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Abstract
Background and aim Since hepatocytes produce majority of serum proteins, patients with cirrhosis display substantial 
alterations in the serum proteome. The aim of the current study was to characterize these changes and to study the prognostic 
utility of hepatocellular proteins available in routine clinical testing.
Methods Sera from 29 healthy controls and 43 patients with cirrhosis were subjected to untargeted proteomic analysis. 
Unsupervised hierarchical clustering was performed with Perseus software and R. Ingenuity pathway analysis (IPA) suggested 
upstream regulators that were validated in liver tissues. The behavior and prognostic usefulness of selected biomarkers was 
investigated in 61 controls and 285 subjects with decompensated cirrhosis.
Results Proteomics uncovered 65 and 16 hepatocellular serum proteins that are significantly downregulated or upregulated 
in patients with cirrhosis vs. controls. Hierarchical clustering revealed two main clusters and six sub-clusters. IPA identified 
HNF4α and IL-6 as the two major upstream regulators that were confirmed by hepatic gene expression analyses. Among 
pseudocholinesterase, transferrin, transthyretin, albumin, and apolipoprotein AI (Apo-AI), Apo-AI was the best predictor of 
90-days transplant-free survival (AUROC 0.678; p = 0.0001) and remained an independent predictor in multivariable Cox 
independently of the presence of acute-on-chronic liver failure.
Conclusion Our study reveals cirrhosis-associated changes in hepatocellular serum proteins and underlying transcription 
factors. Serum apolipoprotein AI may constitute a useful prognostic adjunct in patients with decompensated cirrhosis.
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Abbreviations
APPs  Acute-phase proteins
ALB  Albumin
TF  Transferrin
TTR   Transthyretin
BCHE  Pseudocholinesterase
Apo-AI  Apolipoprotein A1
CRP  C-reactive protein
HC  Healthy controls
SDC  Stable decompensated cirrhosis
UDC  Unstable decompensated cirrhosis
ACLF  Acute-on-chronic liver failure
MELD  Model of end-stage liver disease
CHAID  Chi-square automatic interaction 

detectors
HNF1A and 4A  Hepatocyte nuclear factor 1 or 4 alpha
RPLPO  Human ribosomal protein

TGF-b  Transforming growth factor beta
HGF  Hepatocyte growth factor
EGF  Epidermal growth factor
TNF  Tumor necrosis factor
IL-1b  Interleukin-1 beta
IFN-g  Interferon gamma
PGE2  Prostaglandin E2
IL-6  Interleukin-6

Introduction

Liver constitutes a central metabolic hub of the human 
body [1]. It receives nutrients from the intestine as well as 
compounds from peripheral tissues that are either stored 
or used for synthesis of new products [1]. Hepatocytes, 
the parenchymal cells of the liver, are responsible for 
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these processes. They constitute highly active secretory 
cells and produce majority of proteins found in the serum 
including hormones, carrier and homeostatic proteins 
[2]. Protein synthesis is directed by a concerted action 
of liver-enriched transcription factors [3]. This teamwork 
enables the generation of multiple carrier and homeostatic 
proteins that are essential for organismal wellbeing. At 
the same time, it is responsible for adjustment to stress 
situations and because of that it responds to inflammatory 
stimuli [3, 4] It leads to a decreased generation of com-
pounds that are deemed dispensable (so called anti-acute-
phase proteins) and increased manufacturing of mediators 
supposed to help with the stress (termed acute-phase pro-
teins, APPs) [2, 5] APPs are further subdivided into type 
I and type II, depending on whether they are regulated by 
interleukin 1-like cytokines such as interleukin-1α/β and 
tumor necrosis factor or IL-6 like cytokines such as IL-6, 
IL-11, oncostatin M and leukemia inhibitory factor.

Cirrhosis is the result of an evolutionarily conserved 
wound-healing response of the liver to tissue injury, usu-
ally triggered by inflammatory or immune-mediated mech-
anisms resulting in a loss of hepatocytes and the remod-
eling of the tissue architecture [6]. Capillarization of the 
sinusoids promotes hypoxia, which further impairs the 
synthetic ability of hepatocytes perpetuating injury and the 
release of damage-associated molecular patterns (DAMPs) 
[7]. In parallel, portal hypertension, intestinal dysbiosis, 
and impaired gut barrier function promote translocation 
of pathogen-associated molecular patterns (PAMPs) into 
the circulation [8].

In summary, cirrhosis is characterized by a hepatocel-
lular loss together with hepatocellular re-programming 
triggered by hepatocellular de-differentiation, hypoxia, 
and innate immune activation [7, 8]. Since production 
of secreted proteins constitutes one of the key functions 
of the liver and changes in serum proteome can be eas-
ily measured, serum levels of hepatocellular proteins are 
potentially useful biomarkers reflecting the functional 
state of the liver. Notably, some of them, such as albumin 
or coagulation factors, became well-established compo-
nents of prognostic scores [9]. Despite that, the exact 
alterations in hepatocellular serum proteome occurring 
in advanced liver disease still remain to be systemati-
cally characterized. Therefore, we performed an unbiased 
proteomic analysis of sera from cirrhotic patients as well 
as corresponding controls and used a bioinformatics 
approach to elucidate the biological pathways responsible 
for the observed changes. To validate the bioinformat-
ics predictions, the results were corroborated via RNA 
expression analyses and the prognostic ability of selected 
hepatocellular products was studied in an independent 
cohort of patients with decompensated cirrhosis.

Experimental procedures

Patient cohorts

In total, frozen serum samples from 285 patients with acute 
decompensation (AD) of cirrhosis and from 61 self-identified 
healthy individuals were used for this study. Of these, sera 
from 21 patients with acute chronic liver failure (ACLF) or 
pre-ACLF, 22 patients with stable decompensated cirrhosis 
(SDC) according to the PREDICT study [10], and 29 healthy 
individuals were randomly selected for proteomic analysis 
(Table 1). Patient samples were derived from patients hos-
pitalized for acute decompensation of cirrhosis treated at the 
Jena University Hospital between 09/2010 and 07/2015 as 
described previously [11] and frozen at − 80 °C until analysis. 
Sera from self-declared healthy individuals were collected at 
the University Hospital Aachen, Germany between the years 
2016 and 2019 as described previously [12].

Human liver tissue

Liver tissues from nine patients who underwent liver surgery 
at the University of Aachen between the years 2006 and 2018 
were analyzed. Unaffected surrounding portions of liver tis-
sue from nine patients collected during oncological surgery 
for exclusion of liver malignancy were used as controls (Sup-
plementary Table S1). RNA was isolated using the RNeasy 
tissue mini isolation kit (Qiagen, Hilden, Germany). RNA was 
translated to cDNA using the M-MLV reverse transcriptase kit 
(Promega, Madison, WI, USA) with random hexamer primers 
(Thermo Scientific, Waltham, MA, USA). The relative expres-
sion of genes of interest was determined using qPCR using 
specific primers (Supplementary Table S2). The human ribo-
somal gene RPLPO was used as an internal loading control.

Further experimental procedures (e.g., proteomics, bio-
informatics, and statistical analysis) are given in the sup-
plementary materials.

Results

Cirrhosis is associated with a profound alteration 
of hepatocellular serum proteins

To identify biomarkers of hepatocellular function altered 
in patients with cirrhosis, sera from 29 healthy individuals 
and 43 patients with acute decompensation of cirrhosis were 
subjected to untargeted proteomic analysis (Table 1). Out 
of 903 identified proteins, 187 were detected in at least 50% 
of the samples (Fig. 1A, Supplementary Table S3). Serum 
levels of 146 proteins differed significantly (false discovery 
rate (FDR) < 0.05) between groups and both groups were 
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clearly separated by principal component analysis (Fig. 1B, 
Supplementary Table S4). Eighty-one of the proteins were 
of hepatocellular origin, and of these, sixty-five were sig-
nificantly lower in sera from patients with cirrhosis as com-
pared to healthy controls applying FDR of less than 0.05. 
Notably, C-reactive protein (CRP) and pseudocholinesterase 
(or butyrylcholinesterase; BCHE) were among the most sig-
nificantly upregulated and downregulated proteins, respec-
tively, demonstrating both loss of hepatocellular synthesis 
and activation of acute-phase response (Fig. 1C). On the 
other hand, albumin (ALB), a well-established surrogate of 
hepatocellular synthesis, displayed only a moderate differ-
ence between patients with cirrhosis and controls (Supple-
mentary Table S4).

Unsupervised hierarchical cluster analysis revealed that 
these 65 proteins of interest could be categorized into 2 
main clusters and 6 sub-clusters (Fig. 2A, Supplementary 
Table S5). The number of proteins per cluster ranged from 
4 to 20. Overall, the analysis demonstrated profound dif-
ferences in the hepatocellular serum proteome of patients 
with decompensated cirrhosis when compared to controls, as 
shown in Supplementary Tables S5 and S6, but also the fact 
that hepatocellular proteins exhibit unique behavior during 
the development of end-stage liver disease.

Upstream regulator analyses revealed two major 
upstream regulators associated with analyzed 
hepatocellular proteins

To obtain an insight into the molecular mechanisms under-
lying serum proteome changes in decompensated cirrhosis, 
proteomics data were submitted to QIAGEN’s Ingenuity 
Pathway Analysis (IPA, QIAGEN Redwood City, www. 
qiagen. com/ ingen uity). IPA core analysis revealed 71 
upstream regulators to be significantly altered (threshold 
for overlap p value < 0.05). Hepatocyte nuclear factors 
1α, 4α (HNF1α, HNF4α), and interleukin 6 (IL6) were 
the top three predicted transcriptional regulators that may 
explain the changes occurring in decompensated cirrho-
sis (Fig. 3A) and the predicted target proteins included 
albumin, apolipoproteins, transport proteins, coagulation 
factors, and acute-phase proteins (Fig. 3B). The suggested 
expression changes in HNF4A and IL6 mRNA, but not 
HNF1A were validated in liver tissue of patients with cir-
rhosis as compared to nine controls without (Fig. 3C–E). 
Hepatic HNF4A expression positively correlated with 
hepatic albumin (ALB), transthyretin (TTR), transferrin 
(TF), and apolipoprotein AI (Apo-AI) expression, whereas 
hepatic IL6 expression negatively correlated with hepatic 

Table 1  Baseline characteristics

Baseline characteristics are shown as frequencies or medians with interquartile ranges

Proteome analysis Candidate biomarker analysis

Decompensated cir-
rhosis (n = 43)

Healthy subjects (n = 29) Decompensated cir-
rhosis (n = 285)

Healthy subjects (n = 61)

Age (yrs) 53 (47–62) 57 (53–61) 59 (53–68) 61 (56–67)
Male sex (%) 38 (88) 21 (72) 210 (74) 45 (74)
Alcohol-related liver disease (%) 39 (91) 0 227 (80) 0
Ascites 43 (100) 0 285 (100) 0
ACLF 13 (30) 0 77 (27) 0
Pre-ACLF 9 (21) 0 66 (23) 0
Hepatocellular carcinoma 7 (16) 0 40 (14) 0
MELD score 16 (12–25) N/A 17 (12–22) N/A
Bilirubin (µmol/L) 58 (23–184) 10 (6–13) 46 (24–109) 8 (6–13)
ALT (µmol/[L × s]) 0.5 (0.4–1.3) 0.5 (0.4–0.6) 0.6 (0.4–0.9) 0.4 (0.3–0.5)
AST (µmol/[L × s]) 1.0 (0.4–1.3) 0.4 (0.4–0.5) 1.1 (0.7–1.9) 0.4 (0.4–0.5)
INR 1.5 (1.3–1.9) 0.9 (0.9–1) 1.4 (1.2–1.7) 0.9 (0.9–1)
Platelets (/nL) 137 (96–178) 244 (206–285) 124 (80–177) 224 (187–284)
Creatinine (µmol/L) 72 (61–148) 80 (63–96) 91 (63–142) 76 (61–94)
Albumin (g/L) 23 (20–27) 48 (46–50) 24 (20–29) 48 (44–50)
BCHE (ng/mL) 720 (358–1286) 3861 (3308–4553) 691 (424–949) 3966 (3198–4791
Transferrin (mg/dL) 86 (57–151) 268 (230–292) 104 (65–162) 263 (231–284)
Transthyretin (mg/dL) 51 (35–95) 215 (157–250) 60 (39–85) 222 (177–270)
Apolipoprotein AI (g/L) 0.77 (0.30–1.28) 2.6 (2.4–3.0) 0.83 (0.50–1.27) 2.8 (2.5–3.2)

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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ALB and BCHE expression (Fig. 4), but the correlations 
were not particularly strong. To further visualize the inter-
play between the key regulators (i.e., HNF1A, HNF4A 
and IL6) and the serum proteins that were altered in our 
proteomic dataset, we performed an IPA-driven network 
visualization (Fig. 2B). It demonstrated that most serum 
proteins are co-regulated by more of the players and that 
the observed changes are likely a result of a complex regu-
lation involving several different players.

Biomarkers of hepatocellular synthesis correlate 
with the trajectory of acute decompensation 
in cirrhosis

Based on hierarchical cluster analysis (Supplementary 
Table S5) and the availability in routine clinical testing, we 
selected five indicator proteins, which were decreased in 
sera from patients with cirrhosis for further analysis. Their 
concentrations were analyzed in sera from 61 healthy indi-
viduals and from 285 patients with acute decompensation 

Fig. 1  Serum proteome 
analysis. a Flow chart shows 
the number of detected proteins 
(903) and the number of 
proteins that were identified in 
a sufficient number of partici-
pants (187). One hundred and 
forty-six of them differentially 
regulated in a group of patients 
with decompensated cirrhosis, 
comprising patients with stable 
(SDC) and unstable decom-
pensated cirrhosis (UDC) and 
(pre-)acute-on-chronic liver 
failure (ALCF) compared to 
controls (FDR < 0.05). Among 
those, 81 were of hepatocel-
lular origin (16 upregulated, 
65 downregulated). b The first 
two dimensions of the principal 
component analysis present a 
clear discrimination between 
patients with decompensated 
cirrhosis and healthy controls. 
c Volcano plot illustrates dif-
ferentially abundant hepatocel-
lular proteins. The −  log10 (false 
discovery-adjusted p value) is 
plotted against the  log2-fold 
change (resembling the differ-
ences between means of log2-
transformed LFQ intensities 
for patients with cirrhosis vs. 
those of healthy controls). A 
log2-fold change > 0 indicates 
proteins upregulated in patients 
with cirrhosis, while a value < 0 
identifies downregulated spe-
cies. The non-axial vertical 
lines denote ± 0.05-fold change 
(the smallest log2-fold change 
observed for any significantly 
altered protein), while the non-
axial horizontal line denotes 
p = 0.05 as the significance 
threshold. hep-r hepatocyte-
related
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of cirrhosis. As expected, patients with cirrhosis had sig-
nificantly lower serum concentrations of albumin, transfer-
rin, transthyretin, pseudocholinesterase, and apolipoprotein 
AI compared to healthy individuals (Fig. 5A). In addition, 
transferrin, BCHE, and apolipoprotein AI but not albu-
min and transthyretin display a stage-dependent decrease 
of serum concentrations from stable (SDC) and unstable 
decompensated cirrhosis (UDC) to pre-ACLF and ACLF as 
indicated by a significant Jonckheere-Terpstra test (Fig. 5A).

Higher serum levels of transthyretin are associated 
with better prognosis in patients with ACLF

Out of 285 patients with acute decompensation of cirrho-
sis (Table 1), 82 (29%) died within 90 days and 10 (4%) 
underwent liver transplantation. Diagnostic accuracy in 
predicting mortality or transplant at 90 days was com-
pared using areas under the receiver operating character-
istic curves (AUROC, supplementary table S7). Among 

the investigated hepatocellular biomarkers, apolipoprotein 
AI (AUROC 0.678; p = 0.0001), BCHE (AUROC 0.626; 
p = 0.001), transferrin (AUROC 0.602; p = 0.009), and tran-
sthyretin (AUROC 0.593; p = 0.01) were able to discrimi-
nate between the two groups, whereas serum albumin was 
not (AUROC 0.496; p = 0.923). The prognostic abilities of 
apolipoprotein AI were numerically comparable to those 
of the MELD score (AUROC = 0.685; p < 0.001). In Chi-
square automatic interaction detectors (CHAID) analysis, 
apolipoprotein AI outperformed BCHE, transferrin, tran-
sthyretin, and albumin as predictors of death or transplant 
within 90 days and suggested stratification of apolipoprotein 
AI based on two optimized cutoffs, namely 0.380 g/L and 
0.826 g/L. In Kaplan–Meier analysis, higher apolipopro-
tein AI serum concentrations were associated with better 
90-days transplant-free survival (Fig. 5B), which remained 
true in the subgroups of patients with and without ACLF 
(Fig.  5C). In time-to-event analysis, apolipoprotein AI 
strata remained significant in two different multivariable 

Fig. 2  Serum proteins of hepa-
tocellular origin decreased in 
decompensated cirrhosis. a The 
dendrogram indicates the hier-
archical clustering of 65 serum 
proteins of hepatocellular origin 
that were significantly down-
regulated (log2-fold change < 0 
and FDR < 0.05) in patients 
with cirrhosis as compared to 
healthy controls. Proteins are 
labeled via the according gene 
symbol. b Network of three 
most strongly enriched upstream 
regulators (HNF1A, HNF4A, 
and IL-6) and their correspond-
ing downstream regulators as 
predicted by the Ingenuity Path-
way Core Analysis. The analysis 
was based on hepatocyte-related 
proteins that were significantly 
altered (FDR < 0.05) between 
healthy controls and individuals 
with liver cirrhosis
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Cox regression models adjusting for demographic factors 
and for severity of liver disease, i.e., MELD score or ACLF 
(Table 2).

Discussion

Using untargeted serum proteomics, in silico upstream regu-
lator analysis and validation ELISAs alongside with hepatic 
gene expression analysis, we herein show that serum con-
centrations of proteins regulated by HNF-4α-and IL-6 are 
reduced in cirrhosis, associated with more advanced stages 
of cirrhosis, and indicate poor transplant-free survival. Low 
serum levels of apolipoprotein AI identified patients with 
very low likelihood of transplant-free survival in a large 
cohort of patients with acute decompensation of cirrhosis. 
The prognostic usefulness of apolipoprotein AI seen in our 
study further extends and corroborates previous findings [13, 
14].

The prognosis in patients with advanced chronic liver dis-
ease is mainly determined by liver function, portal hyperten-
sion, the presence of extrahepatic organ failure, and systemic 
inflammation [15–17]. In advanced cirrhosis, inflamma-
tion is a major driver of complications and mortality, and 
pro-inflammatory cytokines, acute-phase proteins, and 
immune activation markers have been employed to improve 
risk prediction in decompensated liver disease [18–21]. 

Fig. 3  Analysis of upstream 
regulators altered in control vs. 
cirrhotic livers. a IPA analysis 
delineates the pathways altered 
in patients with decompensated 
cirrhosis vs. controls. Minus 
log10 (p values) of predicted 
upstream regulators are shown. 
b Target genes that are associ-
ated with top three upstream 
regulators obtained from IPA 
analysis. C–E Relative mRNA 
expression of selected genes 
was assessed in livers from 
patients with cirrhosis and non-
fibrotic livers and was normal-
ized to human ribosomal protein 
(RPLPO) as a housekeeping 
gene. Medians and individual 
values are shown. *p < 0.05; 
**p < 0.01 in non-parametric t 
test. F0 no fibrosis, F4 fibrosis 
stage 4

Fig. 4  Correlation between hepatic mRNA expression of upstream 
regulators and their putative target genes. Spearman correlation coef-
ficients based on RT-PCR analysis of cirrhotic and non-fibrotic livers 
are shown (n = 9 each). *p < 0.05; **p < 0.01. Proteins are labeled via 
the according gene symbol



705Hepatology International (2023) 17:698–708 

1 3

HC SD
C
UD

C

pre
-A
CL
F
AC

LF
0

1

2

3

4

5

6
A
lb
um

in
(g
/d
L)

p =0.47

p <0.0001

HC SD
C
UD

C

pre
-A
CL
F
AC

LF
0

1500

3000

4500

6000

7500

9000

B
C
H
E
(n
g/
m
L)

p =0.003

p <0.0001

HC SD
C
UD

C

pre
-A
CL
F
AC

LF
0

100

200

300

400

Tr
an

sf
er
rin

(m
g/
dL

)

p =0.02

p <0.0001

HC SD
C
UD

C

pre
-A
CL
F
AC

LF
0

100

200

300

400
500

750

1000

Tr
an

st
hy

re
tin

(m
g/
dL

) p =0.15

p <0.0001A

B

HC SD
C
UD

C

pre
-A
CL
F
AC

LF
0

1

2

3

4

A
po

lip
op

ro
te
in

A
I(
g/
L)

p <0.001

p <0.0001

Follow up (days)
9075604530150

C
u

m
. t

ra
n

sp
la

n
t-

fr
ee

 s
u

rv
iv

al
 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

All acute decompensations

Follow up (days)
9075604530150

C
u

m
. t

ra
n

sp
la

n
t-

fr
ee

 s
u

rv
iv

al
 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Acute decompensations 
without ACLF

Follow up (days)
9075604530150

C
u

m
. t

ra
n

sp
la

n
t-

fr
ee

 s
u

rv
iv

al
 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Acute decompensations
with ACLF

C

91 at risk97104111118122 78 at risk8287929799 13 at risk1517192123
36 at risk3840485362 29 at risk3032394247   7 at risk  8  8  91115
20 at risk2022242736 12 at risk1213141519   8 at risk  8  9101217

P <0.001
(log-rank 
for trend)

P <0.001
(log-rank 
for trend)

P =0.005
(log-rank 
for trend)

 >0.826
  0.038-0.826
 ≤0.038

ApoA-I (g/L)
 >0.826
  0.038-0.826
 ≤0.038

ApoA-I (g/L)
 >0.826
  0.038-0.826
 ≤0.038

ApoA-I (g/L)

Fig. 5  Regulated hepatocellular biomarkers and outcome in acute 
decompensation of cirrhosis. a Concentrations of albumin, transfer-
rin, pseudocholinesterase (BCHE), transthyretin, and apolipoprotein 
AI in sera from healthy controls (HC) and patients with stable decom-
pensated cirrhosis (SDC), unstable decompensated cirrhosis (UDC), 
pre-ACLF and ACLF depicted by violin plots. b Kaplan–Meier anal-
ysis of 90-days transplant-free survival stratified for apolipoprotein 
AI (Apo-AI). Cutoffs were derived from decision tree analysis using 

the Chi-square automatic interaction detectors (CHAID) algorithm 
with death/liver transplantation (LTX) within 90 days as events and 
albumin, pseudocholinesterase, transferrin, transthyretin, and apoli-
poprotein AI as variables. c Kaplan–Meier analysis of 90-days trans-
plant-free survival stratified for Apo-AI if shown for patients with 
acute decompensation without (left panel) and with ACLF at baseline 
(right panel). p values from log-rank test for linear trends are indi-
cated

Table 2  Cox regression analysis of death or transplant within 90 days

* cutoff based on Chi-square automatic interaction detectors (CHAID) algorithm

Univariable analysis Multivariable analysis (model 1) Multivariable analysis (model 2)

Unadjusted hazard 
ratio (95% CI)

p value Adjusted
hazard ratio (95% CI)

p value Adjusted
hazard ratio (95% CI)

p value

Age 1.05 (1.03–1.07)  < 0.001 1.06 (1.04–1.09)  < 0.001 1.07 (1.04–1.09)  < 0.001
MELD score (per 

1-point increase)
1.10 (1.07–1.13)  < 0.001 Not included 1.09 (1.05–1.12)  < 0.001

ACLF 2.88 (1.91–4.35)  < 0.001 2.53 (1.61–3.96)  < 0.001 Not included
HCC at baseline 1.96 (1.18–3.24) 0.009 1.88 (1.07–3.30) 0.029 1.67 (0.96–2.91) 0.071
Apolipoprotein AI*
 > 0.826 g/L 1.00 (reference) 1.00 (reference) 1.00 (reference)
0.381–0.826 g/L 2.67 (1.58–4.53)  < 0.001 2.72 (1.60–4.63)  < 0.001 2.27 (1.33–3.88)  0.003 
 ≤ 0.381 g/L 4.58 (2.69–7.78)  <0.001 4.33 (2.49–7.51)  < 0.001 3.29 (1.85–5.85)  <0.001
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The identified prognostic relevant hepatocellular proteins, 
albumin, apolipoprotein AI, transthyretin, and transferrin, 
are negative acute-phase proteins, and low concentrations 
of negative acute-phase proteins can serve as surrogates 
of reduced hepatic synthesis and impaired hepatocellular 
reserve but also indicate the presence of systemic inflam-
mation. Upstream regulator analysis identified HNF-4α 
and IL-6 as the most important regulators underlying the 
observed serum proteome changes in patients with decom-
pensated cirrhosis. Whereas the hepatic mRNA expression 
of the principal inducer of acute-phase response, IL6, was 
increased in cirrhotic livers, hepatic mRNA expression of 
HNF4A was reduced and positively correlated with the 
expression of ALB, TTR , TF and Apo-AI. The promoter 
regions of TTR  and other negative APP contain HNF-4α 
binding sites, and this correlation has been observed in 
patients with alcoholic hepatitis [22–24].

Although BCHE expression did not correlate with 
HNF4A expression, its strong negative correlation with IL6 
expression alongside the positive correlation of BCHE with 
transferrin and transthyretin on the protein level suggest a 
similar role as a negative APP and likely explains its marked 
decrease in patients with cirrhosis.

Despite a comparable hepatic regulation of the indicator 
proteins investigated in more detail, i.e., albumin, apolipo-
protein AI, transthyretin, transferrin, and BCHE, their role 
as a prognostic biomarker somewhat differed. This may be 
due to different serum half-lives ranging from < 1 day (apoli-
poprotein AI), 2–4 days (transthyretin) across 8–12 days for 
transferrin and BCHE to 3 weeks (albumin). As higher levels 
of apolipoprotein AI identified a subgroup of patients with 
ACLF with better prognosis, apolipoprotein AI may be inter-
preted as the most dynamic marker of the hepatic reserve 
after liver injury and organ failure.

Hepatic HNF-4α-dependent gene expression is altered 
across the spectrum from fibrogenesis to decompensation 
and liver failure. Mechanistically, in early liver disease 
with fibrosis, liver matrix stiffness and cytoskeletal tension 
inhibit the hepatocellular HNF4-α transcriptional network 
[25]. In advanced liver disease, such as alcohol-related 
liver failure, hepatic activity of the liver-enriched tran-
scription factor HNF-4α is severely inhibited, reducing 
hepatic expression of cytochrome P450 enzymes, apoli-
poproteins, and aldolases [26]. This process is driven by 
growth factors such as TGF-β, HGF, and EGF, cytokines 
such as TNF, IL-1β, IFN-γ, and inflammatory mediators 
such as PGE2 and LPS, and hepatocyte de-differentiation 
may play an additional role [26]. Because these upstream 
regulators play a prognostic role for complications of 

decompensated cirrhosis as well, the association of HNF-
4α-regulated proteins with outcome in patients with acute 
decompensation of cirrhosis is plausible.

In a study on liver tissue from patients at different 
stages of decompensation, HNF-4α expression was down-
regulated and correlated with liver dysfunction, fibrosis 
stage, and prognostically relevant serum parameters bili-
rubin, albumin, and prothrombin time [27]. As a result, 
lower serum concentrations of transthyretin and BCHE 
correlated with the Child–Pugh stage and with the pres-
ence of complications such as hepatic encephalopathy in a 
study on patients with predominantly viral cirrhosis [28]. 
Plasma proteome of 459 patients with compensated alco-
hol-related chronic liver disease demonstrated that lower 
levels of plasma albumin, BCHE, and transthyretin were 
associated with the presence of significant liver fibrosis 
and hepatic inflammation (vs. no/minimal fibrosis/inflam-
mation), but not with the degree of hepatic steatosis [29].

In this study, we demonstrate remarkable differences in 
serum levels of bona fide hepatocellular proteins as well 
as an association between lower apolipoprotein AI levels 
and transplant-free survival after adjusting for confound-
ing factors such as age, MELD score, and the presence 
of hepatocellular carcinoma. Notably, the prognostic abil-
ity of apolipoprotein AI was comparable to the routinely 
used MELD score consisting of three different biomarkers. 
Moreover, apolipoprotein AI remained a significant pre-
dictor of mortality in two different multivariable models 
including MELD or ACLF.

These data suggest that the activity of the liver-enriched 
transcription factor HNF-4α as a surrogate for hepatocel-
lular reserve, degree of fibrosis, hepatocyte differentiation, 
and inflammatory status may provide additional prognos-
tic information in advanced stages of cirrhosis. However, 
several limitations of our work need to be considered. The 
observed analyses are based on a single-center cohort, and 
the clinical cohorts used for mRNA analyses differed from 
cohorts used for proteomic assessment since liver biopsies 
are rarely ethically justifiable in subjects with decompen-
sated liver cirrhosis. Furthermore, the single biomark-
ers assessed in our study have been studied before and 
in this respect, our results are confirmative. The demon-
strated heterogeneity in hepatocellular proteins in subjects 
with cirrhosis should spur large-scale proteomic studies 
addressing the prognostic usefulness of the individual 
protein patterns. Such studies might be able to identify 
and validate clinically useful prognostic biomarkers as it 
has been recently demonstrated for alcoholic liver disease 
[29].
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