Skip to main content

Advertisement

Log in

Synthetic miR-26a mimics delivered by tumor exosomes repress hepatocellular carcinoma through downregulating lymphoid enhancer factor 1

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background

The dysregulation of exosomal microRNAs plays an important role in the progression of hepatocarcinogenesis. In this study, we investigated the therapeutic potential of synthetic exosomal miR-26a against HCC cells and explored the feasibility of tumor-derived exosomes as drug delivery vehicles.

Methods

Proliferation and migration assays were performed to examine the effects of miR-26a on HCC in vitro. The direct target gene of miR-26a was identified through miRecords analysis and target validation. The transferring efficiency and anti-HCC effect of exosomes with different origin were studied and the optimal miR-26a delivery method was established and verified in vitro and in vivo. In addition, the relationships between prognosis of HCC patients and miR-26a expression in HCC serum and exosomes were retrospectively analyzed.

Results

Here, we found that tumor cell-derived exosomes were taken in preferentially by HCC cells and promoted HCC progression through Wnt pathway by low-density lipoprotein receptor-related protein 6 (LRP6). HCC cells with vacuolar protein sorting-associated protein 35 knocked down were adopted to generate engineered LRP6exosomes. The engineered HCC-derived exosomes loading miR-26a inhibited HCC progression in vitro and in vivo effectively. Overexpression of miR-26a impaired the growth and migration of HCC by targeting lymphoid enhancer factor 1 (LEF1). Moreover, low expression of exosomal miR-26a was an independent prognostic factor for recurrence and survival in HCC patients.

Conclusions

Our findings suggested the exosomal miR-26a could serve as a non-invasive prognostic marker for HCC patients. Genetically modified tumor-derived exosomes showed preferable transfection efficiency but reduced Wnt activity, which provides a novel therapeutic strategy for HCC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data are available in the main text or the supplementary materials. The data used or analyzed during this study are included in this article and available from the corresponding author upon reasonable request.

References

  1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–1314

    Article  PubMed  Google Scholar 

  2. Zhou J, Sun H, Wang Z, Cong W, Wang J, Zeng M, et al. Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition). Liver Cancer. 2020;9(6):682–720

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–1173

    Article  CAS  PubMed  Google Scholar 

  4. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:640–655

    Article  Google Scholar 

  5. Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3:23743–23757

    Article  Google Scholar 

  6. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shah R, Patel T, Freedman JE. Circulating Extracellular Vesicles in Human Disease. N Engl J Med. 2018;379(10):958–966

    Article  CAS  PubMed  Google Scholar 

  8. Thery C. Cancer: Diagnosis by extracellular vesicles. Nature. 2015;523(7559):161–162

    Article  CAS  PubMed  Google Scholar 

  9. Cully M. Exosome-based candidates move into the clinic. Nat Rev Drug Discov. 2021;20(1):6–7

    Article  CAS  PubMed  Google Scholar 

  10. Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: current status and future directions. Cancer Treat Rev. 2016;50:35–47

    Article  CAS  PubMed  Google Scholar 

  11. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222

    Article  CAS  PubMed  Google Scholar 

  12. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 2011;29(36):4781–4788

    Article  CAS  PubMed  Google Scholar 

  14. Ma DN, Chai ZT, Zhu XD, Zhang N, Zhan DH, Ye BG, et al. MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2. J Hematol Oncol. 2016;9:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527(7576):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R, Beerling E, et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Shi H, Yuan X, Jiang P, Qian H, Xu W. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 2018;17(1):146

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017;266:8–16

    Article  CAS  PubMed  Google Scholar 

  19. Guo M, Wu F, Hu G, Chen L, Xu J, Xu P, et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci Transl Med. 2019;11:474

    Article  Google Scholar 

  20. Ingato D, Edson JA, Zakharian M, Kwon YJ. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano. 2018;12(9):9568–9577

    Article  CAS  PubMed  Google Scholar 

  21. Ma J, Zhang Y, Tang K, Zhang H, Yin X, Li Y, et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res. 2016;26(6):713–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther. 2013;21(1):101–108

    Article  CAS  PubMed  Google Scholar 

  23. Tian J, Tang ZY, Ye SL, Liu YK, Lin ZY, Chen J, et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer. 1999;81(5):814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112–2126

    Article  CAS  PubMed  Google Scholar 

  25. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14(10):1036–1045

    Article  CAS  PubMed  Google Scholar 

  26. Port F, Kuster M, Herr P, Furger E, Banziger C, Hausmann G, et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol. 2008;10(2):178–185

    Article  CAS  PubMed  Google Scholar 

  27. Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol. 2011;13(8):914–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell. 2008;14(1):120–131

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46(12):1267–1273

    Article  CAS  PubMed  Google Scholar 

  31. Shibata T, Aburatani H. Exploration of liver cancer genomes. Nat Rev Gastroenterol Hepatol. 2014;11(6):340–349

    Article  CAS  PubMed  Google Scholar 

  32. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology. 2015;149(5):1226–1239

    Article  CAS  PubMed  Google Scholar 

  33. Sullenger BA, Nair S. From the RNA world to the clinic. Science. 2016;352(6292):1417–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petrocca F, Lieberman J. Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol. 2011;29(6):747–754

    Article  CAS  PubMed  Google Scholar 

  35. Weinstein S, Toker IA, Emmanuel R, Ramishetti S, Hazan-Halevy I, Rosenblum D, et al. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci USA. 2016;113(1):E16-22

    Article  CAS  PubMed  Google Scholar 

  36. Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simoes S, Moreira JN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res. 2012;45(7):1163–1171

    Article  CAS  PubMed  Google Scholar 

  37. Fuhrmann G, Chandrawati R, Parmar PA, Keane TJ, Maynard SA, Bertazzo S, et al. Engineering extracellular vesicles with the tools of enzyme prodrug therapy. Adv Mater. 2018;30:1706616

    Article  Google Scholar 

  38. Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene. 2016;575(2 Pt 2):377–384

    Article  PubMed  Google Scholar 

  39. Gyorgy B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–464

    Article  CAS  PubMed  Google Scholar 

  40. Chang L, Li K, Guo T. miR-26a-5p suppresses tumor metastasis by regulating EMT and is associated with prognosis in HCC. Clin Transl Oncol. 2017;19(6):695–703

    Article  CAS  PubMed  Google Scholar 

  41. Ma Y, Deng F, Li P, Chen G, Tao Y, Wang H. The tumor suppressive miR-26a regulation of FBXO11 inhibits proliferation, migration and invasion of hepatocellular carcinoma cells. Biomed Pharmacother. 2018;101:648–655

    Article  CAS  PubMed  Google Scholar 

  42. Li ML, Zhang Y, Ma LT. LncRNA HCG11 accelerates the progression of hepatocellular carcinoma via miR-26a-5p/ATG12 axis. Eur Rev Med Pharmacol Sci. 2019;23(24):10708–10720

    PubMed  Google Scholar 

  43. Yuan YL, Yu H, Mu SM, Dong YD, Li Y. MiR-26a-5p Inhibits Cell Proliferation and Enhances Doxorubicin Sensitivity in HCC Cells via Targeting AURKA. Technol Cancer Res Treat. 2019;18:1533033819851833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao WT, Lin XL, Liu Y, Han LX, Li J, Lin TY, et al. miR-26a promotes hepatocellular carcinoma invasion and metastasis by inhibiting PTEN and inhibits cell growth by repressing EZH2. Lab Invest. 2019;99(10):1484–1500

    Article  CAS  PubMed  Google Scholar 

  45. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15):1437–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–642

    Article  CAS  PubMed  Google Scholar 

  47. Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, et al. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet. 2001;28(1):53–57

    Article  CAS  PubMed  Google Scholar 

  48. Schmitt-Graeff A, Ertelt-Heitzmann V, Allgaier HP, Olschewski M, Nitschke R, Haxelmans S, et al. Coordinated expression of cyclin D1 and LEF-1/TCF transcription factor is restricted to a subset of hepatocellular carcinoma. Liver Int. 2005;25(4):839–847

    Article  CAS  PubMed  Google Scholar 

  49. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–345

    Article  CAS  PubMed  Google Scholar 

  50. Pi F, Binzel DW, Lee TJ, Li Z, Sun M, Rychahou P, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol. 2018;13(1):82–89

    Article  CAS  PubMed  Google Scholar 

  51. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 2018;67(3):940–954

    Article  CAS  PubMed  Google Scholar 

  53. Saari H, Lazaro-Ibanez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(Pt B):727–737

    Article  CAS  PubMed  Google Scholar 

  54. Li YJ, Wu JY, Hu XB, Wang JM, Xiang DX. Autologous cancer cell-derived extracellular vesicles as drug-delivery systems: a systematic review of preclinical and clinical findings and translational implications. Nanomedicine (Lond). 2019;14(4):493–509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yong-Zhou Li and Zheng-Tao Zhang for the excellent technical assistance, Qiang Wu, Pei-Yuan Zhang, and Wei Gao for the help with the exosome isolation, identification, and transmission electron microscopy, Yuan Ji and Ling-Li Chen for slide scanning and independent analyses of tissue histopathology, Le Kang and Jing Wang for tissue processing and tail vein injection, Jun Chen, Dong-Mei Gao, and Yan-Yan Nie for mouse model processing help, and Hui-Yan Li and Xiao Guo for the help of IVIS imaging.

Funding

This work was supported by Science and Technology Innovation Plan of Shanghai Science and Technology Commission (NO. 22S11901100; 21Y11912300), Zhongshan Clinical Research Foundation (No. 2020ZSLC48), National Natural Science Foundation of China (Grant No.81401929,81830102, 81772578, and 82002482), Shanghai Rising Star Program (No.16QA1401000), and Natural Science Foundation of Zhejiang Province (No. LQ21H160034).

Author information

Authors and Affiliations

Authors

Contributions

JZ, ZW, and JF conceptually designed the experimental strategy, provided intellectual input, and helped write the manuscript. JH, WFL, and XYZ injected mice orthotopically with engineered exosomes, designed the experimental strategy, prepared figures, and wrote the manuscript. KQZ and ZW performed detection of exosomes in tumor tissue sections. XYZ, CZ, XRY, and GMS provided intellectual input, extracted RNA and quantified miRNA loading in exosomes by qPCR analyses, stained tissues for LEF1, and helped with in vivo experiments. XYZ, KQZ, and FYC prepared exosomes (cultured cells for exosome collection and preparation by ultracentrifugation), generated exosomes (electroporation and wash steps involved in the generation of engineered exosome and NanoSight measurements), and treated mice with engineered exosomes. BH provided PDX model and instructed TEXs treatment. WFL, KQZ, and FYC performed the NanoSight measurements, analyses, immunostaining analyses, RNA extraction and qPCR of treated cells, and Western blot analyses, analyzed data, prepared figures, and helped write the manuscript. WFL, JH, WYL, and ZW reviewed the source data, advised on experimental design, and supervised statistical analyses.

Corresponding authors

Correspondence to Zheng Wang or Jian Zhou.

Ethics declarations

Conflict of interest

Jie Hu, Wei‑Feng Liu, Xiang‑Yu Zhang, Guo‑Ming Shi, Xin‑Rong Yang, Kai‑Qian Zhou, Bo Hu, Fei‑Yu Chen, Cheng Zhou, Wan‑Yee Lau, Jia Fan, Zheng Wang, Jian Zhou declare that they have no competing interests.

Ethics approval

All blood and tissue samples were collected retrospectively from the specimen bank of Zhongshan Hospital, Fudan University. This study was approved by the Ethics Committee of Zhongshan Hospital (The approval No. B2012-114) and abided the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3654 KB)

Supplementary file2 (DOCX 7626 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Liu, WF., Zhang, XY. et al. Synthetic miR-26a mimics delivered by tumor exosomes repress hepatocellular carcinoma through downregulating lymphoid enhancer factor 1. Hepatol Int 17, 1265–1278 (2023). https://doi.org/10.1007/s12072-023-10527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-023-10527-8

Keywords

Navigation