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Abstract
Background and purpose  Tumor recurrence after liver transplantation (LT) impedes the curative chance for hepatocellular 
carcinoma (HCC) patients. This study aimed to develop a deep pathomics score (DPS) for predicting tumor recurrence after 
liver transplantation using deep learning.
Patients and methods  Two datasets of 380 HCC patients who underwent LT were enrolled. Residual convolutional neural 
networks were used to identify six histological structures of HCC. The individual risk score of each structure and DPS were 
derived by a modified DeepSurv network. Cox regression analysis and Concordance index were used to evaluate the prog-
nostic significance. The cellular exploration of prognostic immune biomarkers was performed by quantitative and spatial 
proximity analysis according to three panels of 7-color immunofluorescence.
Results  The overall classification accuracy of HCC tissue was 97%. At the structural level, immune cells were the most sig-
nificant tissue category for predicting post-LT recurrence (HR 1.907, 95% CI 1.490–2.440). The C-indices of DPS achieved 
0.827 and 0.794 in the training and validation cohorts, respectively. Multivariate analysis for recurrence-free survival (RFS) 
showed that DPS (HR 4.795, 95% CI 3.017–7.619) was an independent risk factor. Patients in the high-risk subgroup had a 
shorter RFS, larger tumor diameter and a lower proportion of clear tumor borders. At the cellular level, a higher infiltration 
of intratumoral NK cells was negatively correlated with recurrence risk.
Conclusions  This study established an effective DPS. Immune cells were the most significant histological structure related to 
HCC recurrence. DPS performed well in post-LT recurrence prediction and the identification of clinicopathological features.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
malignancy and the fourth leading cause of cancer-related 
mortality worldwide [1]. Liver transplantation (LT) is a lead-
ing curative therapeutic option for early and intermediate 
stage HCC. In recent decades, the number of LTs for HCC 
has increased, accounting for 15–35% of all LTs in Asia and 
America [2, 3]. Patients within the Milan criteria achieved a 
5-year overall survival rate of approximately 80% according 
to multi-center data [4, 5]. Nevertheless, tumor recurrence 
occurs in 10–15% of patients after LT [4, 6, 7], with a high 
frequency of extrahepatic metastasis, including the bones 
and lungs [8]. The prognostic benefits of liver resection or 
locoregional therapies for recurrent HCC remain dismal [7, 
9].

Predicting HCC recurrence is a major concern in post-
LT management. Factors contributing to HCC recurrence 
after LT can be divided into clinical biomarkers, tumor 
morphological information and pathological features 
[10]. α-fetoprotein (AFP), a commonly used candidate, is 
highly specific for predicting recurrence of the HCC [11]. 
The impact of tumor burden on tumor recurrence has been 
emphasized in many clinical studies [12]. Microvascular 
invasion, which is considered as a crucial factor in recur-
rence prediction and decision-making of adjuvant therapies, 
receives increased attention in post-LT management [13]. 
Other independent predictors for HCC recurrence include 
waiting time, tumor differentiation, etc. With the integration 
of the above elements, several models have outperformed 
the Milan criteria in detecting post-LT recurrence [11, 13].

In the past decade, the immune ecosystem has provided 
deeper insights into HCC development [14], and immune 
evasion mechanisms have been proven to promote tumor 
relapse [15]. It was reported that immune infiltration and 
tertiary lymphoid structure (TLS) were closely associated 
with the recurrence risk of HCC after resection [16, 17]. 

However, their roles in LT cases have not been revealed, 
and the specific immune infiltration in the HCC lesions of 
transplant patients remains unknown.

Recent advances in artificial intelligence (AI) meth-
odologies have made great strides in automatically quan-
tifying pathological patterns based on digital histological 
slides [18]. With the integration of digital slides into the 
pathology workflow, advanced algorithms and computer-
aided techniques expand and reinforce their utilization in 
tumor diagnosis, prognostic prediction and therapy target-
ing, which enable the interpretation of information beyond 
human limits and ultimately, improve patient management 
[19–21]. For HCC, survival indicators after liver resection 
were proposed based on weakly supervised deep learning 
methods, exhibiting high accuracy [22, 23]. With largely 
uncovered invisible information available from HCC his-
tology, further integration of recurrence prediction models 
and AI algorithms in transplant patients suffering from HCC 
deserve to be explored. Moreover, a comprehensive research 
on correlation between HCC histological structures and 
prognosis is urgently needed.

In the present study, we aimed to establish a deep path-
omics score (DPS) for predicting tumor recurrence after 
liver transplantation using deep learning. Furthermore, the 
structural and cellular significance of immune cells in the 
tumor microenvironment of LT patients was evaluated.

Methods

Patient cohort and study design

A total of 199 HCC patients receiving liver transplanta-
tion at Zhongshan Hospital from March 2005 to December 
2013 and 204 corresponding whole slide images (WSIs) 
were retrospectively enrolled as the first dataset, which was 
included in a previous study [24] (Fig. 1a). The inclusion 
criteria were as follows: (1) pathologically proven HCC; (2) 
no other concomitant tumors; and (3) no extrahepatic metas-
tasis. The exclusion criteria were as follows: (1) presence of 
other pathological types, such as intrahepatic cholangiocar-
cinoma (ICC) or combined hepatocellular cholangiocarci-
noma (CHC); (2) missing qualified WSIs; (3) missing clini-
cal information; and (4) death or disease recurrence within 
1 month after LT. Tumor stages were derived according to 
the Barcelona Clinic Liver Cancer (BCLC) staging system, 
Milan criteria and the University of California, San Fran-
cisco (UCSF) criteria.

Following the same inclusion and exclusion criteria, 
another 181 patients who underwent LT at Zhongshan Hos-
pital from January 2015 to December 2019 and 291 WSIs 
were enrolled as the second dataset. We combined the two 

Fig. 1   Workflow and general methodology of the study. a Two data-
sets of transplant patients were enrolled and randomly split into the 
training and validation cohorts at a ratio of 7:3. Clinical reports, H&E 
staining and three panels of multicomplex immunofluorescent images 
were analyzed. b After patch extraction, the classification network 
was developed based on 60 annotated WSIs via supervised learning. 
Six tissue categories of HCC were identified with robust accuracy. 
The remaining WSIs were analyzed by the network and segmentation 
maps were generated. Next, we input the tiles of each tissue into the 
prognostic network with recurrence related data as labels. Modified 
Deepsurv network was applied to calculate the risk score for each 
tissue category. The prediction model consisted of convolutional lay-
ers and SE blocks. Two types of pooling operations were used before 
and after convolution operations. DPS was then constructed through 
weighted algorithm. Recurrence prediction, survival stratification and 
immune infiltration were further explored. H&E hematoxylin–eosin 
staining, DPS deep pathomics score, WSI whole slide image, HCC 
hepatocellular carcinoma

◂
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datasets and selected sixty annotated WSIs to build a clas-
sification network. The classification network automatically 
segmented the remaining WSIs to obtain patches of each 
tissue category. 380 patients were divided into the training 
cohort and validation cohort at a ratio of 7:3 to construct the 
prognostic network (Fig. 1a).

The follow-up was censored in June 2021. Recurrence 
condition and time to recurrence (TTR) were the primary 
endpoints in the present study. HCC recurrence was defined 
as the appearance of a newly detected HCC tumor confirmed 
on two radiologic images, with or without an elevation in 
serum tumor markers. TTR was defined as the time between 
surgery and recurrence or metastasis. Recurrence-free sur-
vival (RFS) was the secondary endpoint. RFS was defined as 
the time from the date of hepatectomy to the date of recur-
rence, metastasis, death, or the last follow-up. This study 
obtained ethical approval from the Institutional Review 
Board of Zhongshan Hospital and complied with the stand-
ards of the Declaration of Helsinki. Informed consent was 
received from each patient before surgery.

Preparation of digital WSIs and image annotation

All specimens were fixed with 4% neutral formaldehyde, 
embedded in paraffin, consecutively sectioned at 4 µm thick-
ness and stained with hematoxylin and eosin (H&E). The 
stained slides were then converted into digital images by a 
white light scanner (C13220-0, Hamamatsu, Japan). Sixty 
WSIs were selected for annotation using ASAP 1.8. The 
inclusion criteria were as follows: (1) The annotated subpop-
ulation had the similar tumor stage with the overall dataset; 
(2) Abundance of six tissue categories were confirmed by 
pathologists, and the labeling results were highly consistent. 
Two pathologists manually annotated and fully examined 
the slides in six categories: tumor region (TR), normal liver 
tissue (NLT), portal area (PA), fibrous tissue (FT), hemor-
rhagic and necrotic tissue (H&NT), and immune cells (IC).

Classification network and model establishment

A ResNet-50 convolutional neural network [25] was trained 
for the multiclassification of images (Fig.  1b) and the 
Squeeze-and-Excitation Module [26] was added to the resid-
ual structure. After separating H&E-stained tissue from the 
background by Otsu's binarization [27], pathological regions 
of interest (ROIs) were extracted from the annotated WSIs. 
Images were taken at 40 × magnification by extracting and 
cropping these ROIs into patches, with each labeled as the 
corresponding tissue category (details provided in the sup-
plementary methods). Data augmentation including random 
flips, random rotations, random translations, and random con-
trasts was applied to enhance the generality and robustness. 
Classification maps were derived after image recognition. 

The t-distributed stochastic neighbor embedding (t-SNE) 
algorithm was used to visualize the segmental results.

The classification network output the predicted structural 
labels corresponding to each patch. The DeepSurv network 
structure [28] was used to construct the prognostic network 
models by analyzing the pathological signatures of six tissue 
categories: (details provided in the supplementary methods). 
The loss function of the model was jointly built with the cox 
proportional hazards and binary cross-entropy (Fig. 1b). In 
the training process, to avoid model overfitting, the model 
was targeted once the error started to rise in the validation 
set. The optimal risk score was then output for each tissue 
category based on the recurrence status and TTR. DPS was 
ultimately constructed according to the proportional hazards 
model. The predictive power was assessed by the overall 
concordance index (C-index) and receiver operating charac-
teristic (ROC) curves. The attention machine was applied to 
highlight critical regions in the image for model prediction.

Preparation and quantitative analysis of multiplex 
immunofluorescence

Multiplex staining was performed using a TSA 7-color kit 
(D110071-50T, Yuanxibio), according to the manufacturer’s 
instruction. After being consecutively sectioned, the slides 
were incubated with antibodies according to three panels: 
the first panel was CD3 (ab16669, Abcam), CD4 (4827s, 
CST), CD8 (85336s, CST), CD16 (ab183354, Abcam), CD 
56 (cst3576s, CST) and Foxp3 (12653s, CST); the second 
panel was CD11b (ab52478, Abcam), CD11c (ab52632, 
Abcam), CD20 (48750s, CST), CD68 (76437, CST), MPO 
(14569, CST), and CD45RO (55618, CST); and the third 
panel was PD-1 (86163, CST), PD-L1 (13684, CST), TIM-3 
(45208, CST), LAG-3 (15372, CST), CTLA-4 (ab237712, 
Abcam), and IDO (ab228468, Abcam). Primary antibod-
ies were sequentially applied, followed by enzyme-labeled 
secondary antibodies (PV-6001 and PV-6002, ZSGB-BIO) 
and tyramide signal amplification (M-D110051, WiSee 
Biotechnology). The slides were microwave heat-treated 
after each TSA operation. Nuclei were stained with DAPI 
(D1306, Thermo Fisher) after all of the antigens above were 
labeled. The stained slides were scanned to obtain multi-
spectral images using the Pannoramic MIDI imaging system 
(3D HISTECH).

The tumor border was manually annotated to divide the 
WSI into three parts: tumor nest (TN), invasive margin 
(IM) and normal tissue area (NLT). The invasive margin 
was defined as a 500 µm width on each side of the intra- and 
peritumor interface [29].

HALO Software (Indica Labs) was applied to quantita-
tively evaluate the signal quantity and spatial distribution 
of the immune cells (details provided in the supplementary 
methods).
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Statistical analysis

Continuous variables are expressed as the median (IQR) and 
were compared with the Mann‒Whitney U test. Categori-
cal variables are expressed as numbers and percentages, 
and were compared with the χ2 test or Fisher’s exact test. 
Kaplan–Meier curves with the log-rank test were used to 
compare survival. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) were also estimated by means of univariable 
and multivariable Cox analyses. The paired comparison of 
immune infiltration among the tumor nest, invasive margin 
and normal region was conducted using Dunn's multiple 
comparisons test. A two-tailed p value < 0.05 was considered 
statistically significant. Statistical analysis was performed 
using R-software 4.0.3 (R Foundation, Vienna, Austria) and 
SPSS® 22.0 (IBM, Armonk, New York, USA).

Results

Patient demographics and clinical information

Table S1 describes the demographic, clinical, and tumor 
characteristics of patients in the training and validation 
cohorts. The LT cohort was predominantly male. More than 
80% of the patients were diagnosed with hepatitis B virus 
(HBV)-induced liver cirrhosis. Over half of the patients were 
within the Milan and UCSF criteria, with median Model for 
End-Stage Liver Disease (MELD) scores of 9.8 and 10.0 in 
the training and validation cohorts, respectively. The median 
tumor diameters in the training and validation cohorts were 
3.0 cm, 3.5 cm, respectively. BCLC stages 0 and A were 
the most common stages in the entire cohort. Microvascular 
invasion was detected in approximately 35% of the patients 
after surgery. The demographics of the annotated subpopu-
lation (n = 55, 60 WSIs) are shown in Table S2. Patients 
shared the similar tumor stages with the whole dataset.

Construction of the classification and prognostic 
network

A total of 75,387 patches (512 × 512 pixels) were extracted 
from the annotated WSIs to build the classification net-
work. With reliable identification accuracy, the neural net-
work discriminated the tumor region, normal liver tissue, 
fibrous tissue, portal area, immune cells, hemorrhagic and 
necrotic tissue. Typical examples of a WSI and correspond-
ing processed image are displayed in Fig. 2a. The t-SNE 
visualization of the classification results reflected good 
discrimination of the pathological structures (Fig. 2b). The 
area under curve (AUC) value of both the micro-average and 
macro-average recognition accuracy achieved 0.97 (Fig. 2c). 

Specifically, the confusion matrix of each tissue category 
revealed high precision (Fig. 2d).

We applied the classified tiles as the inputs with the 
recurrence condition and TTR as the labels to train the prog-
nostic network via ResNet-50 [25]. The deep-learning net-
work output the optimal prediction score of each HCC tissue 
category with the highest C-indices (Fig. 2e). Furthermore, 
six corresponding risk scores were derived. All categories 
were independent factors for predicting recurrence after LT 
(Fig. 2f). Consequently, the multivariate Cox regression 
model revealed that immune cells were the only prognos-
tic determinant (HR 1.907, 95% CI 1.490–2.440), indicat-
ing the great significance of immune cells at the structural 
level. An immune score (IS) was constructed according to 
the risk score of immune cells. DPS was derived based on 
the weighted algorithm for all tissue categories except for 
NLT. The attention heatmap was then used to interpret the 
significance of different tissue categories. Higher attention 
scores (shown in red) indicated closer relationship to cancer 
recurrence (Fig. 2g).

Model discrimination and survival prediction of DPS

The C-indices of DPS in the training and validation cohorts 
were 0.827 (95% CI 0.801–0.853) and 0.794 (95% CI 
0.751–0.837), respectively. The C-indices of IS in the train-
ing and validation cohorts were 0.808 (95% CI 0.781–0.835) 
and 0.768 (95% CI 0.725–0.810), respectively. Calibrate 
curves revealed great concordance between the predicted 
and observed probabilities of recurrence and RFS (Fig. 3a, 
b, S1A, B). ROC curves were constructed to compare the 
prediction power between DPS and traditional prediction 
models (Fig. 3c, S2). The area under curve (AUC) values 
of DPS achieved 0.861 and 0.795 according to TTR and 
RFS, respectively, indicating the superior performance of 
the pathological signature. The prediction power of IS was 
also compared, with AUC values of 0.825 and 0.744 for TTR 
and RFS (Fig. S1C, D). DPS outperformed IS in recurrence 
prediction, probably due to the compensation for the invis-
ible prognostic value of other tissue categories.

The optimal cutoff value for the prediction score was 
determined using the “survminer” package [30]. All 
the patients were then divided into the high-risk group 
(DPS > 0.5161266) and low-risk group (DPS ≤ 0.5161266) 
according to the optimal cutoff value. Generally, the 5-year 
recurrence rates were 4.59% and 47.20% in the low-risk and 
high-risk groups, respectively, while the short-term (within 2 
years) recurrence rates were 3.96% and 37.88%. The 5-year 
RFS rate in the low-risk group was 88.65%, compared to 
49.31% in the high-risk group. The time-dependent ROC 
curves showed good concordance of DPS and IS in the 
training and validation cohorts based on 1-year, 2-year, and 
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5-year RFS (Fig. 3d, g, S1E, F). Specifically, the AUC val-
ues of 5-year RFS were 0.781 and 0.814 in the training and 
validation cohorts, respectively. Patients with lower DPS 
had longer RFS and a lower recurrence risk in both cohorts 
(Fig. 3e, f, h, i). Furthermore, the combination of DPS with 
the Milan criteria and UCSF criteria enabled a better sur-
vival discrimination for LT patients (Fig. S3).

Prognostic predictors of RFS in LT datasets

Cox proportional hazards regression analysis was performed 
to explore the independent predictors for RFS in the LT 
cohort (Table S3). Fourteen candidates were proven to be 
significant in the univariate analysis and were then evaluated 
with multivariate Cox regression. The multivariable analysis 
revealed that the RETREAT score [13] (HR 1.353, 95% CI 
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1.006–1.821) and DPS (HR 4.795, 95% CI 3.017–7.619) 
were significant indicators.

To compare with the clinical features, significant predic-
tors in the univariate analysis were incorporated into DPS 
using Cox proportional hazards analysis (Fig. S4). The 
C-indices of clinical features, DPS, and DPS plus clinical 
features were 0.732, 0.816 and 0.849, respectively. DPS 
showed great compatibility with clinical risk factors in post-
LT recurrence prediction.

The forest plots depicted the prognostic risk in different 
subgroups. Strikingly, DPS remained an effective predic-
tor for both recurrence risk (Fig. 4) and RFS (Fig. S5), in 
line with the different clinicopathological characteristics. 
Compared to patients in the low-risk group, more patients 
in the high-risk subgroup had an AFP level over 400 ng/
mL (28.17% vs. 15.97%). Moreover, HCCs in the high-
risk group were characterized by a larger tumor diameter 
(p = 0.002) and a lower proportion of clear tumor border 
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(66.20% vs. 81.51%). In particular, DPS was proven to be 
a prognostic factor in all of the subgroups in terms of the 
patients’ clinicopathological characteristics.

Prognostic role of antiviral therapy after LT

Nucleic acid analog therapy is reported to reduce the 
recurrence of HCC [31]. The treatment effect on LT cases 
was evaluated. A majority of hepatitis B patients received 
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routine antiviral therapy (n = 304) before or after LT. 
Patients without regular treatment were characterized by 
a higher recurrence rate (p = 0.024, Fig. S6A) and a poorer 
RFS (p = 0.010, Fig. S6B). Furthermore, lower recurrence 
risk was observed in the patients with low DPS in both 
treatment and non-treatment groups (Fig. S6C–D).

Visualization of the immune landscape in LT cases

Based on the significance of immune cells in recurrence 
prediction, multiplex immunofluorescence was performed 
to explore the immune microenvironment in 16 randomly 
selected patients (8 suffered recurrence within 18 months 
and 8 were without recurrence) from LT cohort. Consecu-
tive slicing was conducted to maximally maintain the same 
cellular distribution between the H&E-stained and immu-
nofluorescence slides. Abundant immune cell infiltration in 
the stroma was revealed by both AI recognition and mIF 
staining (Fig. 5a).

Typical immunofluorescence images are shown in 
Fig.  5b, c. The number of immune cells was derived 
according to the colocalization of stained markers: Treg 
cells (CD3+CD4+FOXP3+), natural killer cells (NK 
cells, CD3−CD16+CD56+), natural killer T cells (NKT 
cells, CD3+CD56+), CD8+T cell (CD3+ CD8+), CD4+T 
Cells (CD3+ CD4+), Memory T cells (CD45RO+), 
B cells (CD20+), conventional dendrite cells (cDCs, 
CD11c+), monocytes (CD11b+), macrophages (CD68+), 
CD11b+CD68+ cells, and neutrophils (MPO+).

The intratumoral immune landscape of HCC was demon-
strated (Fig. 5d). In the HCC nests, macrophages accounted 
for the largest proportion of immune cells, followed by 
CD4+ T cells, CD8+ T cells and monocytes. Great interpa-
tient heterogeneity existed in the composition of the immune 
cells (Fig. 5e).

The disparities of immune infiltration among tumor nests, 
invasive margins and normal liver tissues were further com-
pared (Fig. 5f, Fig. S7). A higher density of Treg cells and 
CD4+ T cells was observed in the TN and IM than in the 
NLT. NKT cells and B cells aggregated the most in the IM. 
Compared to IM and NLT, less infiltration of NK cells was 
detected in the TN. The other 7 kinds of immune cells did 
not differ statistically among the TN, IM and NLT.

Exploration of recurrence related immune 
biomarkers

The heatmap of immune biomarkers combined with clini-
cal characteristics is shown in Fig. 6a. The none-recurrence 
group was characterized by a clustering of NK cells and 
cDCs, while a clustering of monocytes and macrophages 
was observed in the patients with early HCC recurrence. To 
quantitatively investigate the correlation between immune 

infiltration and recurrence risk, a comparison of immune cell 
density between the non-recurrence group and early-recur-
rence group was performed. The density of intratumoral NK 
cells in the non-recurrence group was higher than that in the 
early-recurrence group (p = 0.01, Fig. 6b). A similar phe-
nomenon was also observed in the IM and NLT, although 
statistical significance was not reached. Typical colocaliza-
tion of CD56 and CD16 is shown in Fig. 6c.

The corrplot of intratumoral immune infiltration revealed 
that NK cells probably had a close relationship with CD8+T 
cells, CD4+T cells, cDCs, Memory T cells and Treg cells 
(Fig.  6d). Intratumoral NK cells were positively corre-
lated with cDCs and CD8+T cells in terms of cell density 
(Fig. 6e), potentially indicating increasing antigen presen-
tation between NK cells and cDC in tumor microenviron-
ment (TME) of LT cases. Since the interaction between NK 
cells and CD8+T cells elicit specific cytolytic outcomes [31, 
32], the spatial proximity of these two cell types was fur-
ther explored by counting the closest distance between the 
nuclear center of the cells [33] (distances over 300 μm were 
eliminated). The phenotype map and proximity distance are 
shown in Fig. 6f. Overall, an average closest distance of 
122.39 μm between NK cells and CD8+T cells was measured 
(Fig. 6g). Additionally, CD8+T cells were more proximal 
to NK cells in the non-recurrence subgroup than the early-
recurrence subgroup, with an average distance of 114.73 μm 
and 155.39 μm, respectively (Fig. 6h, i). Furthermore, the 
distribution pattern of distance tended to be discrete in the 
early-recurrence subgroup. These results suggested that the 
interaction between innate and adaptive immune systems 
established stronger cytotoxicity against tumor cells, leading 
to a stronger suppression of recurrence.

Evaluation of immunosuppressive molecules

Since immune therapy has pioneered a new era of antitu-
moral systematic treatment [34], the expression of immune 
checkpoint molecules has been great significance to the 
prognosis of liver cancer [35].

Typical mIF images of six immunosuppressive molecules 
are shown in Fig. S8A. A correlation heatmap revealed that 
an enrichment of CD8+T cells with high expression of 
CTLA4+, LAG-3+, PD-L1+ and PD-1+ cells was observed 
in the early-recurrence subgroup (Fig. S8B, C), indicating 
an inhibitory immunological microenvironment in the early-
recurrent population.

The quantitative comparison also showed a higher infil-
tration of immune checkpoints in the early-recurrence sub-
group including PD-L1, LAG-3, and CTLA4 although no 
statistical significance was reached (Fig. S8D).
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Discussion

Different from hepatectomy, LT is a distinct and effec-
tive therapeutic option for HCC. Nevertheless, the dismal 

prognosis and lack of effective treatment after HCC recur-
rence remain critical problems for post-LT recovery. Tradi-
tional transplantation criteria, including the Milan criteria 
and UCSF criteria, fail to precisely predict patients at risk 
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of recurrence. Clinical biomarkers have been replenished by 
recent prognostic scoring systems to provide a quantification 
of individual HCC recurrence risk [12, 13]. A more reliable 
and efficient recurrence prediction model would be benefi-
cial to guide HCC surveillance strategies.

The emergence of AI has reformed multiple aspects of 
cancer management. In this large study involving 380 HCC 
patients and 495 WSIs, a deep learning algorithm managed 
to establish and validate the DPS with high accuracy, supe-
rior to most traditional LT criteria and classic recurrence 
prediction models. The neural network originally evaluated 
the prognostic significance of each histological structure and 
highlighted the dominant position of the immune cells. The 
individual recurrence risk could be automatically calculated 
via digital identification of each WSI, which greatly facili-
tated the pathological diagnosis and recurrence evaluation 
of the LT patients. The C-indices of DPS reached 0.827 and 
0.794 in the two cohorts and further stratified patients within 
or beyond the Milan criteria and UCSF criteria (Fig. S3), 
which provided a deeper perspective for clinical practice. 
In addition, our new risk score exhibited great compatibil-
ity with the clinical features in predicting post-LT recur-
rence (Fig. S4). In view of the effectiveness and simplicity, 
deeper statistical analysis was not performed on the com-
bined model.

Compared to previous AI predictive models, DPS was 
characterized by an improvement of methodology, a deeper 
exploration of pathological features and an elevation of pre-
diction accuracy. A previous study established HCC prog-
nostic model after resection based on a weakly supervised 
network of four tissue categories [22]. Two more critical 
tissue categories (immune cells and portal area) were input 
into our learning network and a channel attention mecha-
nism was added to the classification and prognostic model, 
which enhanced the study ability and diversity during fea-
ture extraction. Regarding discriminatory power, differences 
between the log-likelihood-based and the cross-entropy-
based predictions appear to be less pronounced [36]. There-
fore, we combined the cross-entropy loss with the Cox loss 
to achieve model optimization, facilitating the use of sur-
vival information and model convergence.

Saillard et al. proposed two deep learning-based algo-
rithms for predicting survival after HCC resection [23]. 
They compared the attention mechanism of the tumor region 
annotated by pathologists with one that did not require 
human expertise. The results revealed that the method based 
on manual annotation outperformed the method without 
annotation. This proved the significance and superiority of 
manually dividing pathological sections before model con-
struction, which would provide more prior information for 
prognostic tasks. These facts supported the hypothesis that 
recognition of HCC tissue categories could provide deeper 

prognostic information about LT patients and reveal a new 
prospective on tumor microenvironment.

Recently, Liu et al. added nucleus segmentation as prior 
knowledge into a deep learning model and used a cross-
entropy loss function to predict the recurrence of HCC after 
resection or LT [37]. Compared to their study, our model 
clearly interpreted the relationship between histologi-
cal structures and prognosis. A much higher C-index was 
achieved in the LT cohort. Moreover, the attention heat-
maps intuitively showed the relationship between the tissue 
regions and prognosis.

In many studies regarding deep learning, prediction mod-
els have been constructed via an overall analysis of each 
WSI, which inevitably ignores the prognostic values of the 
separate tissue structures. In the present study, after a suc-
cessful attempt to concretize the "black box" of pathological 
computing layers, the significance of six tissue categories in 
HCC was innovatively evaluated. This procedure bypassed 
the need for the manual recognition of numerous postprocess 
tiles [37]. Multivariate Cox regression analysis has revealed 
that immune cells were the most important histological 
structure, followed by the portal area and hemorrhagic and 
necrotic tissue. This result was consistent with the visuali-
zation of the attention machine, in which areas outlined in 
red more involved immune cells (Fig. 2f). Since compre-
hensive therapies including liver resection, transcatheter 
arterial chemoembolization (TACE) and immunotherapies 
were given before LT [38, 39], an activated tumor immune 
microenvironment was common in the study population. In 
general, immune cells can independently predict recurrence 
in LT patients with high accuracy and feasibility.

The great predictive value of the histological structure 
prompted us to focus on immune infiltration at cellular level. 
The three panels of 7-color mIF staining covered almost 
all of the immune cells (leukocytes) and common immune 
checkpoint molecules. Exploration of the immune biomark-
ers revealed the heterogeneity among transplant patients and 
the prognostic value of NK cells. NK cells are one of the 
major cell types in HCC immune microenvironment [15]. 
The rates of tumor-infiltrating and circulating NK cells are 
positively associated with survival benefits in HCC and have 
prognostic significance, suggesting that NK-cell dysfunction 
is closely related to HCC progression [40, 41]. Furthermore, 
previous studies have reported a connection between NK 
cell dysfunction and resistance to multiple anticancer thera-
pies [42]. In the present study, higher infiltration of intratu-
moral NK cells indicated a lower chance of post-LT recur-
rence. Moreover, the spatial distance analysis revealed that 
the closer contact between NK cells and CD8+T cells may 
lead to a reduced recurrence risk. This finding potentially 
highlights the synergistic cytotoxicity of the innate immune 
system and adaptive immune system against tumor cells. 
Future studies could focus on the mechanism of regulating 
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antitumor immunity by the combination of NK cells and 
CD8+T cells or the crosstalk between two cell types in 
relation to different antitumor therapies. Since the immune 

activation status in the tumor region indicated a low risk of 
HCC recurrence, whether immunosuppressants may affect 
tumor recurrence deserved investigation. In our datasets, 
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all LT patients have received immunosuppressive therapy 
after transplantation, which impedes further evaluation of 
its impact on relapse.

Immune checkpoint molecules induce T-cell dysfunction 
and immune escape in the HCC TME [43], while immune 
checkpoint inhibitors restore the effector function of T cells 
in the tumor microenvironment [44]. The cluster results 
reflected a closer correlation between CD8+T cells and 
PD-L1, CTLA4 and TIM-3 in the early-recurrence subgroup 
than in the none-recurrence subgroup (Fig. S8), suggest-
ing impaired antitumor cytotoxicity caused by immunosup-
pressive molecules. Except for IDO, all immunosuppressive 
molecules were highly expressed in the early-recurrence 
subgroup. The role of IDO in human LT remains unknown, 
while controversial conclusions have been drawn about its 
prognostic value after liver resection [45, 46]. Since the 
immune balance between antitumor cytotoxicity and post-
LT rejection is a complicated process regulated by effector 
immune cells and immunosuppressive molecules, the prog-
nostic role of immunosuppressive molecules is by no means 
conclusive in LT cases.

There are several limitations of our study. First, our train-
ing data came from a single institution. A more rigorous 
external validation dataset is needed. Second, the patients 
in both cohorts were predominantly HBV infected, which 
reduced the representativeness of our HCC population. 
Third, the poor effects for image fusion of different mIF pan-
els inhibited a deeper exploration of the immune microenvi-
ronment including the interaction between antitumor cyto-
toxic cells and immune checkpoint molecules. Fourth, the 
correlation between pathological signatures and multiomics 
sequencing data should be investigated via AI computing.

Conclusion

In conclusion, this study proposed an efficient pathological 
risk score based on artificial intelligence for HCC patients 
who underwent LT. DPS was superior to most clinical mod-
els in guiding HCC surveillance strategies by accurately 
predicting post-LT recurrence and survival. DPS facilitated 
the histological diagnosis of HCC-specific structures and 
highlighted the prognostic significance of immune cells in 
the TME of LT patients. Patients with low recurrence risk 
were characterized by a state of immune activation. Future 
studies should focus on the correlation between pathological 
signatures and multiomics data.
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rence and none recurrence subgroups, Scale bar 50 μm. d The inter-
action analysis for immune markers in the tumor environment of LT 
patients. e The correlation plot of NK cell with cDC, and NK cell 
with CD8+T cell. f The representative mIF image and proximity dis-
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CD8+T cells to NK cells. Scale bar 100 μm. g The distribution histo-
gram of distances from CD8+T cells to closest NK cells. h Compari-
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early recurrence and none recurrence subgroups. Data are presented 
as the mean ± SEM. ****p < 0.0001. i The distribution histogram of 
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