## LETTER TO THE EDITOR



## Liver injury in remdesivir-treated COVID-19 patients

Rosa Zampino<sup>1,2</sup> · Ferruccio Mele<sup>1</sup> · Letizia Lucia Florio<sup>1</sup> · Lorenzo Bertolino<sup>1</sup> · Roberto Andini<sup>2</sup> · Maria Galdo<sup>3</sup> · Rosanna De Rosa<sup>4</sup> · Antonio Corcione<sup>4</sup> · Emanuele Durante-Mangoni<sup>1,2</sup>

Received: 27 May 2020 / Accepted: 16 July 2020 / Published online: 28 July 2020 © Asian Pacific Association for the Study of the Liver 2020

Novel Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection results predominantly in pulmonary involvement (Coronavirus disease 2019, COVID-19), but a direct, SARS-CoV-2-induced liver damage has also been described [1, 2]. Thus, it is important to monitor liver function and evaluate hepatic safety of drugs administered to COVID-19 patients. Remdesivir (RDV), a nucleotide analogue RNA polymerase inhibitor, originally developed and tested for Ebola virus disease, showed in vitro efficacy against SARS-CoV-2 [3], and experience on its efficacy and safety for COVID-19 is accumulating [4, 5]. However, hepatic safety of RDV in COVID-19 has not been the focus of detailed investigation. Here, we describe patterns of liver toxicity in 5 COVID-19 patients treated with RDV in the intensive care unit (ICU) of Monaldi Hospital, Naples, Italy, during March and April 2020. Overall, our Hospital cared for 32 critically ill COVID-19 patients.

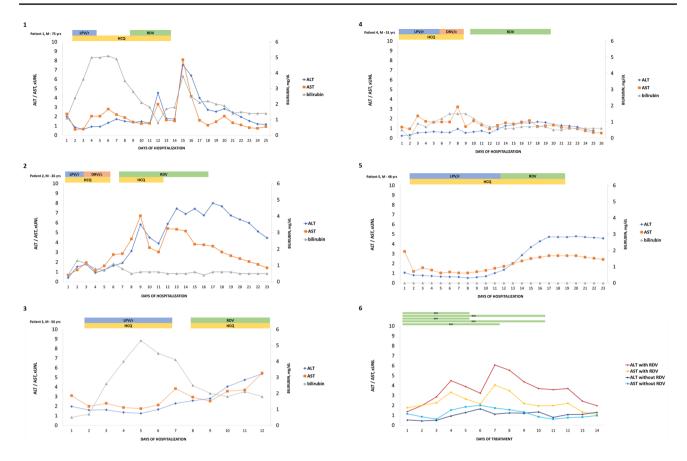
Treatment was given in a compassionate use program (CPU) approved by our Ethics Committee. CPU was limited to the first 5 patients of our center who fulfilled all eligibility criteria (invasive mechanical ventilation, no multiorgan failure, no vasopressor requirement, ALT levels < 5 xULN, creatinine clearance > 30 mL/min). RDV was administered intravenously as a 200 mg loading dose, followed by 100 mg daily over 1 h for up to 9 days. According to the early recommendations of the Italian Society for Infectious Diseases, Lombardy section, all patients had been previously treated

with lopinavir/ritonavir (LPV/r, 400/100 mg twice daily po). Before and during RDV treatment, 4 of 5 patients also received hydroxychloroquine (HCQ, 200 mg twice daily po). While on RDV, no patient received acetaminophen, patient 2 and 4 received ceftazidime—avibactam plus daptomycin and patient 3 meropenem and linezolid. None of the 5 treated patients had a previous history of liver disease, visceral obesity, viral hepatitis, or prior hepatotoxic medication or alcohol intake. Liver ultrasound did not show signs of advanced liver disease. Patient 1 and 2 had a history of hypertension and asthma, respectively, but were not receiving any relevant therapy in the ICU.

Figure 1 describes the dynamics of AST/ALT and bilirubin throughout the hospital stay, for each patient (Panels 1-5). In Panel 6, we report a comparison of median ALT and AST levels between RDV-treated patients and 5 COVID-19 patients who were treated in our Hospital ICU with the same schedule of LPV/r and HCQ, but without RDV. As shown in Panels 1-5, bilirubin increase occurred in 4 of 5 index patients on LPV/r. In contrast, the switch to RDV translated into a fast reduction of bilirubin and a significant increase in AST/ALT by day 3 of therapy in 4 of 5 patients. The single patient who did not receive HCQ with RDV (patient 4) did not show increase of ALT/AST levels. In no cases, RDV was discontinued because of liver injury. In patient 1, RDV was withdrawn at day 5 for a torsade de pointes requiring cardiac resuscitation, whereas patient 3 died on day 5 of RDV therapy. Final outcome was positive in 4/5 patients.

Our observation supports previous findings obtained in healthy volunteers (Gilead Sciences, data on file) and COVID-19 patients treated with RDV [4, 5], suggesting this antiviral may cause hepatocellular injury. In our patients, this adverse effect neither progressed to severe liver damage nor induced liver failure, although none had a prior chronic liver disease. Although SARS-CoV-2 infection can cause aminotransferase elevation per se, 4 of our 5 patients had normal or slightly elevated AST/ALT levels at RDV treatment start, suggesting a direct role of RDV in hepatocellular toxicity. Despite the overall low number of patients




Emanuele Durante-Mangoni emanuele.durante@unicampania.it

Internal Medicine, University of Campania 'L. Vanvitelli' and Units of, Napoli, Italy

Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Napoli, Italy

<sup>&</sup>lt;sup>3</sup> Pharmacy, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy

Intensive Care, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy



**Fig. 1** Dynamics of ALT, AST and bilirubin in the 5 patients treated with Remdesivir (Panels 1–5). Aminotransferase values are shown as times the upper normal limit. Antivirals given are shown on top of each graph. Panel 6 shows a comparison of median ALT and AST levels between the 5 RDV-treated patients and 5 additional COVID-

19 patients who were treated in our Hospital ICU with the same schedule of LPV/r and HCQ but without RDV. *LPV/r* lopinavir/ritonavir, *DRV/c* darunavir/cobicistat, *HCQ* hydroxychloroquine, *RDV* remdesivir, *UNL* upper normal limit

treated, we observed a clear trend of bilirubin elevation with LPV/r and ALT/AST elevation with RDV. Our observation suggests RDV can be used with close monitoring of liver function tests and with caution in subjects with prior liver disease.

**Acknowledgements** Authors thank Gilead Sciences for providing Remdesivir for compassionate use.

**Author contributions** RZ, AC, EDM worked on concept of the study; FM, LLF, LB, RA, MG worked on data collection and data interpretation; RDR, RZ and EDM drafted the manuscript; all authors critically revised the manuscript.

**Funding** Remdesivir was provided by Gilead Sciences in a compassionate use program approved by EMA and our Institution Ethics Committee. No specific funding was received.

## Compliance with ethical standards

Conflicts of interest The authors declared that they have no conflict of interest.

## References

- Zhao D, Yao F, Wang L, Zheng L, Gao Y, Ye J, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa247(pii:ciaa247).
- Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020. https://doi.org/10.1111/liv.14435.
- Chan KW, Wong VT, Tang SCW. COVID-19: an update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-western medicine for the



- management of 2019 novel coronavirus disease. Am J Chin Med. 2020;13:1–26. https://doi.org/10.1142/S0192415X20500378.
- Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe covid-19. N Engl J Med. 2020. https://doi.org/10.1056/NEJMo a2007016.
- 5. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind,

placebo-controlled, multicentre trial. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)31022-9.

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

