/drive/folders/15WQae0MyRt61ND0KUI8UzcnzZ5ORX0e_
https://drive.google.com/drive/folders/15WQae0MyRt61ND0KUI8UzcnzZ5ORX0e_
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Fig. 3  Performance of the 
combined model and its applet. 
Performance evaluation of the 
combined model and its applet. 
a Receiver operating charac-
teristic (ROC) curve analysis 
showing the area under the 
curve (AUC) for the combined 
model in the training dataset 
(AUC: 0.802) and valida-
tion dataset (AUC: 0.816). b 
Calibration plot demonstrating 
the performance of the com-
bined model. c Decision curve 
analysis (DCA) comparing the 
combined model with three 
other models. Patient examples 
classified as d low risk and 
e high risk by the combined 
model
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such as the maximum diameter of the portal vein and the 
ratio of the maximum diameters of the portal and splenic 
veins, remained significant [22].

For morphological 3D factors, the identified parameters 
could be classified into two categories. The first category 
included parameters reflecting volume-related changes, 
including the liver volume standardized by the maximum 
diameter of the portal vein. As expected, liver volume alone 
was not significant in predicting overt HE, possibly due to 
physiological differences, such as somatotype-related liver 
enlargement. However, if the liver and its related vascu-
lature did not enlarge synchronously, it was more likely 
because of pathological rather than physiological reasons. 

Thus, standardization by organ-specific vasculature (such as 
liver volume by the maximum diameter of the portal vein or 
spleen volume by the maximum diameter of the splenic vein) 
was reasonable and necessary to assess volume. The second 
category included parameters correlated with changes in CT 
attenuation. Considering that CT attenuation could be highly 
subject to the time of image capture, median or mean CT 
attenuation might fail to reflect the pathological change. The 
change rate of CT attenuation could be used to control this 
bias. However, when accidental extremum existed, the vari-
ation range could be influenced; therefore, the change rate 
measured by the interquartile range was a more reasonable 
method. As expected, the maximum gradient CT attenuation 

Fig. 4  Subgroup analysis of  ModelC-3D. The performance of the  ModelC-3D was not influenced by a the total bilirubin level, b Child–Pugh score, 
c ammonia level, and d the indication for TIPS. TIPS: transjugular intrahepatic portosystemic shunt
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of the liver and the minimum gradient CT attenuation of the 
spleen were significant in predicting overt HE, which proved 
our hypothesis to be reasonable.

For high-dimensional 3D factors, the identified radi-
omic features could also be classified into two categories: 

grey-level run length matrix (GLRLM)) features for local 
heterogeneity and grey-level co-occurrence matrix (GLCM) 
features for regional heterogeneity [31]. The GLRLM fea-
tures included RunVariance and LongRunEmphasis, while 
the GLCM features included MaximumProbability and 

Fig. 5  Study design. a The objective of this study was to predict the 
occurrence of post-transjugular intrahepatic portosystemic shunt 
(TIPS) overt hepatic encephalopathy (HE). b Data were collected on 
various factors, including clinical, vasculature, 2D, and 3D factors 
(including morphologic and high-dimensional factors) as candidate 
variables. c Model comparisons were performed, initially compar-
ing 2D and 3D models, followed by a comparison between a clini-

cal model  (ModelC), 3D model  (Model3D), and a combined model 
 (ModelC-3D) to identify the optimal model. d Subgroup analysis was 
conducted for the optimal model, and an applet was developed for 
future clinical application. AUC  area under the curve, NRI net reclas-
sification improvement, IDI integrated discrimination improvement, 
TIPS transjugular intrahepatic portosystemic shunt
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DifferenceEntropy. The GLRLM heterogeneity analysis 
was grouped in a single matrix. Therefore, in our GLRLM, 
each cell GLRLM (i, j) corresponded to the run number of 
length j formed by voxels of intensity in box i in all direc-
tions. The GLCM was a square matrix of the size of the gray 
levels present in the image; it was defined by the distance 
between voxels, e.g., adjacent voxels or voxels having at 
least one common neighbor. Finally, a set of two GLRLM 
and two GLCM heterogeneous textural features was used 
in our study.

We have not included the presence of major portosystemic 
shunts as factors in our model. In our previous research [22, 
23], we found that major portosystemic shunts had limited 
effect on hepatic encephalopathy. Compared with our previ-
ous studies [22, 23], this study improved 3D segmentation 
and data extraction. However, there were still some limita-
tions. First, considering the differences between Eastern and 
Western patients, e.g., viral cirrhosis and alcoholic cirrhosis, 
validation in a Western cohort may be necessary before our 
model can be applied to Western patients. Second, limited 
by the retrospective design, our study could not assess occult 
HE, which should also be studied in future prospective stud-
ies. Third, although the liver and the spleen were automati-
cally segmented in 3D slices, their related vasculature was 
manually segmented in 2D slices. This was because we 
had not solved the imbalance problems: foreground (vas-
cular system) vs. background (other regions such as liver 
parenchyma, stomach, etc.), and thin vs. thick vessels. With 
continued efforts, we might be able to perform accurate 
automatic 3D segmentation for the vascular system in the 
future. Fourth, patients without an 8-mm polytetrafluoro-
ethylene-covered stent were excluded to control the possible 
confounding factors. Therefore, whether our conclusion is 
applicable to patients with a 10-mm polytetrafluoroethylene-
covered stent or bare metal stent requires further exploration.

In conclusion, we constructed a model that could predict 
post-TIPS overt HE based on a 3D assessment of the liver 
and the spleen. Assisted by our model, patients with low risk 
may be able to accept alternative TIPS treatment. Moreover, 
the 3D factors (including morphological and high-dimen-
sional factors) demonstrated multiple advantages, which can 
be used for future studies related to TIPS.
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