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Abstract
Background Perineural invasion (PNI) is associated with metastasis in malignancies, including intrahepatic cholangiocar-
cinoma (ICC), and is correlated with poor prognosis.
Methods The study included three large cohorts: ZS-ICC and TMA cohorts from our team, MSK cohort from a public 
database, and a small cohort named cohort 4. Prognostic implications of PNI were investigated in MSK cohort and TMA 
cohort. PNI-related genomic and transcriptomic profiles were analyzed in MSK and ZS-ICC cohorts. GO, KEGG, and 
ssGSEA analyses were performed. Immunohistochemistry was used to investigate the relationship between PNI and mark-
ers of neurons, hydrolases, and immune cells. The efficacy of adjuvant therapy in ICC patients with PNI was also assessed.
Results A total of 30.6% and 20.7% ICC patients had PNI in MSK and TMA cohorts respectively. Patients with PNI presented 
with malignant phenotypes such as high CA19-9, the large bile duct type, lymph node invasion, and shortened overall sur-
vival (OS) and relapse-free survival (RFS). Nerves involved in PNI positively express tyrosine hydroxylase (TH), a marker 
of sympathetic nerves. Patients with PNI showed high mutation frequency of KRAS and an immune suppressive metastasis 
prone niche of decreased NK cell, increased neutrophil, and elevated PD-L1, CD80, and CD86 expression. Patients with 
PNI had an extended OS after adjuvant therapy with TEGIO, GEMOX, or capecitabine.
Conclusion Our study deciphered the genomic features and the immune suppressive metastasis-prone niche in ICC with PNI. 
Patients with PNI showed a poor prognosis after surgery but a good response to adjuvant chemotherapy.
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Abbreviations
PNI  Perineural invasion
ICC  Intrahepatic cholangiocarcinoma
GO  Gene ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
ssGSEA  Single sample Gene Set Enrichment Analysis
TMA  Tissue microarray
HCC  Hepatocellular carcinoma
PDAC  Pancreatic ductal adenocarcinoma
OS  Overall survival
RFS  Relapse-free survival
TNM  Tumor-node-metastases
AJCC  American Joint Committee on Cancer
IHC  Immunohistochemistry
H&E  Hematoxylin–eosin
MAO-A  Monoamine oxidase A
TH  Tyrosine hydroxylase
OD  Optical density
SNS  Sympathetic nerve system
PNS  Parasympathetic nerve system

UCHL1  Ubiquitin carboxyl-terminal hydrolase isozyme 
L1

TUBB3  Tubulin beta-3 chain
SYN  Synapsin
VACHT  Vesicular acetylcholine transporter
NE  Norepinephrine
ACH  Acetylcholine
ADRs  Adrenergic receptors
CHRMs  Muscarinic acetylcholine receptors
CHRNs  Nicotinic acetylcholine receptors
TME  Tumor microenvironment
NK  Natural killer
TEGIO  Tegafur, Gimeracil and Oteracil potassium 

capsules
GEMOX  Gemcitabine + Oxaliplatin
ICBs  Immune check point blockers
PD1  Programmed death 1
PD-L1  Programmed death ligand-1
CTLA-4  Cytotoxic T-lymphocyte associated protein 4
TIGIT  T cell immunoreceptor with Ig and ITIM 
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PVR  Poliovirus receptor
TIM3  T cell immunoglobulin domain and mucin 

domain-3
FGL-1  Fibrinogen-like protein-1
LAG-3  Lymphocyte-activation gene 3
DC  Dendrite cell
Treg  Regulatory T cell
TPM  Transcripts Per Kilobase of exon model per 

Million mapped reads

Background

Intrahepatic cholangiocarcinoma (ICC) is the second most 
common primary liver cancer, originating from the sec-
ondary and higher intrahepatic bile duct branches [1]. The 
prognosis of patients with ICC remains poor owing to early 
metastasis and lack of effective treatment strategies [2].

Perineural invasion (PNI) in cancer was first reported in 
the nineteenth century [3]. PNI is defined as the appearance 
of tumor cells along the nerves and/or within the epineural, 
perineural, and endoneuria regions of the neuronal sheath, 
with cancer cells surrounding at least one-third of the nerves 
[3]. Recently, the clinical significance of PNI in malignancies 
has been noticed. PNI was observed in over 80% of pancre-
atic ductal adenocarcinoma (PDAC) cases and was found to 
be an early event of tumorigenesis in preclinical and clinical 
models [4, 5], reprogramming the immune microenvironment 
with decreased  CD8+ T and Th1 cells, and elevated Th2 cells 
[6]. In addition, PNI has been considered as an independent 
prognostic factor in several cancers, including gastric cancer 
[7], cervical cancer [8], gallbladder cancer [9], breast cancer 
[10], prostate cancer [11], hepatocellular carcinoma (HCC) 
[12], and ICC [13]. Considering the significant implications 
of the prognosis of cancers, the molecular characteristics of 
PNI and its potential targets are of great significance. In par-
ticular, recent evidence has established a link between the 
nervous system and the immune microenvironment, wherein 
the nerve fibers were observed to colocalize with subclones 
of lymphocytes in PDAC, including  CD20+ B cells,  CD4+, 
 CD8+ T cells, and  CD21+ follicular dendritic cells [14]. The 
colocalization of nerve fibers with immune cells provides 
direct evidence for neuroimmunomodulation in malignancies 
[15]. Preliminary evidence has shown that PNI can repro-
gram the immune microenvironment through cholinergic 
signaling in PDAC [6]. Unfortunately, the molecular profile 
of PNI and the relationship between PNI and the immune 
microenvironment in ICC remain unclear.

In this study, we investigated the role of PNI in two 
independent cohorts of patients with ICC and confirmed 
the contribution of PNI as an unfavorable prognostic factor 

post-surgery in these patients. We found that the PNI in case 
of ICC is mainly derived from the sympathetic nerve (SNS). 
We also demonstrated that patients with PNI presented with 
an immune suppressive metastasis prone niche, high fre-
quency of KRAS mutation, and better survival after adjuvant 
therapy.

Materials and methods

Patients and clinical samples

Study participants included four cohorts. Cohort 1: 255 
ICC patients with RNA-seq and genomic data from our 
group (named as ZS-ICC cohort) [16]. Cohort 2: 186 ICC 
patients with genomic data, PNI and clinical informa-
tion from MSK cohort [17]. Cohort 3: 309 patients with 
ICC who underwent curative resection between 2013 and 
2017 at Zhongshan Hospital, Fudan University (named as 
TMA cohort). Enrolled patients met the following crite-
ria [18]: (1) pathologically confirmed ICC; (2) ≥ 3 months 
of relapse-free survival (RFS) after resection; (3) had not 
undergone anti-tumor treatment before surgery; and (4) had 
complete medical records and follow-up data available. 
Patients were stratified by a tumor-node-metastases (TNM) 
stage system according to the American Joint Committee on 
Cancer (AJCC) 8th edition. The histological grade of ICC 
was based on World Health Organization Criteria. Tumor 
samples and adjacent liver tissue samples were collected, 
formalin-fixed, and paraffin-embedded. The last follow-up 
was on December 31, 2020. Cohort 4: 19 pathologically 
confirmed patients with ICC who underwent curative resec-
tion from March 2016 to May 2016 at Zhongshan Hospital, 
Fudan University.

Tissue microarrays, immunohistochemistry 
and hematoxylin–eosin (H&E) staining

The tissue microarrays (TMAs) were constructed as pre-
viously described and immunohistochemistry (IHC) was 
performed as our previous study [19]. Anti-human rabbit 
monoclonal antibodies for monoamine oxidase A (MAO-
A) (1:200; #ab126751, Abcam, Cambridge, UK), anti-
human mouse monoclonal antibodies for beta-tubulin III 
(1:100; #4466S, CST, Massachusetts, USA), anti-human 
rabbit monoclonal antibodies for tyrosine hydroxylase 
(TH) (1:300; #58844S, CST, Massachusetts, USA), anti-
human mouse monoclonal antibodies for vesicular ace-
tylcholine transporter (VACHT) (1:100; #MA5-27,662, 
ThermoFisher, Waltham, USA) and anti-human rabbit 
monoclonal antibodies for CD56 (1:200; #99746S, CST, 
Massachusetts, USA) were used as primary antibodies 
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to detect the expression of MAO-A, TH, VACHT and 
CD56, respectively. Automated digital pathological slice 
scanner, KF-PRO-120 (KONFOONG biotech interna-
tional CO.LTD., Ningbo, China) and NanoZoomer S360 
(Hamamatsu Photonics CO.LTD., Beijing, China), were 
used to scan images of IHC slides, and slides were photo-
graphed by Digital slices view software K-Viewer (KON-
FOONG biotech international CO.LTD., Ningbo, China) 
and NDP-viewer (Hamamatsu Photonics CO.LTD., Bei-
jing, China).

Evaluation of MAO‑A and CD56 expression

TMAs of cohort 3 consisting of two paired spots of tumor 
tissue and peri-tumor tissue from one patient were used 
to investigate the expression of MAO-A. For each spot, 
five represent visions were randomly chosen and the opti-
cal density (OD) and area for each vision were calculated 
by Image-Pro Plus (version 6.0, Media Cybernetics, Inc., 
China). MAO-A staining score was counted as OD/area 
and defined the average score of total ten visions as the 
expression of MAO-A of each patient. Cut off values 
were calculated through X-tile [20]. Cohort 4 was used 
to investigate the expression of CD56 as followed. Five 
representative spots were chosen for each patient and the 
number of CD56 positive cells were counted. The average 
number of positive cells of five spots was considered as 
the CD56 expression level of each patient. The score was 
defined as numbers of CD56 positive cells: (1) 0 or 1: 1 
point; (2) 2 or 3: 2 points; (3) 4 to 10: 3 points; (4) more 
than 10: 4 points.

Statistical and bioinformatic analysis

Statistical analyses were performed with SPSS 25.0 
(Chicago, IL, USA), and GraphPad Prism 8 software (La 
Jolla, CA, USA). Values are presented as median (range) 
or mean ± standard deviation (SD). Unpaired Student’s 
t-test, Fisher’s exact test, Chi-square test and the Wil-
coxon rank-sum test were used to compare differences 
between groups. The Kaplan–Meier method was used to 
construct the survival and recurrence curves. Cox pro-
portional hazards model analysis was used to analyzing 
the correlation between variables and ICC patient prog-
nosis. Statistical tests were two-tailed, and p-value < 0.05 
was considered significant. Differentially expressed gene 
analysis was operated in R (version 4.1.2, R foundation 
for statistical, Vienna, Austria). Codes used are available 
on request. Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were operated on https:// 
www. xiant ao. love/ produ cts/ apply/. Single sample Gene 
Set Enrichment Analysis (ssGSEA) was performed on 
ImmuCellAI [21].

Results

PNI is an unfavorable prognostic factor for patients 
with ICC post‑operation

The MSK cohort (n = 186) and the TMA cohort (n = 309) 
were used to investigate the role of PNI in ICC (Fig. 1a, 
Table  S3). PNI was evaluated by H&E staining and 
further confirmed by IHC of beta-tubulin III in TMA 
cohort (Fig. 1b) and was observed in 30.6% and 20.7% 
of patients in the MSK and TMA cohorts, respectively 
(Fig. 1c. f). The overall survival (OS) of patients with 
PNI was evidently shorter than that of patients without 
PNI (HR = 1.61, p = 0.013; HR = 2.33, p < 0.001, respec-
tively) (Fig. 1d, g). Similarly, the relapse-free survival 
(RFS) of patients with PNI was conspicuously lower than 
that of those without PNI (HR = 1.95, log-rank p < 0.001; 
HR = 1.59, log-rank p = 0.017, respectively) (Fig. 1e, h). 
We also analyzed the relationship between PNI and other 
clinicopathological features and found that PNI positiv-
ity was significantly correlated with high CA19-9 level, 
the large duct type ICC and lymph node invasion in two 
independent cohorts. (Tables 1, S1). Recently, a multi-
center study reported that PNI is a powerful and inde-
pendent predictor of recurrence and survival in ICC [22]. 
Consistently, univariate and multivariate analyses of 
TMA cohort revealed that PNI (HR = 1.781, p = 0.002), 
microvascular invasion (HR = 2.033, p < 0.001), lymph 
node invasion (HR = 1.874, p = 0.038), and CA19-9 
level (HR = 1.673, p = 0.003) are independent risk fac-
tors for OS in ICC patients (Fig. 1i). According to the 
5th WHO classification, the large duct type ICC exhibited 
poorer prognosis than those with the small type, and PNI 
is usually observed in the large duct type ICC. To rule 

Fig. 1  PNI is an unfavorable prognostic factor for patients with ICC 
post-operation. (a) Cohorts involved and study design of this article: 
ZS-ICC cohort (n = 255), cohort 4 and TMA cohort (n=309) are from 
Zhongshan hospital, Shanghai, China; MSK cohort is from a public 
database. (b) Representative images of H&E staining and beta-tubu-
lin III staining of PNI in TMA cohort.(c) Fan chart of the compo-
nents of MSK cohort: PNI positive cases accounted for 30.6% (n=57) 
of MSK cohort. (d) K–M analysis of OS between patients with and 
without PNI in MSK cohort (HR = 1.61, 1.06–2.44, P = 0.013). (e) 
K–M analysis of RFS between patients with and without PNI in MSK 
cohort (HR = 1.95, 1.33–2.86, P < 0.001). (f) Fan chart of the compo-
nents of the TMA cohort: PNI positivity accounted for 20.7% (n = 64) 
of TMA cohort. (g) K–M analysis of OS between patients with and 
without PNI in TMA cohort (HR = 2.33, 1.51–3.59, P < 0.001).(h) 
K–M analysis of RFS between patients with and without PNI in TMA 
cohort (HR = 1.59, 1.02–2.49, P = 0.017). (i) Forest illustration of uni-
variate and multivariate analyses of OS in TMA cohort (HBV: hepa-
titis B virus; ALT: alanine aminotransferase; AFP: alpha fetoprotein; 
CA19-9: carbohydrate antigen199; HR: hazard ratio; CI:confidence 
interval)

◂
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Table 1  Baseline demographics and clinicopathological variables 
among patients of ICC with and without PNI in TMA cohort

HBV hepatitis B virus, ALT alanine aminotransferase, AFP alpha feto-
protein, CA19-9: carbohydrate antigen199;
# Fisher’s exact test; *p < 0.05

PNI p value

Negative Positive

Age (year)
 ≤ 65 173 48 0.489
 > 65 72 16

Sex
 Female 98 20 0.200
 Male 147 44

Hepatolithiasis
 Negative 203 51 0.555
 Positive 42 13

HBV infection
 Negative 44 14 0.475
 Positive 201 50

ALT (U/L)
 ≤ 75 230 57 0.181#

 > 75 15 7
AFP (ng/mL)
 ≤ 20 229 61 0.773#

 > 20 16 3
CA19-9 (U/mL)
 ≤ 37 139 25 0.012*
 > 37 106 39

Tumor size (cm)
 ≤ 5 127 44 0.015*
 > 5 118 20

Tumor number
 Single 188 48 0.771
 Multiple 57 16

Duct type
 Small 172 36 0.034*
 Large 73 28

Lymph node invasion
 Negative 214 49 0.031*
 Positive 31 15

Microvascular invasion
 Negative 196 46 0.160
 Positive 49 18

TNM stage
 I/II 193 38 0.001*
 III 52 26

Tumor differentiation
 Low 33 10 0.675
 Moderate/High 212 54

Adjuvant therapy
 No 59 18 0.506
 Yes 186 46

out the influence of duct type, multivariate analyses was 
performed and confirmed PNI was a negative risk factor 
(HR = 2.391, p < 0.001) independent of the duct type (Fig. 
S1a). Similarly, K-M analyses confirmed patients with 
PNI showed poorer prognosis either in the large duct type 
group (HR = 4.25, P < 0.001) or the small duct type group 
(HR = 1.72, p = 0.015) (Fig. S1b, c).

PNI derived from sympathetic nerves in ICC

Sympathetic nerve system (SNS) or parasympathetic nerve 
system (PNS)-derived nerve fibers have been reported to 
participate in the progress of tumors [23] (Fig. 2a), thereby 
propelling the search for the origin of PNI in ICC. We 
investigated the expression of representative pan-neural, 
SNS, and PNS markers in ZS-ICC cohort at the mRNA 
level. Among the five markers, significant upregulation of 
TH (p = 0.005), a biomarker of SNS [24], was observed 
in patients with PNI from the ZS-ICC cohort compared 
to those in patients without PNI, whereas no difference in 
pan-neural markers such as ubiquitin carboxyl-terminal 
hydrolase isozyme L1 (UCHL1/PGP9.5) [25] (p = 0.292), 
beta-tubulin III (TUBB3) [26] (p = 0.656), synapsin (SYN) 
[27] (p = 0.612), and PNS biomarker vesicular acetylcho-
line transporter (VACHT) [28] (p = 0.266) was detected 
(Fig.  2b, c). Meanwhile, IHC staining consistently 
revealed that PNI exhibited positive staining for TH in 
TMA cohort (Fig. 2d), indicating that PNI originated from 
the SNS. As previously reported, neural transmitters such 
as, norepinephrine (NE) and acetylcholine (ACH) released 
from automatic nerves are transmitted and combined with 
corresponding receptors such as adrenergic receptors 
(ADRs), muscarinic acetylcholine receptors (CHRMs), 
and nicotinic acetylcholine receptors (CHRNs) in tumor 
cells or normal cells [23] (Fig. 2a). To detect the recep-
tors involved in PNI, we analyzed the mRNA expression 
levels of ADRs in the ZS-ICC cohort. Surprisingly, sig-
nificant upregulation of ADRB1 (p = 0.002) and ADRB3 
(p = 0.029) expression and downregulation of ADRA2C 
(p = 0.006) expression were detected in patients with PNI, 
while no difference was found in other ADRs. (Fig. 2e). 
Furthermore, K–M analysis showed that ADRA2C 
(HR = 0.37, p < 0.001) played a protective role in the OS of 
patients with ICC after surgery, while ADRB1 (HR = 1.81, 
p = 0005) showed an adverse effect (Fig. S2a–c). In addi-
tion, as the main hydrolase of NE, MAO-A [29, 30] 
secreted from tumor cells was highly enriched in patients 
without PNI in TMA Cohort (p = 0.005) (Figs. 2f, g; S2d). 
Patients with high MAO-A level demonstrated improved 
OS and RFS (HR = 0.61, HR = 0.72, respectively) com-
pared to those with low level of MAO-A (Fig. 2h, i).
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exhibition of the interactions between automatic nerves and tumor. 
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ICC patients with PNI were characterized by immune 
suppressive metastasis niche.

RNA-seq data from the ZS-ICC cohort showed a dis-
tinct gene expression pattern in patients with PNI (Fig. 
S3a, b). GO and KEGG analyses showed that upregu-
lated genes in patients with PNI were majorly enriched 
in immune-associated pathways, such as neutrophil-
mediated immunity, neutrophil degranulation, and leuko-
cyte migration, while genes highly expressed in patients 
without PNI mostly focused on the regulation of neu-
ron project development (Fig. S3c). To further elucidate 
the immune microenvironment in PNI-positive patients, 
ssGSEA was performed. Significantly decreased infil-
tration of NK cells (p < 0.001) and γδT cells (p = 0.001) 
and increased infiltration of B cells (p < 0.001) and neu-
trophils (p = 0.002) were found in patients with PNI in 
ZS-ICC cohort (Fig. 3a). Among these immune cells, the 
levels of NK cells and γδ T cells were positively cor-
related with the OS of ICC patients, whereas the lev-
els of neutrophils and B cells were adversely correlated 
with OS (Fig. 3b). We further investigated the influence 
of these immune cells on the prognosis of patients with 
and without PNI. The results showed that patients with 
high level of NK cells had longer OS in either the PNI-
positive group (HR = 0.29, p = 0.001) or the PNI-negative 
group (HR = 0.47, p = 0.006) (Fig. 3c). However, neutro-
phil levels only influenced the OS of patients with PNI 
(HR = 1.67, p = 0.1) (Fig. 3d). No statistical differences 
in B cells and γδT cells were found between patients 
with PNI (HR = 1.28, p = 0.535; HR = 0.53, p = 0.094) 
and those without PNI (HR = 1.43, p = 0.134; HR = 1.10, 
p = 0.693) (Fig. S3d, e). Similarly, decreased infiltration 
of NK cells (p = 0.017) was found in patients with PNI in 
cohort 4 (n = 19) (Fig. 3e, f), and patients with less infil-
tration of NK cells showed a worse prognosis (HR = 0.21; 
p = 0.027) (Fig. 3g). In addition, we also analyzed the 
expression of immune checkpoint molecules in the ZS-
ICC cohort and found that the mRNA expression of 
PD-L1/CD274 (p = 0.015), CD80 (p = 0.005), and CD86 
(p = 0.045) was distinctly elevated in patients with PNI 
(Fig. 3h). These data showed that ICC patients with PNI 
were accompanied with immune suppressive metastasis 
prone niche.

ICC patients with PNI exhibited higher frequency 
of KRAS mutations.

By comparing the genomic data of the MSK and ZS-ICC 
cohorts, a high alteration frequency of KRAS (p = 0.003; 
p = 0.003 respectively) and RAD51C (p = 0.028, p = 0.02 
respectively) was observed in patients with PNI in both 
cohorts (Fig. 4a). K–M analysis revealed that patients with 

KRAS mutations also exhibited poor prognosis (HR = 3.39, 
p < 0.001; HR = 2.36, p < 0.001, respectively) (Fig. 4b, c), 
consistent with our previous report [31].

ICC patients with PNI well responded to adjuvant 
therapy

We divided the TMA cohort into six subgroups according 
to different postoperative therapeutic strategies (Table 2). 
K–M analysis was used to compare the OS of patients with 
or without adjuvant therapy. No statistical difference in OS 
was observed between the patients who received adjuvant 
therapy and those who did not (Fig. 5a). We further investi-
gated the role of adjuvant therapy in patients with PNI and 
found that these patients gained significant OS benefits from 
adjuvant chemotherapy, such as capecitabine (p = 0.037), 
GEMOX (p = 0.005), and TEGIO (p = 0.008), while patients 
without PNI did not (p > 0.05) (Fig. 5b, c).

Discussion

Our study revealed that PNI could be considered an unfa-
vorable prognostic factor for patients with ICC post-surgery, 
and an indicator of well response to adjuvant therapy. Fur-
thermore, our results showed that PNI in patients with ICC 
was mainly from SNS. Moreover, our study is the first to 
decipher the immune suppressive metastasis prone niche 
of ICC patients with PNI, which was characterized by 
decreased infiltration of NK cells, increased infiltration of 
neutrophils and elevated expression of immune check points' 
ligands. In addition, PNI positive ICC patients are accompa-
nied with higher frequency of KRAS mutation. These data 
indicate that ICC with PNI exhibits special microenviron-
ment, potentially causing the invasion and metastasis of ICC.

PNI is considered as a mechanistic feature associated to 
tumor metastasis and a marker of poor prognosis in several 
cancers [7–12]. In the present study, our results provide suf-
ficient evidence to support the notion that PNI is a reliable 
marker for predicting the prognosis of patients with ICC, 
based on two independent cohorts. Recent studies have dem-
onstrated that neuromodulation plays an important role in 
several pathological processes, including tumor metastasis 
and remodeling of the immune microenvironment [3, 6, 14, 
32]. Nerve domination largely depends on the context of the 
type of tumor. For example, PNI reprograms the immune 
microenvironment through cholinergic signaling in PDAC 
[6], while PNI in head and neck cancer is associated with 
the adrenergic nerve [33, 34]. In the present study, PNI in 
patients with ICC exhibited positive staining for TH, indi-
cating that it originated from the SNS. ADRs have been 
widely reported to be involved in cancers recently [35]. 
As the main neural transmitter released from SNS, NE can 
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sive metastasis niche. (a) ssGSEA analysis of infiltrating immune 
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ysis of OS among patients with different immune cell abundance 
score in ZS-ICC cohort. (c) K–M analysis of OS among PNI-positive 
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bind with ADRs on the surface of tumor cells, immune 
cells, and other stromal cells, and exert biological action 
[23]. In our study, the expression of ADRA2C, ADRB1, 
and ADRB3 in patients with PNI evidently differed from 
that in patients without PNI, and patients with increased 
ADRA2C and decreased ADRB1 showed better progno-
sis. ADRB1 expressed on tumor cells has been identified 
as a biomarker for breast cancer [36]. ADRA2C, mainly 
expressed on the pre-synapse neurons, is thought to act as 
an inhibitory modulator of the sympathetic nervous system 
[37]. The overexpression of ADRB1 and downregulation 
of ADRA2C probably hyperactivate SNS signaling in ICC 
patients with PNI, resulting in PNI-mediated poor prognosis. 
Additionally, as the main hydrolase of NE [29], MAO-A was 
enriched in PNI-negative patients, indicating that it inhib-
ited SNS in PNI. A recent study reported that MAO-A sup-
pressed HCC metastasis by inhibiting adrenergic signaling 

[38]. Interestingly, MAO-A promotes prostate cancer cell 
PNI through SEMA3C/PlexinA2/NRP1-cMET signaling 
[39]. This contradictory conclusion largely resulted from 
the fact that SNS was not the main constituent of PNI in 
prostate cancer [40]. Altogether, NE from SNS might acti-
vate multiple ADRs in ICC patients with PNI, and cancer 
cell-derived MAO-A might inactivate NE from SNS, syner-
gistically involved in PNI-mediated tumor progression.

The association between SNS and the immune system has 
been documented over the last several decades [41]. Recent 
studies have shown complicated but important interactions 
between immune cells and neurons in tumor tissues, called 
‘neuro-immune unit’ [15]. In this study, patients with PNI 
showed an immune suppressive metastasis prone niche 
with increased infiltration of B cells and neutrophils and 
decreased infiltration of NK cells and γδ T cells. The pro-
tective role of NK cells was confirmed in both PNI-negative 
and PNI-positive groups. In mammary adenocarcinoma, 
acute stress could activate SNS, resulting in the suppres-
sion of NK cell activity and tumor metastasis [42]. SNS also 
induces the suppression of NK cell cytotoxicity in rats [43]. 
Thus, we hypothesized that the involvement of SNS in ICC 
with PNI inhibits the infiltration of NK cells, partly contrib-
uting to the poor prognosis of patients. In cancers, tumor-
associated neutrophils (TANs) have emerged as an important 
component of the tumor microenvironment, which can not 
only be a part of tumor-promoting inflammation by driving 
angiogenesis, extracellular matrix remodeling, metastasis, 
and immunosuppression, but can also mediate antitumor 
responses by directly killing tumor cells and participating 
in cellular networks that mediate antitumor resistance [44]. 
Zhou. et al. reported that TANs and macrophage interactions 
contribute to ICC progression by activating STAT3 [45]. 
Consistently, we observed an adverse relationship between 
neutrophils and the prognosis of ICC patients with PNI. 
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Fig. 4  ICC patients with PNI exhibited higher frequency of KRAS 
mutations. (a) Bar plot of different mutation frequency genes in MSK 
and ZS-ICC cohorts (ns: P > 0.05; *: P < 0.05; **: P < 0.01). Chi-
square test was used. (b) K–M analysis of OS between patients with 

and without KRAS mutations in MSK cohort (HR = 3.39, P < 0.001). 
(c) K–M analysis of OS between patients with and without KRAS 
mutations in ZS-ICC cohort (HR = 2.36, P < 0.001)

Table 2  Summary of adjuvant therapies of TMA cohort

GEMOX gemcitabine and oxaliplatin, TEGIO tegafur, gimeracil, 
oteracil and porassium capsules, TACE transcatheter arterial chem-
oembolization
a Treatment regimens changed in the follow-up records

PNI Total

Negative Positive

GEMOX 30 12 42
Capecitabine 101 19 120
TEGIO 18 5 23
Multiplea 13 5 18
TACE 24 5 29
Without adjuvant 

therapy
59 18 77

Total 245 64 309
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Fig. 5  ICC patients with PNI well responded to adjuvant therapy. 
(a) K–M analysis of OS between patients with and without different 
adjuvant therapies in TMA cohort (log-rank P. adj ＞ 0.05). (b) K–M 
analysis of OS between PNI-negative patients with different adjuvant 
therapies and without adjuvant therapy in TMA cohort (log-rank P. 
adj ＞ 0.05). (c) K–M analysis of OS between PNI-positive patients 
with different adjuvant therapies and without adjuvant therapy in the 
TMA cohort (TEGIO vs. without adjuvant therapy: P. adj = 0.008; 
GEMOX vs. without adjuvant therapy: P. adj = 0.005; capecit-

abine vs. without adjuvant therapy: P. adj = 0.037; ns: P > 0.05; *: 
P < 0.05; **: P < 0.01). (d) K–M analysis of RFS between patients 
with and without different adjuvant therapies in TMA cohort (log-
rank P. adj ＞ 0.05). (e) K–M analysis of RFS between PNI-negative 
patients with different adjuvant therapies and without adjuvant ther-
apy in TMA cohort (log-rank P. adj ＞ 0.05). (f) K–M analysis of RFS 
between PNI-positive patients with different adjuvant therapies and 
without adjuvant therapy in the TMA cohrt (log-rank P. adj＞0.05)

Interestingly, we did not detect any influence of neutrophils 
on the survival of patients without PNI. As reported previ-
ously, local SNS signaling promotes neutrophil infiltration 
during acute inflammation [46]. A recent study also demon-
strated that stress hormones such as NE and adrenaline cause 
rapid release of proinflammatory S100A8/A9 proteins by 
neutrophils, leading to early relapse in lung cancer and ovar-
ian cancer post operation [47]. In this study, we observed 
an increased infiltration of neutrophils in ICC patients with 
PNI. These indicate an interaction between PNI and neutro-
phils. Elevated expression of PD-L1, CD80, and CD86 was 
observed in patients with PNI. Our previous study showed 
that PD-L1 was a predictive marker for immunotherapy in 
ICC [48], implying that ICC patients with PNI might benefit 
more from anti-PD1/PD-L1 therapy. Meanwhile, the interac-
tion of CTLA-4 with CD80 or CD86 could inhibit human 
T-cell activation [49], indicating that the inhibition of CD80 
and CD86 in PNI-positive patients might activate T cells 
and restore antitumor immune reactions. Surprisingly, tar-
geting the CD80/CD86 costimulatory pathway also directs 
microglia towards a repair phenotype and promotes axonal 
outgrowth [50]. In conclusion, neurons can release neural 
transmitters and other cytokines to bind the receptors on 
immune cells and tumor cells, regulating their functions, 
while immune cells and tumor cells could release several 
neurotrophic factors to promote the axons extension. The 

interaction among neurons, immune cells and malignancies 
synthetically cause the occurrence of PNI and the immune 
suppressive metastasis prone niche. Thus, further research 
is needed to define whether PNI or immune regulation is the 
cause or result in such a complex microenvironment.

Consistent with a retrospective study of 86 ICC patients 
[51], we found that the alteration frequency of KRAS in the 
PNI-positive group was higher than that in the PNI-negative 
group, partly contributing to the poor prognosis of patients 
with PNI. Li. et al. also reported that KRAS mutations are 
associated with PNI in colon cancer [52]. KRAS, a Kirsten 
ras oncogene homolog from the mammalian ras gene fam-
ily, encodes a protein that is a member of the small GTPase 
superfamily [53]. Ras proteins bind GDP/GTP and possess 
intrinsic GTPase activity, playing an important role in GPCR 
(G-protein combined receptors) mediated pathways like adr-
energic signaling [53]. We hypothesized that the mutation 
of KRAS hyperactive the downstream pathways of ADRs, 
contributing to the development of PNI. Additionally, syn-
decan-2 (SDC-2) promotes perineural invasion and coop-
erates with K-ras to induce an invasive pancreatic cancer 
cell phenotype [54]. What’s more, the M2 splice isoform of 
PK (PKM2) was found to regulate neural invasion of hilar 
cholangiocarcinoma (HC) via regulation of SDC2 [55]. 
These indicate SDC-2 may be an intermediator between 
KRAS mutation and PNI in ICC. This may provide valuable 
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information for the curation of treatment strategies of ICC 
patients with PNI. However, additional evidence is needed 
to illustrate direct interactions between KRAS mutations 
and PNI.

Clinical trials have demonstrated that adjuvant chemo-
therapy, including TEGIO and capecitabine, is beneficial 
for patients with biliary tract cancers, including ICC [56]. 
In this study, we retrospectively observed that patients with 
PNI gained OS benefits from adjuvant chemotherapy, while 
no improvement in OS was found in PNI-negative patients. 
The same phenomenon has been reported in colon [57], 
rectal [58], prostate [59], and oral cancers [60]. This result 
suggests that PNI could be a credible predictor for adjuvant 
therapy in ICC. Regrettably, the mechanism underlying the 
relationship between PNI and adjuvant therapy remains 
unclear.

Conclusion

Our study deciphered that patients with PNI showed a poor 
prognosis after surgery but a good response to adjuvant 
chemotherapy. In addition, we illustrated that ICC patients 
with PNI were accompanied with higher frequency of KRAS 
mutation and an immune suppressive metastasis prone niche 
characterized by decreased NK cell, increased neutrophil 
and elevated expression of immune check points’ ligands. 
However, further investigations are needed to explore the 
molecular mechanisms of PNI in ICC.
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