
Vol.:(0123456789)1 3

Evolutionary Intelligence
https://doi.org/10.1007/s12065-023-00893-5

RESEARCH PAPER

On the computation of Delaunay triangulations via genetic algorithms

Paraskevas Dimitriou1 · Vasileios Karyotis1

Received: 18 January 2023 / Revised: 17 November 2023 / Accepted: 25 November 2023
© The Author(s) 2023

Abstract
In this work, we introduce a new approach for computing Delaunay triangulations. Delaunay triangulations have numer-
ous applications in geolocation, communications and other ICT systems or practical applications. Having available various
types of approaches for computing such structures is rather desired from an implementation and computational point of
view. We adopt Genetic Algorithms for computing Delaunay triangulations and present the design and evaluation of our
novel approach. We consider a set of points in the plane as vertices and connect them with edges, creating the point graph.
We have developed in C++ an application framework based on genetic algorithms, called Delaunay_Genetic, which
produces the Delaunay triangulation structure of a given set of points in the plane. Delaunay_Genetic considers a novel
graph-based chromosome representation of desired solutions, creates an initial population of individuals (chromosomes), an
initial generation, and produces from the original population (generation) new generations of individuals in each repetition
of the genetic process of Reproduction. Each new generation emerges more robust than the previous one. Our evaluations
have revealed that the Delaunay triangulation yielded by Delaunay_Genetic, achieves an accuracy of 98–100% of the
optimal Delaunay triangulation, while maintaining good convergence speed. Despite its limitations in computational time and
space, the proposed novel approach exhibits several complementary benefits to computational geometry based approaches,
such as allowing the insertion of new points in the triangulation dynamically, leading to seamless adaptation to new condi-
tions, parallelization of the computational process and tolerance to noise regarding the coordinates of the points. Therefore,
this work provides a useful alternative approach for computing Delaunay triangulations.

Keywords Genetic algorithms · Delaunay triangulation · Evolutionary computing · Computational geometry · Performance
evaluation

1 Introduction

Various ICT applications employ Delaunay triangulation
(DT) in their computations as part of their broader opera-
tions. Relevant examples span many different and diverse
fields of interest, such as Geographical Information Systems
(G.I.S.) [1], data visualization and interpolation, optimiza-
tion, pattern recognition applications [2], mobile ad hoc net-
works [3], etc. In general, a triangulation is a subdivision of
a planar object into triangles. Delaunay triangulation aims
to maximize the minimum of all the angles of the triangles

formed in a Triangulation. We consider the typical case of
given points on a plane, which may correspond to locations,
data, people, etc. Therefore, in such case, DT refers to maxi-
mizing the minimum of all angles formed by the given dis-
crete points on a plane.

Delaunay Triangulation Definition, [4]: Suppose T1 is
a Triangulation of a set of points P belonging to the same
plane, from which m triangles arise. This means that there
will be 3m interior angles of triangles in total, denoted as
a1, a2, ..., a3m . Assume these angles are sorted in ascend-
ing order of their size, i.e., ai ≤ aj , where i < j . One may
define a(T1) = [a1, a2, ..., a3m]

T the vector containing these
angles. Let T2 be another Triangulation of the same set of
points P, and let a(T2) = [a�

1
, a�

2
, ..., a�

3m
]T be its vector angle.

T1 angle vector will be greater than T2 angle vector if a(T1) is
lexicographically greater than a(T2) , i.e., if there is an index
1 ≤ i ≤ 3m such that:

 * Vasileios Karyotis
 karyotis@ionio.gr

 Paraskevas Dimitriou
 c20dimi@ionio.gr

1 Department of Informatics, Ionian University, Tsirigoti Sq.
7, 49100 Corfu, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-023-00893-5&domain=pdf

 Evolutionary Intelligence

1 3

In this way we define that a(T1) > a(T2) . According to this, a
triangulation T is called optimal Triangulation or Delaunay
Triangulation, if a(T) ≥ a(T �) for all T ′ triangulations of P
point set. ◻

From the above definition of optimal triangulation, one
may conclude that the optimal triangulations will include
triangles with the largest smallest angles relative to a non-
optimal triangulations. Thus, if the angles of two triangula-
tions are sorted in ascending order, the one that is optimal
will always be lexicographically larger than the non-optimal.

Delaunay triangulation is popular among many different
ICT applications because the triangles it produces are of
very high quality. Every triangle in Delaunay triangulation
is as close to the equilateral triangle as possible and extreme
triangles (triangles with very small angles-long sides) typi-
cally need to be avoided in different applications. For exam-
ple, when creating contour curves in maps, it is typically
better to avoid equilateral triangles [4]. Similarly, in wire-
less ad hoc networks, a transmitter strives to avoid forming
extreme triangles with its neighboring nodes, since the latter
lead to long distances between the transmitter-receiver pair,
and thus increased power consumption and interference [3].

Due to the widespread use of Delaunay triangulation
in many applications, several algorithms have been devel-
oped attempting to triangulate large sets of points as effi-
ciently as possible. There are various relevant families of
algorithms, according to the employed operation from each
algorithm, such as Local Improvement Algorithms, Incre-
mental Instruction or Construction, Sweep-line approach,
Incremental Insertion Algorithms, Incremental Search or
Gift Wrapping Algorithms, Divide and Conquer Algorithms,
and Higher Dimensional Embedding Algorithms. We pro-
vide a brief overview of each family in the following section.

It is possible to increase the efficiency of each algorithm
by using special data structures, e.g., temporary storage, etc.
Algorithmic complexity varies in terms of speed and storage
and usually it is between O(n2) and O(nlogn), depending on
the family the algorithm belongs to and its implementation.
In exceptional cases a complexity of O(n) has been achieved.

Our work takes on a different approach. We introduce the
use of evolutionary computing, and more specifically genetic
programming for computing Delaunay triangulations. We
present the design and evaluation of this novel approach,
which for the first time it employes Genetic Algorithms
for the solution of DT. We consider a set of points in the
plane connected with edges creating the point graph. We
have developed an application framework based on Genetic
Algorithms, called Delaunay_Genetic, in C++, which
produces the Delaunay Triangulation structure of a given set
of points in the plane. Delaunay_Genetic considers a

aj = a�
j
for every j < i, and ai > a�

i
. novel chromosome representation of desired solutions, cre-

ates an initial population of individuals (chromosomes), an
initial generation, and reproduces from the original popu-
lation (generation) new generations of individuals in each
repetition of the genetic process of Reproduction. Each
new generation is more robust than the previous one. Our
evaluations have revealed that the Delaunay triangulation
yielded by Delaunay_Genetic, achieves an accuracy
of 98-100% of the optimal Delaunay Triangulation, while
maintaining good convergence speed. The proposed novel
approach exhibits several complementary benefits, such as
allowing the insertion of new points in the triangulation
dynamically, thus adapting to new conditions, paralleliza-
tion of the computation capability and tolerance to noise
regarding the coordinates of the points. At the same time it
exhibits lower convergence time and higher memory require-
ments than the state-of-the-art computational geometry
based approaches. Therefore, one may consider the proposed
approach as a useful alternative for computing Delaunay Tri-
angulations in scenarios where the traditional computational
geometry algorithms cannot perform seamlessly.

The rest of this paper is organized as follows. In Sect. 2,
we present relevant works and distinguish our contribution.
Section 3 describes the considered model and develops the
genetic algorithm approach, while Sect. 4 presents the devel-
oped algorithm. Section 5 provides evaluation results, and
finally, Sect. 6 concludes the paper.

2 Related work

In this section, we present the relevant state-of-the-art and
distinguish our contribution. We first review approaches
related to Delaunay triangulations, and then review
approaches related to genetic algorithms.

2.1 Computing delaunay triangulations

Local Improvement Algorithms: These algorithms [6, 7],
are greedy and are mainly used in two-dimensional spaces.
First they classify the set of points with respect to an axis
and then calculate by some method the resulting triangle
(e.g., the sweep line method), and then add a new point from
the remaining ones. After each point entry, the algorithm
connects it with the rest in an evolving convex hull. The
initial Triangulation is then optimized to Delaunay Trian-
gulation as follows: flip if necessary the diagonal of the
convex tetrahedron formed by the addition of the new point
(flip edge method) so that the criteria of either the empty
outline circle or the maximization of the smallest angle are
met (max-min angle). All other edges are added to a queue
to check them in turn.

Evolutionary Intelligence

1 3

The success of the local improvement algorithm is guar-
anteed and leads to Delaunay Triangulation. However, in
3D space it does not always succeed because the flip edge
method does not work effectively. The complexity of this
type of algorithm is Ω(n2) , since it is necessary several times
after an edge reversal to check backwards and the neighbor-
ing curved quadrilaterals if they contain right common edges
or they also need reversal.

Incremental Instruction/Construction: Algorithms of
this type [7–14], start by connecting two adjacent points
from the set of P points, thus creating the first edge. Then
they find the circumscribed circles with the smallest radius
to add new points from the given set to the already exist-
ing Triangulation. These circles refer to the edges of the
convex hull formed in each Triangulation. The convex hull
is constantly increasing in size until the points of the set
that do not participate in the Triangulation are exhausted.
Such algorithms need to know in advance all the points of
the given set in order to be able to select each time the new
points that will participate in the Triangulation. Usually for
greater speed it is selected from the beginning to classify the
set of points, in relation to an axis, or to insert them in a suit-
able structure (e.g., sparse arrays). These algorithms (with
proper preparation of the given set of points) have complex-
ity usually O(n logn), which however increases when the
distribution of points is random, and can reach in the worst
case O(n2).

Sweep Line Method This method is used in several
incremental construction algorithms [7–9], and guarantees
a complexity of O(n logn) in the worst case. It is commonly
used in two-dimensional spaces and uses the Delaunay cir-
cumscribed circle criterion. According to the Sweep line
method, we first classify the set of points with respect to a
component of the coordinates of the points. Then we define a
horizontal line, which divides the plane into two parts, above
and below the line. In the general step of the algorithm,
below the line (or above if one starts scrolling from top) are
the points of the set that are already triangulated and above
the line the non-triangulated ones. The horizontal line moves
each step upwards if:

• it meets the vertex of a circumscribed circle and adds the
new triangle formed in the Triangulation as legal.

• it meets within a circumscribed circle of a triangle a new
point, then it produces new circumscribed circles for each
side of the triangle except its external side.

Incremental Insertion Algorithms: Algorithms of this type
[14] are quite similar to Incremental Instruction algorithms
in that they also add new points to an existing Triangulation.
However, there are two important differences. First, the new
points that are added are within the existing Triangulation.

Secondly, the order in which the new points will be added is
not important, which does not require any special distribu-
tion of points. The Triangulation is constructed so that all
points of the set are inside a large triangle (the tetrahedron
for three-dimensional space), so only the width of the space
of the points is needed as input.

The most typical algorithm of this category is the Bow-
yer-Watson algorithm. According to it, the algorithm cre-
ates a a super triangle, which inscribes all the points of the
set P that we take as input. A point of P to this super triangle
is added each time and all edges for which the circles of the
points that make them up contain the new point (that is, we
use the Delaunay criterion) are deleted. The convex polygon
created by the erasure of the edges is triangulated relative to
the new point. By deleting the edges and re-triangulating,
one always manages to have optimal Triangulation after each
insertion of a new point. The complexity of the algorithm
depends on the distribution of points it takes as input. If
point distribution is normal or if the points it receives as
input are sorted by an axis, then there is no need to make
many Triangulations and asymptotically the execution time
becomes O(n logn). However, in the case of random point
distribution, this time in the worst case can become O(n2).

Incremental Search or Gift Wrapping Algorithms:
Algorithms of this kind [15] are usually applied in three-
dimensional spaces, but are not widely used due to their
high complexity. The algorithm starts by selecting a trian-
gle serving as the initial base (seed), which has two sides
incomplete. An unfinished face is one that is not yet part of
a tetrahedron consisting of Delaunay triangles (constrained
Delaunay tetrahedron). For a face to be complete it must
either be a boundary face of the convex hull to be formed, or
a new tetrahedron containing it must have been formed. This
algorithm uses a suitable structure, for instance a hash table,
in which the incomplete faces, initially the two sides of the
first triangle, are stored. The algorithm steps are as follows:

1) Randomly select from the abstract structure an incom-
plete face let f and find a vertex (point) � that completes
f.

2) If there is no such vertex then f is the boundary (outer)
face of the convex hull that has been created.

3) If f is not a boundary face and has no special symbolism
that it is indeed a boundary face, then take the vertex �
and form a new tetrahedron with this face.

4) Check the faces of the new tetrahedron formed outside
of f if they already exist in the abstract structure.

5) Remove those that already exist in the abstract structure
from them because they are now complete, otherwise
add each new aspect to the abstract structure.

6) If there are no faces in the structure then end.

 Evolutionary Intelligence

1 3

The complexity of the algorithm is high because each
step requires O(n

�
nf) time. Therefore, the complexity is

O(n
�
nf ns) , where s is the number of points. The complex-

ity can be improved by using the Sweep line algorithm for
better results.

Divide and Conquer Algorithms: Algorithms of this
type [16–18] are optimal in two-dimensional spaces and
have complexity O(n logn) in the average and in the worst
case. In the beginning, the set of points P is divided ret-
roactively into subsets until each subset has a few points
and its Triangulation takes time O(1). Then begins the
phase of merging the triangulated subsets from level to
level until the final Triangulation occurs. The phase with
the highest cost is that of merging, because that is where
the points of each sub-problem are initially triangulated,
but also the correction of the existing Triangulations, a
correction which in the worst case can be spread to all
existing triangles. The implementation of these algorithms
is quite difficult due to the merging phase and becomes
even more difficult when the dimension of the point space
is greater than 2, which also increases the complexity
(for dimension 3 it is O(n3)). However, due to the nature
of Divide and Conquer algorithms they can be used and
adapted relatively easily to parallel processing programs
[18], which makes them attractive. In case they are used in
parallel processing programs, some knowledge of the set
of points they receive as input is usually needed in order
for the division and consequently the paralleling of the
sub-problems to be as balanced as possible.

Higher Dimensional Embedding Algorithms: Algo-
rithms in this category [19] project the points of a space
Ed into a space Ed+1 thus creating a convex case. From the
faces of the triangles that constitute the convex case that has
been formed and their projection in space Ed , the Delaunay
Triangulation emerges. The complexity of this type of algo-
rithm is usually O(n logn) in the average case and O(n2) in
the worst case.

2.2 Genetic algorithms

Genetic Algorithms have been used as a tool in several prob-
lems of Computational Geometry [4]. The high complexity
that characterizes many of the problems of Computational
Geometry, especially when the volume of data to be calcu-
lated is large enough, has led in many cases to Genetic Algo-
rithms. This is due to their random nature, as an algorithmic
method of problem solving, as well as the low complexity of
implementation that they have exhibit.

Below we present some research works solving problems
of Computational Geometry using Genetic Algorithms. In
these works, we can see that the use of Voronoi diagrams
as well as the solution of its dual problem, Delaunay

Triangulation, can be used to solve many problems of Com-
putational Geometry.

2.2.1 An algorithm for constrained coverage problem

The work in [21] tries to find an efficient solution to solve
problems related to sensor networks (or antennas for wire-
less communication) and in particular locations where sen-
sors must be installed in order to have the best possible
network coverage. The problem consists of a given set of
points in a space as well as a radius, namely the range of the
sensors. The objective is to find the least possible number
of points to place the sensors in order to have the best pos-
sible coverage of the area defined by the points of the given
set. Also, there are some restrictions, i.e., some sub-areas
within the large area that define the points of the given set, in
which sensors cannot be placed. These areas are usually rep-
resented by polygons and represent natural obstacles such as
lakes, highways, etc. Due to such constraints, the complexity
increases considerably and becomes O(mh2) , where m is the
number of vertices of the polygons given as constraints and
h the number of points in the area defining its convex hull.
Also, in addition to the area restrictions there is a coverage
radius limit of each sensor that is set for all sensors. The
authors proposed a Genetic Algorithm to solve the problem,
with the following key points:

Population size and initialization: To initialize the pop-
ulation, they first calculate the convex hull of the area and
take the points that make it up. Random combinations of
these points will be the initial population of each individual
(chromosome) may have a different size (different number
of points-genes). At chromosome points they randomly add
some sensors. Sensors number must be minimized so that
they can cover the entire area.

Selection and Fitness Function: Algorithm selects
from the total population the most robust individuals whose
descendants will be passed on to the next generation. Each
individual in the population can potentially become a parent
in a pseudo-random but also objective way as follows: At
first, algorithm randomly selects a position of an individual
from 1 to the total number N. Let r be the range of each sen-
sor to be placed. Then using the objective (fitness) function
algorithm choose the best individual who are in positions k
to k + r (if the sum exceeds the length of the population then
the algorithm continues from the beginning). After the first
parent is found, the previous steps are repeated so that the
second parent can be found, and process stops. The objective
function applied to the prospective parents of individuals of
the population examines at every step the number of sen-
sors that each individual of the population has, in order to
select individuals with the minimum sensors number, even
if overlapping, who can cover the requested area.

Evolutionary Intelligence

1 3

Crossover operator: For each pair of individuals (par-
ents) have been selected with the selection operator, the
crossover operator is applied. For each point contained by
the first parent algorithm find the first and second nearest
points to it, of the second parent. Next calculates Manhattan
distance differences between these three points. First par-
ent points are then sorted according to the value found in
descending order. Then, for each point of the first parent, the
point closest to the second parent is selected for all points of
the first parent, creating pairs of points that are multiplied
linearly by a random value between 0 and 1, thus producing
two new prospective offspring. This process is repeated for
the second parent just as it was done for the first taking two
other prospective offspring. Among them, the two best off-
springs are chosen to pass on to the next generation.

Mutation Operator: Mutation operator is used to avoid
unwanted convergences to local optimums by randomly
changing one or more points of some individuals of the gen-
erated population at a time. In this step algorithm selects
with some probability (usually small) an individual of the
population and then finds the point which encloses most of
the points in the circle centered on this point, i.e. they actu-
ally find a Voronoi cell with the most points inside it. If the
radius of this circle is greater than the range of a sensor, then
algorithm adds a sensor to that individual in the population
otherwise removes one.

According to the authors, their algorithm can provide a
satisfactory solution in time O(Nmn2) , where N is the size
of the population, m is the number of polygons which con-
stitute the constraints and n is the number of points given as
input to the algorithm and which constitute the covered area.
Without restrictions the algorithm runs in time O(Nnlogp),
where p is the sensors number.

2.2.2 A genetic algorithm for generating alternative
mobile agent tracks to avoid moving obstacles

The work [22] proposes a combination of Genetic Algorithm
and Computational Geometry (Delaunay Triangulation and
Linear Interpolation) to calculate the trajectory a moving
agent must follow, in order to avoid another moving agent to
reach his goal. The application comes from the online game
Soccer where the first agent represents a player with the ball
in his possession, while the second agent a defender.

To make the algorithm faster they divide it into two
parts or phases, the offline phase where the player with
the ball in his possession is not threatened, and the online
phase where this player will have to choose a trajectory in
order to avoid a defender who closes the passage. In the
offline phase of the algorithm all the calculations are done
with the help of the Genetic Algorithm they propose, i.e.,
all the trajectories are produced approximately according
to the data that exist at the moment, while in the online

phase, where a trajectory must be selected immediately,
they choose the best with the help of Delaunay Triangula-
tion and linear interpolation applied to the point where the
player (agent) is with the ball in his possession but also to
the point where the defender is. We can see here the use of
Delaunay Triangulation as a tool for encoding a space in
order for an algorithm to have criteria to make important
decisions about the continuation of its processing.

The following are elements and steps of the proposed
algorithm used in the offline stage, where the genetic algo-
rithm is applied:

Trajectory Plans: They are the people (chromosomes)
of the population at all times and contain all the informa-
tion needed in order to be able algorithm to make critical
decisions during the game. Each trajectory plan consists
of many nodes, each of which contains the (x, y) coordi-
nates of the point where the node is located, as well as the
acceleration of the agent, the direction of his body, and the
direction of the ball.

Population size and initialization: Initially an original
trajectory plan is created through the DEdit tool by insert-
ing all the nodes with some arbitrary initialization and
then based on this prototype the individuals of the initial
population are created.

Selection and Fitness Function: The selection of an
individual to pass on to the next generation is done in
a deterministic way using the objective function which
evaluates this person. The objective function for a trajec-
tory plan calls the node objective function to evaluate each
node it contains and the total sum is the result that returns.
Each node of a trajectory plan is evaluated based on spe-
cific values of various variables it contains. Some of these
variables are the node variable that shows the direction of
the agent’s body and the ball in his possession, the node
variable that contains the angle formed by the direction
of the ball with the direction of the defender and the node
variable that contains the angle that forms the direction
of the attacking agent with the direction of the defender.

At the online stage of the game and after the various
trajectory plans have been produced, the agent in posses-
sion of the ball will have to decide which trajectory to
choose in order to avoid another agent. Depending on the
position of the agent, the appropriate trajectory plan is
selected and based on this, the trajectory that will be fol-
lowed each time is selected. Because the point where the
agent is located does not necessarily belong to a node of
the trajectory plan, the Delaunay Triangulation is used in
all nodes of the trajectory plan as well as the linear inter-
polation to find the nodes of the triangle in which the agent
is in possession of ball.

Crossover operator: It is applied between two parents
and produces two offsprings to be passed on to the next gen-
eration. The process of crossover is repeated continuously

 Evolutionary Intelligence

1 3

until the number of offsprings reaches the desired number
and is applied to two parents again based on the probabil-
ity of crossover or not. According to the crossover process
proposed by the authors, the parameter k of each offspring
acquires a weighted content of the corresponding parameters
of its parents.

Mutation Operator: The mutation uses a number from
the Gaussian distribution that has a value between −1.8 and
1.8 and which is added to all the variables of the chromo-
some selected for mutation. Also taking part in the mutation
is another variable called mutation-coefficient, which also
contains a small value, but which is constant and has been
applied to the mutations of the original population.

2.2.3 A genetic algorithm for selecting the most
appropriate compressed image

The work [23] propose a genetic algorithm in order to be
able to select the best compressed image from a number of
alternative compressed representatives, based on a special
criterion that we will describe below. Their work extends
compression methods based on the Delaunay Triangulation,
which treats an original image file with scales of gray as
an illustration of the 2.5 dimensional space. In this space
each pixel of the image consists of the parameters x for the
column, y for the row and z for the scale of gray which has
values from 0 to 255 (i.e information range 8 bits).

According to compression methods using Delaunay Tri-
angulation, the goal is to select as few of the pixels of an
image defined by (x, y, z) as possible from these pixels, but
to obtain a satisfactory approximation of the original image.
To do this compressed methods consider each pixel as the
vertex of a graph whose edges correspond to sides of trian-
gles. In these triangles the Delaunay criterion is applied, i.e
that of the circumscribed circle in which only the vertices
that make up the triangle are located. At each vertex the x, y
coordinates are not affected, while the value z is approached
with some tolerance error. This approach is done with the
help of linear interpolation. The effort is the difference of
the real value of z with its approximation value always being
less than an error and this applies to all points - pixels that
have been selected for Triangulation and consequently for
its approximate (compressed) representation original image.

Population size and initialization: Atoms of the popula-
tion consist of pixels with information (x, y, z) the number
of which is predetermined from the beginning on each chro-
mosome and does not change during processing. Initializa-
tion involves the creation of a specific set of chromosomes
which, however, come from two sources. In the first case the
chromosomes are created by completely random selection
of pixels from those of the image, while in the second case
the chromosomes have been created by known compression

algorithms that use Triangulation. This combination, accord-
ing to the authors, creates better results.

Selection and Fitness Function: The selection process
aims to select a pixel that gives better results than the rest.
To do this it uses a criterion called vertex selection crite-
rion. The vertex selection criterion evaluates all vertices
(pixels) that have not been added to the Triangulation, in
order to select the best of them. In order not to perform com-
plex computational operations and to burden the algorithm
with great complexity, a local error metric is usually chosen,
which is the vertical error. The evaluation of a pixel located
in the x − column and y − row of the image file results from
the absolute value of the difference between the actual value
of z and its approximation value resulting from the linear
interpolation. Having set the maximum vertical error we can
now define the metric quality of an Image as PSNR (Peak
Signal to Noise Ratio) approach which is measured in db
(decibels). The previously mentioned PSNR calculation is
used as an objective function. The choice is due not only
to the rapid calculations of the vertical error it contains but
also to the fact that it gives higher values for the most suit-
able individuals than the less suitable ones, as stated by the
theory of genetic algorithms that it must make an objective
function.

Crossover operator: The crossover process followed
here is uniform, i.e. each gene (pixel) of one parent cor-
responds to the gene located in the same position in the
other parent. In this process, the genes of the first parent go
through and with a 50% probability they alternate the two
genes that are in the same positions in each parent.

Mutation Operator: With mutation process, as we know
from the theory of genetic algorithms, there is a precau-
tion against converging the algorithm to a local minimum
or maximum. Here the probability of mutation of a gene is
2% . During the mutation of a gene, the coordinates of the
gene (pixel) change to a small degree, as a result of which it
moves in space in a certain direction. Special care has been
taken by the authors so that during its movement it does not
fall on another part of the chromosome (conflict).

3 Genetic algorithm for delaunay
triangulation

The proposed algorithm adopts the Genetic Algorithm para-
digm. One of the important issues is the representation of
the solution search space. We represent each individual of
the population as a graph whose vertices correspond to each
point of a given set P that was given as input to the Delaunay
Triangulation.

Our approach uses the criterion of legal edge to eliminate
illegal edges when they occur. In particular, when two edges
are found to intersect, then one of them is legal and the other

Evolutionary Intelligence

1 3

one is illegal. Both of edges are contained in the quadrilat-
eral which is defined by their four end-points.

The legal edge criterion applies to individuals in the algo-
rithm population, which have been coded as graphs with
vertices and edges. Vertices are the points of the plane given
as input to the algorithm and edges are connections between
vertices of the graph (Fig. 1). Each generation according to
the Genetic Algorithms consists of the individuals of the
population, i.e., the graphs, on which genetic operators of
selection, crossover and mutation are applied. After creating
a number of generations our algorithm converges to a solu-
tion which is the desired Delaunay Triangulation.

Population Encoding: As we mentioned before, each
member of the population is represented in our algorithm
as an undirected graph whose vertices correspond to each
point in the given set. If two points are joined together then
an edge is created with endpoints these two points.

Population Initialization: According to the population
encoding individuals as undirected graphs with vertices and
edges, each individual in the population initially adds edges
between its vertices randomly, but these edges must not

intersect. Edges are considered as line segments. Each line
segment can intersect at some point (or points) by another
one (or more than one) line segment. After every individual
initialization, the algorithm checks for crossed edges and
removes the illegal ones. Below we describe how to remove
the illegal edges.

Population Selection and Fitness Function: In the
selection step we use an objective function that returns the
ratio of the number of edges of an individual to the total
length of these edges. The algorithm first takes the maxi-
mum fitness value from the individuals of the population
and then for each individual takes its fitness value, divides
it by the maximum and produces a pseudo-random num-
ber between [0,1] to decide whether this individual will go
through the process of crossover. If the result is positive,
then selects it, otherwise not. This fact results in the pres-
ence of one or more individuals in the population (the most
robust) more than once.

Crossover: During the crossover genetic process (Fig. 2),
two selected individuals of the population are crossed and
from this cross, the algorithm creates two offspring. The
offspring will pass on to the next generation replacing their
parents.

The proposed algorithm creates these offspring with two
different ways:

The first offspring retains the best characteristics of their
two ancestors. Specifically, it contains all the edges of the
two ancestors which do not intersect. It also contains from
the edges of its two ancestors that intersect, those which give
the best result. These edges lead to quadrilateral triangles
with the largest angles according to Delaunay criterion. It
should be mentioned here that this offspring comes mainly
from the parent with the best fitness. The algorithm adds to
best parent the edges from the second parent that did not
exist in the best parent, plus the best of the edges (legal) that
intersect between the two parents.

Fig. 1 Sample population with six individuals

Fig. 2 Crossover process

 Evolutionary Intelligence

1 3

The second offspring arises from the parent with the
worst fitness. The algorithm adds to this parent extra edges
arbitrarily and randomly. Then, the algorithm removes all
illegal edges so that a second offspring is created. This pro-
cess leads to more remarkable individuals in the popula-
tion from generation to generation, since edges are selected
through the intersections, leading to better results, so to
edges that fit better to Delaunay Triangulation.

Mutation: During mutation, the algorithm removes ran-
domly from an individual from one to all its edges. Mutation
probability is small, usually 0.1 or less.

Legal edge selection: As mentioned earlier, we consider
each edge of the graph as a line segment beginning and
ending at the two vertices it joins. These vertices belong
to the given set of points in the plane. The algorithm first
checks if two line segments (two edges contained in a graph
- individual) intersect based on known formulas we have
from geometry (use of determinants). If there is a cross,
then algorithm checks which one of the two edges is legal
and which one is illegal. The algorithm therefore considers
these two edges as diagonals of the quadrilateral formed by
the points of their ends (Fig. 3). The algorithm calculates the
angles of the triangles formed by each diagonal (edge) on the
quadrilateral that form their points. For these calculations we
use the Cosine Law. Then, the algorithm creates two angle
vectors and fills them with the angles of every quadrilateral,
sorts them and compares them in lexicographical order. The
legal edge corresponds to bigger vector of these.

Figure 3 shows two edges that intersect. The shorter one
has pl and pk as ends while the other has pi and pj . We
consider the quadrilateral defined by the points (pl, pk, pi, pj)
once with the diagonal edge defined by the points (pl, pk)
and once with the diagonal edge defined by the points
(pi, pj) . In the quadrilateral with diagonal (pl, pk) we have

the angles vector A(T1) = (a1, a2, a3, a4, a5, a6) , while in the
quadrilateral with diagonal (pi, pj) we have the angles vector
A(T2) = (b1, b2, b3, b4, b5, b6) . After sorting them we com-
pare them in lexicographical order. If A(T1) > A(T2) then we
chose as legal the edge which defined from (pl, pk) points,
else the edge which is defined from (pi, pj) points.

4 Representation and implementation
of proposed algorithm

The designed algorithm, receives as input a file with the
point coordinates in the plane and creates a Delaunay Tri-
angulation using a Genetic Algorithm, where the vertices
of the Triangulation’s triangles are the given points. The
algorithm is denoted as Delaunay_Genetic. Based
on the points of the set, Delaunay_Genetic creates
graphs, as explained analytically in subsection 4.2, where
each graph is an individual of the population. Each graph
has as vertices the given points and as edges line segments
that connect these graph vertices. The flowchart of Delau-
nay_Genetic is shown in Fig. 4. In the following, we
detail the various parts of the Delaunay_Genetic.

4.1 Input and parameters

The data entry in Delaunay_Genetic, i.e. the points of
the given set that we want to triangulate, is done through a
text file which has the following format: In the first line of
the file there is the total number of points of the set, while
in the lines that follow and in each of them there are the
coordinates of each point of the set. The coordinates of each
line are separated by a space. A sample of a input file is
show in Fig. 5. Here we must point out that when Delau-
nay_Genetic reading the file, stores the data in a table
structure. Delaunay_Genetic then sorts points by x
coordinate. This is needed to make a better population ini-
tialization later.
Delaunay_Genetic can get additional arguments to

configure its execution. Specifically, we can enter the num-
ber of iterations of the genetic algorithm L, i.e., after how
many generations we will get the result. We can also enter
the mutation probability M as well as the number of indi-
viduals P that will participate in each generation - repetition.

4.2 Chromosome representation

Each Chromosome (individual) in the population is repre-
sented in Delaunay_Genetic as a graph whose vertices
correspond to each points in the given set. If two points are
connected then an edge is created between the corresponding
vertices. Formally, we consider a Chromosome (points set)
as a graph G = (V ,E) , where V is the vertex set, i.e., labeled Fig. 3 Legal edge selection process

Evolutionary Intelligence

1 3

points from the point set, and E is the edge set. A vertex u
corresponds to a tuple (x, y) where x, y ∈ ℝ and represent
coordinates of a point in the two dimensional space. For two

vertices u, v ∈ V , edge e(u, v) ∈ E represents a link between
vertices u and v. In order to implement such an encoding of
a Chromosome Delaunay_Genetic uses objects of the
classes described below:
Edge Class: Each object of this class that we have

developed implements an edge of the graph and contains two
references to objects of the Vertex class (described below),
which represent two vertices of a graph, i.e., two points of
the input set of points. It also contains a variable, which is
the length of the edge and which is calculated when the edge
is created. In addition it contains a Boolean variable which
is true when this edge intersects with another, otherwise its
value is false. Because the graph is undirected, two edges
are identical if they contain the same points in any order.
Therefore, in this class there is a function that compares two
edges of two graphs are identical or not.
Vertex Class: Each object of this class that we have

developed implements a vertex of the graph. It contains a
pointer to a point in the input set as well as a map object,
which contains all the edges that have this point at one end.
For search purposes, each edge has as key in the map an
alphanumeric that represents the identifier of the point of

Fig. 4 Delaunay_Genetic Flowchart

Fig. 5 Input File format sample

 Evolutionary Intelligence

1 3

the other end of the edge from the vertex where we are. For
example, if we connect the point with identifier "10" to the
point with identifier "130" with an edge then the key of the
map for that particular edge will be "130", that is the other
end of the edge. Finally, this class contains functions for
inserting an edge into a vertex (vertices connecting), delet-
ing an edge from a vertex (vertices disconnecting), and a
function computing the similarity of a vertex with some
vertex of another graph.
Graph Class: Each object of this class that we have

developed implements a graph that is a Chromosome (indi-
vidual) of the population. This class contains, in principle, a
map with the vertices of the graph, whose key is the identi-
fier of a point corresponding to a vertex. It contains another
map with the edges of the graph, which has an alphanumeric
key as its key, which consists of the two identifiers of the
points that make up the edge, separated by an underscore.
For example, if an edge connects the points with identifiers
"135" and "25" respectively, then the key in the map has the
form "135_25" or "25_135" depending on the order in which
the ends of the edge have been given. These two edges are
identical since the graph is undirected. Other members of
this class are a variable that stores the count of the graph’s
vertices, a variable that stores the count of its edges, and a
variable that stores the total length of all the edges of the
graph. The latter variable is dynamically updated whenever
an edge is added or removed from the graph. In conclusion,
each chromosome consists of all points contained in input
set and its length is the number of these points.

4.3 Population initialization

We define as population Pn , a finite set of chromosomes
(graphs or individuals) Gi = (V ,Ei) for 0 ≤ i < n . Set V is
always the same for all chromosomes, because all chromo-
somes have the same vertices but potentially different edges.
Hence, the edge sets Ei . Each chromosome in the population
is initialized by adding edges between the vertices of its
graph. The edges are added methodically and not completely
randomly. Specifically, Delaunay_Genetic takes advan-
tage of the fact that the vertices of the graph are sorted by
the x-coordinate. Thus Delaunay_Genetic starts from a
random starting point (vertex) and joins the vertices together
to form triangles. Next, Delaunay_Genetic continues
to create triangles until it reaches the last point. Then it ran-
domly adds some extra edges. Finally it checks if there are
edges that intersect between the edges added to the graph.
If there are, then it removes the illegal edges from them. As
a result, there are legal edges in the population, that is, we
have more robust individuals.
Delaunay_Genetic generally does not allow

for intersecting edges in the graphs - individuals of the

population. To achieve this it applies a special algorithm
which it calls at every step where edges are added to the
individuals of the population. The operation of the algorithm
is described in next subsection.

4.4 Objective function

With our Genetic Algorithm we try to maximize a function
f (x), x ∈ Pn . The problem here is to find chromosome xopt
such that:

Let us assume, without loss of generality, that:

Then this becomes a constrained optimization problem. For
this problem, we define the objective function or fitness
function obj for a chromosome x that is equivalent to the
function f:

with c corresponding to x.
In order to select the most suitable individuals of the

population, we have implemented the objective (fitness)
function as to return for an individual (chromosome) in the
population the number of its edges. This is a nice criterion
for indicating the value of an individual, because the edges
it contains may have been preferred to others that intersected
with them and are therefore legal. Concluding, the more
legal edges an individual has, the better that individual is.
Delaunay Triangulation consists of only legal edges. The
number of edges of an individual already exists within, so
the objective function just returns this value. Hence its com-
plexity is O(1).

4.5 Selection

The individuals of the population that will participate in the
reproduction are represented by a table that contains their
positions in the table of the population. We have created two
ways to have this table each time.

4.5.1 Stochastic selection

Stochastic Selection follows the following steps for
selection:

• Calculate the objective value obj(ci) for each chromo-
some ci ∈ Pn , where 0 ≤ i < n.

(1)f (xopt) ≥ f (x),∀x ∈ Pn.

(2)f (x) > 0,∀x ∈ Pn.

(3)obj(c) = f (x),

Evolutionary Intelligence

1 3

• Find the maximum fitness of the population
Obj = max{obj(c0), obj(c1),⋯ , obj(cn−1)}.

• Calculate the probability gi of selection, where
gi = obj(ci)∕Obj.

• Generate a random number rndi from [0, 1] and compare
gi and rndi to decide whether the specific individual will
go through the process of crossing. If the result is posi-
tive, then it inserts its place in the population table in the
vector that will return.

Note that, the population table is cyclically accessed each
time until the table that returns this function is filled. This
results in the presence of one or more individuals in the
population (the most robust) more than once, possibly. Also
mention that each person selected, occupies the first or last
place in the table with a probability of 50% . However, if the
population is small, e.g., we only have two individuals, then
returns the table with both individuals.

4.5.2 Roulette selection

Roulette Selection follows the next steps for selection:

• Calculate the objective value obj(ci) for each chromo-
some ci ∈ Pn where 0 ≤ i < n.

• Find the total fitness of the population Obj =
∑n−1

i=0
obj(ci)

.
• Calculate the probability gi of selection, where

gi = obj(ci)∕Obj.
• Calculate cumulative probability Gi =

∑i

j=0
gj for

ci(i = 0, 1,⋯ , n − 1).
• For j = 0, 1,⋯ , n − 1,

– generate a random number rndj from [0, 1],
– if rndj ≤ G0 then select c0 ; otherwise select ci where

0 ≤ i < n if Gi−1 < rndj ≤ Gi.

As we mention just before, Roulette Selection first fills a
table, each position of which corresponds to one individual
in the population, with decimal numbers that result from the
quotient of the fitness value of each individual with the total
sum of the fitness values of all individuals in the popula-
tion. In each position of the table, in addition to the quotient
we mentioned, the value of the previous cell of the table is
added, i.e., we have progressive sums each time. This table
according to the above contains values in the interval [0, 1].
After this table is filled then we start and produce pseudo-
random numbers in [0, 1] and for each of them we find the
position corresponding to the table by entering this position
in the table to be returned. For example, if position 3 con-
tains the value 0.45 and position 4 the value 0.55 and the
pseudo-random number is 0.53 then in the table of results
will enter 4. However position 4 can be presented more times

as a result. Therefore, there may be individuals in the table
who will be returned more than once in the population, since
there may correspond to the same place in the table that
represents an individual more than once. Also here, each
individual selected enters the first or last position of the
table with a probability of 50% . However, if the population
is small, e.g., we only have two individuals, then returns the
table with both individuals, as stochastic selection.

4.6 Population crossover

During the genetic process of Crossover, two individuals of
the population are crossed and from this cross, two new indi-
viduals emerge who will pass on to the next generation in
the place of those who were crossed. The two new offspring
emerge in two different ways.

Assume from Selection function two chromosomes
parent1 = (V ,Eparent1), parent2 = (V ,Eparent2) . We can cre-
ate from these chromosomes two offsprings as follow:

where

The function not_legal_edges applies the legal edge crite-
rion, as we define it in section III, to every pair cross edges
of the edge set that takes as input and returns a set with all
not legal edges from an edges set.

where

The function create_rnd_edges takes as input a vertices set,
create and returns a random edges set. Inside this set prob-
ably exists many cross edges.

Let us explain more analytically the above notations. The
first offspring retains the best characteristics of their two
ancestors. Specifically, it contains all the edges of the two
ancestors which do not intersect. It also contains from the
edges of its two ancestors that intersect those that give the
best result, i.e., lead to quadrilateral triangles with the larg-
est angles. It should be mentioned here that this offspring
comes mainly from the parent with the best fitness to which
we add the material that is not the same, i.e., the edges, from
the second parent plus the best of the edges (legal edges) that
intersect between the two parents.

The second offspring comes from the parent with the
worst fitness from which we remove all its edges, since the

(4)offspring1 = (V ,Eoffspring1),

(5)
Eoffspring1 =Eparent1 ∪ Eparent2

− not_legal_edges(Eparent1 ∪ Eparent2).

(6)offspring2 = (V ,Eoffspring2),

(7)
Eoffspring2 =create_rnd_edges(V)

− not_legal_edges(create_rnd_edges(V)).

 Evolutionary Intelligence

1 3

best of them now exist in the first offspring. Then we add
new edges to the new offspring in a random but organized
way. Specifically, we join each vertex of the graph with an
arbitrary number of vertices that are located after it in terms
of x coordinates. Then we remove the edges that may inter-
sect and keep the best of them. In this way, offspring emerge
with new genetic material that will help converge the algo-
rithm during the next crosses.

4.7 Mutation

The genetic process of Mutation follows the Crossover
genetic process and is applied to an individual in the popu-
lation at random. During the Mutation, some successors are
selected in which we remove from one to more edges. This
step exists so that according to the theory of Genetic Algo-
rithms to avoid any conversion to a local maximum. In our
implementation, mutation is an occasional random removal
of an edge from Ei set of selected chromosome ci ∈ Pn . It is
performed on each edge of each chromosome in Pn with the
probability q(> 0) . Mutation is performed in the following
way: For every edge ej ∈ Ei of chromosome ci = (V ,Ei):

• generate a random number rnd from [0, 1]
• if rnd ≤ q mutate the edge ej by removing it from the Ei

so E�

i
= Ei − {ej} . Otherwise the ej remains.

4.8 Reproduction

In order to calculate the optimal solution, it is necessary to
repeat the steps of Reproduction in the individuals of the
population. After a number of repetitions (stopping crite-
rion), there should be an optimal solution and in our case the
Delaunay Triangulation of the points of the set that Delau-
nay_Genetic has accepted as input. The basic steps in
our Genetic Algorithm are described below.

(1) Generate an initial population Pn of size n and calculate
fitness value of each chromosome ci ∈ Pn.

(2) Perform Selection operation on Pn to result in P1
n
.

(3) Perform Crossover on P1
n
 to result in P2

n
.

(4) Perform Mutation operation on P2
n
 to result in P3

n
.

(5) Write P3
n
 as Pn.

(6) If stopping criterion is not satisfied go to step 2.

The stopping criterion in our genetic algorithm is a finite
number of repetitions. More detailed according to our imple-
mentation in each loop Delaunay_Genetic:

(1) Takes from some selection function, from those we
have previously described, the table, each position of
which contains the position of a selected individual in
the population table.

(2) It creates a new temporary population table, the new-
population, where we place the individuals of the
original population table, which we remove in order
to accept the new individuals that will emerge after the
application to the individuals of the previous generation
of genetic processes.

(3) In individuals of the present generation it applies the
process of crossing in pairs as found in the newpopula-
tion table. In the function we call (crossover) we give
each pair in the order resulting from their robustness
index, as we have mentioned in the Crossover subsec-
tion.

(4) Individuals of the new generation that emerge are given
to the population table and we empty the newpopula-
tion.

(5) In the individuals of the new generation we apply (in
some of them depending on the probability of muta-
tion) the Mutation process.

When looping is over, then we have the final generation from
which with a loop we can find the most robust individual,
that is, the one with the highest value that fitness returns. For
this individual, we call a function that gives us a formatted
output file that we describe in next subsection.

4.9 Output file

Output File is a text file that contains the edges of the
best individual of last population. The file name is always
edges_X.txt, where X is the number of edges con-
tained in this individual. For example output file named
edges_835.txt means that the file contains 835 edges.
Figure 6 shows a file segment of this format.

As shown in this Figure, each line of this file starts with
the word edge and is followed by the coordinates of the
points that make up the edges of the edge. If Delaunay_
Genetic fails to connect one point to another to create an
edge that starts or ends at that point, then it displays it with
the word point and its coordinates, as shown in the last line
of the Fig. 6.

4.10 Remove illegal edges

Delaunay_Genetic always keeps the individuals of
the population consistent. By consistency we mean that in
every individual of the population there are no intersecting
edges. If there were intersecting edges then the application
would never be able to provide optimal solutions. Delau-
nay_Genetic checks for intersecting edges in two cases:
Each time edges are added to an individual in the popu-
lation and each time an intersection is made between two
individuals. In both cases Delaunay_Genetic calls a
check function which it gives as argument a table containing

Evolutionary Intelligence

1 3

edges. This table in the first case is the table of the edges of
an individual’s graph, while in the second case it contains
edges of two individuals to give the best of them to one of
these individuals.

The check function firstly orients the line segments
(edges) with respect to their x coordinate, so that the initial
point of the segment is before its end point. Then we enter
in a table that we call events, pairs which have as key the
start point of each segment and as data the position of the
segment in the segments table, so that we can access it at any
time. In the events table are all the segments which we have
to check if they intersect with each other. Every segment
contains a Boolean variable. We set this variable true if a
segment is intersected with another segment and is illegal.
We have described how to select a legal edge from two edges
in section 3.

We also use another table called sweep. This table contain
pairs in which the key will be a point and data the position of
the segment in the segments table where this point belongs
to. In essence, table sweep plays the role of the vertical scan
line of the plane and in which we enter each time each point
that this line meets. Each time we encounter an initial point
of a segment, i.e., it exists in the events table, then we take
it out of there and check if these segment intersects with any
of those already in the sweep table.

To avoid to check the entire contents of this table, we
exclude from the intersection checking the segments that
are above the level, or below or even before the part that we

check. In fact, those whose end is before the beginning of
the segment we are checking are removed from the sweep
table. After checking an intersection, if the segment we are
examining has set its intersect variable to true, then check-
ing for the specific segment stops and we continue with the
next point (beginning of a segment) that contains the event.
If not, then we look at the intersection variable of the other
segment and if it is true, we remove this segment from the
sweep table and we continue checking for the rest segments
of the sweep table. When events table become empty then
we stop intersection checking.

4.11 Specifications

Delaunay_Genetic is written in C++. The choice
of this language is due to the speed it offers in executing
Delaunay_Genetic as well as the object-oriented
way that a C++ user can write an application. Delau-
nay_Genetic has been developed with the principles of
object oriented programming that lead to more organized
and easier to understand code. We have also used some of
the structures offered by the C++, STL (Standard
Library) which are vector, map and multimap. In par-
ticular, the choice of the last two STL structures was made
because they organize their content as balanced binary
search trees, so that data can be found within them in a more
efficient way. Complexity of finding data in such structures
is logarithmic O(logn). Some of the functions we have used
are insert which inserts a new node in the tree of the
structure, find which finds a node in the tree in logarithmic
time and erase which removes a node from the tree of the
structure in logarithm time too.

5 Evaluation

In order to show the correctness of the results of our algo-
rithm we have implemented comparative tests with a well
established algorithm, namely Bowyer - Watson algo-
rithm. We have used it as benchmark algorithm because it
finds the correct Delaunay Triangulation results with low
time complexity O(nlogn). Regarding such comparison,
there are two major aspects one needs to investigate, namely
correctness and complexity. In the comparison of our algo-
rithm with the Bowyer - Watson algorithm we evalu-
ated the first on the basis of identifying the edges created by
the Bowyer - Watson algorithm over a set of points,
and checking how many edges are matched by the execu-
tion of our algorithm over the same point set. With respect
to computation time, we employed the average execution
time, computed over a number of different topologies of the
same size, as a rather indicative parameter of the complexity
involved in each approach.

Fig. 6 Output File sample

 Evolutionary Intelligence

1 3

Regarding the algorithm itself, each execution test shows
us the parameters with which Delaunay_Genetic ran.
Specifically, it shows which selection function was used
(roulette or stochastic), the individual number of each
generation, how many generations were created (i.e., how
many repetitions were made), the probabilities of crossing
and mutation, as well as the number of edges created in the
various Delaunay_Genetic executions. These edges
are evaluated for their correctness, by the corresponding
edges created by the Bowyer - Watson algorithm for
the same set of points, and by how many edges are matched
by the execution of the two algorithms. There is also execu-
tion time for both algorithms (average time for Delau-
nay_Genetic). Finally, in each comparative test we pro-
vide figures depicting the two triangulations (in the case of
Delaunay_Genetic the best it has achieved).

In order to be able to evaluate the results of the bench-
marks more effectively, we also present charts that show the
evolution of the algorithm from generation to generation and
how much each generation contributes to the final result, via
the number of edges that implement the Triangulation. Each
comparative test corresponds to its chart.

Test_15: The information for this test is shown in Fig. 7
and Table 1. As we observe Delaunay_Genetic
achieves correct Triangulation, exactly the same as Bow-
yer - Watson. In the chart of Test_15 shown in Fig. 8,
we observe that Delaunay_Genetic has converged on
the solution almost from generation 8 onwards. However
due to the initialization of the individuals of the previous
generation population, it has already reached an acceptable
result from the first generation, having created 30 edges. The
majority of these edges are legal, this is due to the nature of
the Delaunay_Genetic intersection, which eliminates
the illegal edges when intersected with legal ones.

Test_55: Similarly, in this Test (Fig. 9 and Table 2) we
notice that our Algorithm finds the right Triangulation, but

Table 1 Test_15 Information data

Test Identity: Test_15

Executions number 10
Selective Function Stochastic Selection
Population 4
Generations number 10
Crossover Probability 0.99
Mutation Probability 0.14
Delaunay_Genetic average edge number 35
Bowyer-Watson edge number 35
Similarity 100%

Delaunay_Genetic average execution time
(seconds)

0.000001

Bowyer-Watson execution time 0.000001

Fig. 7 Comparative Test with 15 points

Fig. 8 Test_15 chart

Evolutionary Intelligence

1 3

it takes longer execution time. In general, Delaunay_
Genetic in its current version is much slower than Bow-
yer - Watson, but its results are correct. This is very
important because of the random nature of the algorithm. In
the chart of Test_55 shown in Fig. 10, we observe similar
behavior to the previous Test. Delaunay_Genetic from
the first generation and due to the initialization has already
found 130 of the 150 edges, while from the seventh genera-
tion onwards has already found the required Triangulation.

Test_299: In this Test (Fig. 11 and Table 3) we observe
that our Algorithm almost found the correct Triangulation,
i.e., all the edges that make up the triangles except two. In
the second or third execution, the algorithm finds 100% of
the correct edges. Execution time is quite high compared
to the Bowyer - Watson algorithm. In the chart of
Test_299 shown in Fig. 12, we observe that from the first
generation we start to have good results, i.e., it has found
about 750 edges of Triangulation out of the 880 required.
Then in the next four generations the algorithm manages to

Table 2 Test_55 Information data

Test Identity: Test_55

Executions number 10
Selective Function Stochastic Selection
Population 8
Generations number 10
Crossover Probability 0.99
Mutation Probability 0.14
Delaunay_Genetic average edge number 150
Bowyer-Watson edge number 150
Similarity 100%

Delaunay_Genetic average execution time
(seconds)

0.000023

Bowyer-Watson execution time 0.000001

Fig. 9 Comparative Test with 55 points

Fig. 10 Test_55 chart

Table 3 Test_299 Information data

Test Identity: Test_299

Executions number 10
Selective Function Stochastic Selection
Population 8
Generations number 10
Crossover Probability 0.99
Mutation Probability 0.14
Delaunay_Genetic average edge number 880
Bowyer-Watson edge number 880
Similarity 99.80%(878similaredges)

Delaunay_Genetic average execution time
(seconds)

3.625704

Bowyer-Watson execution time 0.000001

 Evolutionary Intelligence

1 3

converge towards the solution. During the analysis of the
results we noticed that the selection method which is the sto-
chastic one helps a lot. If we replace the stochastic method
with the roulette, then performance degrades.

Test_999: In this Test also (Fig. 13 and Table 4), we
can observe that although similarity is achieved to a large
extent, the execution time of Delaunay_Genetic differs
significantly from the corresponding execution time of our
benchmark algorithm. In the chart of Test_999 shown in
Fig. 14, we can see that the convergence of the results with
those of benchmark algorithm, is done smoothly from the
first generations. And here we notice that since the start of
the algorithm we have found most of the edges of the Trian-
gulation (although some of them are not legal), while then
the algorithm converges more slowly to an acceptable result.

Sensitivity Analysis Test: To examine the effect of vari-
ous parameters on our algorithm, specifically crossover and

mutation probability and how much their values affect the
results of the Delaunay_Genetic, we ran the algo-
rithm on the 299-point data set. We present the results from
these executions in Table 5 and Fig. 15. From the results of
these executions, we infer the important role of crossover in
Delaunay_Genetic. When the crossover is performed
on two chromosomes, the resulting offspring are usually
more valuable because they have crossed their edges so
that the legal ones have remained from those that make up
the optimal triangulation. What matters, of course, is that
the parents differ enough from each other to get even better
cross-breeding results. On the contrary, during mutation we
remove edges hoping that they will be replaced by different
ones at some later time, possibly avoiding local minima.
However, when we remove edges the chromosomes become
poorer from edges so that their crossover does not produce
optimal results. Therefore, when the probability of muta-
tion is high then the algorithm cannot produce appreciable
results. This can also be seen in Fig. 16. In this Figure we

Fig. 11 Comparative Test with 299 points

Fig. 12 Test_299 chart

Table 4 Test_999 Information data

Test Identity: Test_999

Executions number 10
Selective Function Stochastic Selection
Population 8
Generations number 10
Crossover Probability 0.99
Mutation Probability 0.14
Delaunay_Genetic average edge number 2951
Bowyer-Watson edge number 2981
Similarity 98.70%(2941similaredges)

Delaunay_Genetic average execution
time (seconds)

28.826808

Bowyer-Watson execution time 0.109394

Evolutionary Intelligence

1 3

show how many edges of the Delaunay Triangulation the
three experiment cases find with the different parameters
of crossover, mutation that we have performed in any case
of them. The case 3 executions experiment is very low in
performance than the other two due to the increased muta-
tion probability.

In the same set of points we also examined the effect on
Delaunay_Genetic of changing population chromo-
some number as well as the number of generations. We pre-
sent the results from these executions in Table 6 and Fig. 16.
From the results of these executions we conclude that there
should be a tradeoff between the number of chromosomes
in the population and the generations that we will execute
the Delaunay_Genetic. For example, in case 2 where
we reduced the population by half, we gain in time but the
triangulation results are not as good as in case 1. Corre-
spondingly in case 3, where we have kept a low number of

chromosomes but have increased the generations from ten
to twenty, we notice that we still gain in time (about half of
case 1). The results are better than case 2 but still lesser than
the results of case 1.

From all the above Tests and charts we can conclude the
following:

• The initialization method is very important because it
creates several edges between the vertices (points) in
each individual (graph) of the population, so that at the
intersection the legal ones are selected from them to the
individuals of the next generation that will emerge. Gen-
erations from the beginning on wards contribute less in
terms of the new edges that will be added to the Trian-
gulation. Of course, their role remains important in order
to have an optimal result.

Fig. 13 Comparative Test with
999 points

 Evolutionary Intelligence

1 3

• There are generations that jump in terms of the num-
ber of edges they contribute. This means that a suitable
condition could be found that leads to generations that
can offer greater leaps or that additional research will
be useful to lead to more efficient, legal edge-producing
generations.

• In all the Tests that have been done, the stochastic selec-
tion method yielded better results than the roulette
method.

• The running time of the algorithm is quite high com-
pared to the conventional computational geometry based
Delaunay Triangulation finding algorithms. This is due
to the operation of the intersection which has a poly-
nomial complexity approaching the square. Of course,
conventional algorithms have been optimized over time
by various researchers, and there is very little literature
on finding Delaunay Triangulation using Genetic Algo-
rithms.

6 Conclusion

In this work, we proposed a Genetic Algorithm for finding
Delaunay Triangulation given a set of points of the plane.
For this purpose we implemented Delaunay_Genetic,
which manages to find Triangulations very close to the nor-
mal Delaunay Triangulation and in most cases with an accu-
racy that exceeds 98% when it does not find the exact Trian-
gulation. The present paper proposes the first approach for
solving the Delaunay Triangulation problem with Genetic
Algorithms. Even though Genetic Algorithms have been
proposed in a couple of works for solving other geomet-
ric problems, no previous attempt on solving the Delaunay
Triangulation problem has been made. Therefore, the paper
presents the first such approach, investigating the positives
and negatives of such an attempt.

The implementation of Delaunay_Genetic
was based on the coding of population individuals

Fig. 14 Test_999 chart

Table 5 Test_299 Sensitivity Analysis

Test Identity: Sensitivity Parameters Test1_299

Executions number 10 10 10
Selective Function Stochastic Selection Stochastic Selection Stochastic Selection
Population 8 8 8
Generations number 10 10 10
Crossover Probability 0.99 0.80 0.50
Mutation Probability 0.14 0.10 0.14
Delaunay_Genetic average edge number 880 876 414
Bowyer-Watson edge number 880 880 880
Similarity 99.80%(878similaredges) 99.00%(872similaredges) 44.00%(387similaredges)

Delaunay_Genetic average execution time (seconds) 3.625704 3.230000 1.558077
Bowyer-Watson execution time 0.000001 0.000001 0.000001

Fig. 15 Sensitivity Analysis Test1_299 chart

Evolutionary Intelligence

1 3

(chromosomes) in graphs with vertices the points of the
given set of points and edges the straight segments con-
necting these points. During its operation, Delaunay_
Genetic tries to find the sides of the triangles, which are
the edges of the final graph, using the Delaunay criterion
for lexical comparison of the angles of the triangles. These
edges result from the operation of the Crossover between
individuals of the population from generation to generation.
In the final outcome there is no illegal edge in the resulting
Triangulation.

The implementation of Delaunay Triangulation with
Genetic Algorithms offers several benefits over other
attempts to implement it. As Genetic Algorithm Delau-
nay_Genetic can work in dynamic environments, i.e., in
environments where the data changes during the operation
of the algorithm, for example, when dynamic new points to
be triangulated are added or when some points are removed.
In these environments, the known algorithms have to be
restarted, while Delaunay_Genetic can continue its
execution adapting to the new conditions that have arisen.

As a consequence of the previous benefit, we can man-
age and process more easily data that is given to us and has

sources of uncertainty, i.e. it has noise. The dynamic nature
of offsprings generation also allows us during the process-
ing and search for optimal triangulation to be able to change
the context of the search space by possibly incorporating
new constraints or even changing or modifying the objec-
tive function we use. Therefore we can triangulate a space
that initially has noise at the given points and then adjust the
initial triangulation to more reliable data.

An additional benefit we have is that Delaunay_
Genetic can be parallelized due to its nature thus increas-
ing its calculation speed. We can therefore divide the initial
population into subsets and compute the Delaunay Triangu-
lation in less time by exploiting the multicore CPUs or GPUs
of our system. Similar to the modeling of the problem we
propose, we can also work with Distributed systems by mak-
ing the necessary changes to our Delaunay_Genetic
algorithm.

In addition to the benefits resulting from the novel mod-
eling proposed in this paper, there are drawbacks and limi-
tations. A drawback is that there are cases where Delau-
nay_Genetic does not always find the optimal solution
even though the solution it finds is quite close to it (close
to 99%). Another drawback of Delaunay_Genetic is
that it requires more computation time than the faster tradi-
tional Delaunay Triangulation algorithms. Also a limitation
that exists and is inherent in the Genetic Algorithms meth-
odology is the memory requirements that exist in order to
maintain and evolve the population of possible solutions.
As a limitation, we could also mention that there is no clear
termination condition, as a result of which we have to pre-
determine the number of generations that must pass in order
to stop the execution of the algorithm.

In the future, we will focus towards improving several
aspects of our approach, especially the execution time, utiliz-
ing various software and hardware improvement capabilities
as we mention previously.

Table 6 Test_299 Sensitivity Analysis

Test Identity: Sensitivity Parameters Test2_299

Executions number 10 10 10
Selective Function Stochastic Selection Stochastic Selection Stochastic Selection
Population 8 4 4
Generations number 10 10 20
Crossover Probability 0.99 0.99 0.99
Mutation Probability 0.14 0.14 0.14
Delaunay_Genetic average edge number 880 688 847
Bowyer-Watson edge number 880 880 880
Similarity 99.80%(878similaredges) 65.00%(575similaredges) 90.34%(795similaredges)

Delaunay_Genetic average execution time (seconds) 3.625704 0.916522 1.860036
Bowyer-Watson execution time 0.000001 0.000001 0.000001

Fig. 16 Sensitivity Analysis Test2_299 chart

 Evolutionary Intelligence

1 3

Acknowledgements Not applicable.

Author Contributions VK conceived the original idea, while PD devel-
oped the proposed algorithm and prepared its implementation. PD per-
formed all evaluations. PD and VK prepared the text of the manuscript.
All authors reviewed the manuscript.

Funding Open access funding provided by HEAL-Link Greece.

Declarations

Ethics statement All of the material is owned by the authors and/or no
permissions are required.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Roy P, Mandal JK (2012) A novel spatial fuzzy clustering using
delaunay triangulation for large scale GIS data (NSFCDT). Procedia
Technol 6:452–459

 2. Ogawa H (1986) Labeled point pattern matching by delaunay trian-
gulation and maximal cliques. Patt Recogn 19(1):35–40

 3. Li X-Y, Calinescu G, Wan P-J, Wang Y (2003) Localized delaunay
triangulation with application in Ad Hoc wireless networks. IEEE
Trans Parall Distrib Syst 14(10):1035–1047. https:// doi. org/ 10. 1109/
TPDS. 2003. 12398 71

 4. Berg M, Cheong O, Kreveld M, Overmars M (2008) Computational
Geometry Algorithms and Applications, 3rd edn. Springer-Verlag,
Berlin, Heidelberg

 5. Maur P (2002) Delaunay Triangulation in 3D. State of the Art and
Concept of Doctoral Thesis. Technical Report No. DCSE/TR-2002-
02. http:// www. kiv. zcu. cz/ publi catio ns/

 6. Sloan SW (1987) A fast algorithm for constructing Delaunay Tri-
angulations in the plane. The University of Newcastle, Australia.
https:// www. newca stle. edu. au/__ data/ assets/ pdf_ file/ 0017/ 22508/
13_A- fast- algor ithm- for- const ructi ng- Delau nay- Trian gulat ions- in-
the- plane. pdf

 7. Yonghe L, Jinming F, Yuehong S (2013) A simple sweep-line
delaunay triangulation algorithm. http:// paper sub. acade micpub.
org/ Global/ Downl oadSe rvice. aspx? ID= 15630

 8. Shewchuk JR (2000) Sweep algorithms for constructing higher-
dimensional constrained Delaunay Triangulations. http:// cites eerx.
ist. psu. edu/ viewd oc/ downl oad? doi= 10.1. 1. 40. 8648 & rep= rep1 &
type= pdf

 9. Biniaz A, Dastghaibyfard G (2011) A faster circle-sweep Delaunay
Triangulation algorithm. http:// cglab. ca/ ~biniaz/ papers/ Sweep%
20Cir cle. pdf

 10. Boissonnat J-D, Devillers O, Hornus S (2009) Incremental con-
struction of the Delaunay triangulation and the delaunay graph in
medium dimension. https:// hal. archi ves- ouver tes. fr/ inria- 00412 437

 11. Guibas L, Knuth D, Sharir M (1992) Randomized incremental con-
struction of Delaunay and Voronoi Diagrams. http:// www. wias- ber-
lin. de/ people/ si/ course/ files/ Guiba s92- Rando mizeI ncr. pdf

 12. Lischinski D (1993) Incremental Delaunay Triangulation. http://
www. karlc henof hell. org/ cppswp/ lisch inski. pdf

 13. Anglada MV (1998) An improved incremental algorithm for con-
structing restricted Delaunay Triangulations. http:// cites eerx. ist. psu.
edu/ viewd oc/ downl oad? doi= 10.1. 1. 61. 3862 & rep= rep1 & type= pdf

 14. Liu J-F, Yan J-H, Lo SH (2013) A new insertion sequence for incre-
mental Delaunay Triangulation. http:// cites eerx. ist. psu. edu/ viewd oc/
downl oad? doi= 10.1. 1. 470. 9175 & rep= rep1 & type= pdf

 15. Tianyun S, Wang W, Zhihan L, Wei W, Xinfang L (2015) Rapid
Delaunay Triangulation for randomly distributed point cloud data
using adaptive Hilbert curve. https:// www. scien cedir ect. com/ scien
ce/ artic le/ abs/ pii/ S0097 84931 50012 23

 16. Tanemura M, Ogawa T, Ogita N (1983) A new algorithm for three-
dimensional voronoi tessellation. https:// www. scien cedir ect. com/
scien ce/ artic le/ pii/ 00219 99183 900876

 17. Cignonit P, Montanit C, Scopigno R (1998) DeWall: A fast divide
and conquer Delaunay Triangulation algorithm in Ed . http:// www.
perso nal. psu. edu/ facul ty/c/ x/ cxc11/ AERSP 560/ DELAU NEY/8_
Divide_ and_ Conqu er_ DeWall. pdf

 18. Lemaire C, Moreau M (2000) A probabilistic result on multi-dimen-
sional Delaunay Triangulations, and its application to the 2D case.
https:// core. ac. uk/ downl oad/ pdf/ 82499 702. pdf

 19. Wenzhou W, Yikang R, Fenzhen S, Liang C, Jiechen W (2014)
Novel parallel algorithm for constructing Delaunay Triangulation
based on a twofold-divide-and-conquer scheme. https:// www. tandf
online. com/ doi/ abs/ 10. 1080/ 15481 603. 2014. 946666

 20. Tereshcenko V, Taran D (2012) Optimal algorithm for constructing
the Delaunay Triangulation in Ed . https:// publi catio ns. waset. org/
11000/ pdf

 21. Davoodi M, Mohades A, Rezaei J (2009) A Genetic Algorithm for
the Constrained Coverage Problem. https:// www. resea rchga te. net/
publi cation/ 22572 2346

 22. Amoozgar M, Khashabi D, Heydarian M, Nokhbeh M, Shouraki
SB (2012) Generating Motion Patterns Using Evolutionary Compu-
tation in Digital Soccer. https:// www. resea rchga te. net/ publi cation/
23398 2312_ Gener ating_ Motion_ Patte rns_ Using_ Evolu tiona ry_
Compu tation_ in_ Digit alSoc cer

 23. Sakhi AOB, Naimi BHM (2015) New Search Method for Approxi-
mating Images with Delaunay Triangulation. https:// www. resea
rchga te. net/ publi cation/ 27588 5483_ New_ Search_ Method_ for_
Appro ximat ing_ Images_ with_ Delau nay_ Trian gulat ion

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TPDS.2003.1239871
https://doi.org/10.1109/TPDS.2003.1239871
http://www.kiv.zcu.cz/publications/
https://www.newcastle.edu.au/__data/assets/pdf_file/0017/22508/13_A-fast-algorithm-for-constructing-Delaunay-Triangulations-in-the-plane.pdf
https://www.newcastle.edu.au/__data/assets/pdf_file/0017/22508/13_A-fast-algorithm-for-constructing-Delaunay-Triangulations-in-the-plane.pdf
https://www.newcastle.edu.au/__data/assets/pdf_file/0017/22508/13_A-fast-algorithm-for-constructing-Delaunay-Triangulations-in-the-plane.pdf
http://papersub.academicpub.org/Global/DownloadService.aspx?ID=15630
http://papersub.academicpub.org/Global/DownloadService.aspx?ID=15630
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8648%20&rep=rep1%20&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8648%20&rep=rep1%20&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.8648%20&rep=rep1%20&type=pdf
http://cglab.ca/%7ebiniaz/papers/Sweep%20Circle.pdf
http://cglab.ca/%7ebiniaz/papers/Sweep%20Circle.pdf
https://hal.archives-ouvertes.fr/inria-00412437
http://www.wias-berlin.de/people/si/course/files/Guibas92-RandomizeIncr.pdf
http://www.wias-berlin.de/people/si/course/files/Guibas92-RandomizeIncr.pdf
http://www.karlchenofhell.org/cppswp/lischinski.pdf
http://www.karlchenofhell.org/cppswp/lischinski.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.3862%20&rep=rep1%20&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.3862%20&rep=rep1%20&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.9175%20&rep=rep1%20&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.9175%20&rep=rep1%20&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S0097849315001223
https://www.sciencedirect.com/science/article/abs/pii/S0097849315001223
https://www.sciencedirect.com/science/article/pii/0021999183900876
https://www.sciencedirect.com/science/article/pii/0021999183900876
http://www.personal.psu.edu/faculty/c/x/cxc11/AERSP560/DELAUNEY/8_Divide_and_Conquer_DeWall.pdf
http://www.personal.psu.edu/faculty/c/x/cxc11/AERSP560/DELAUNEY/8_Divide_and_Conquer_DeWall.pdf
http://www.personal.psu.edu/faculty/c/x/cxc11/AERSP560/DELAUNEY/8_Divide_and_Conquer_DeWall.pdf
https://core.ac.uk/download/pdf/82499702.pdf
https://www.tandfonline.com/doi/abs/10.1080/15481603.2014.946666
https://www.tandfonline.com/doi/abs/10.1080/15481603.2014.946666
https://publications.waset.org/11000/pdf
https://publications.waset.org/11000/pdf
https://www.researchgate.net/publication/225722346
https://www.researchgate.net/publication/225722346
https://www.researchgate.net/publication/233982312_Generating_Motion_Patterns_Using_Evolutionary_Computation_in_DigitalSoccer
https://www.researchgate.net/publication/233982312_Generating_Motion_Patterns_Using_Evolutionary_Computation_in_DigitalSoccer
https://www.researchgate.net/publication/233982312_Generating_Motion_Patterns_Using_Evolutionary_Computation_in_DigitalSoccer
https://www.researchgate.net/publication/275885483_New_Search_Method_for_Approximating_Images_with_Delaunay_Triangulation
https://www.researchgate.net/publication/275885483_New_Search_Method_for_Approximating_Images_with_Delaunay_Triangulation
https://www.researchgate.net/publication/275885483_New_Search_Method_for_Approximating_Images_with_Delaunay_Triangulation

	On the computation of Delaunay triangulations via genetic algorithms
	Abstract
	1 Introduction
	2 Related work
	2.1 Computing delaunay triangulations
	2.2 Genetic algorithms
	2.2.1 An algorithm for constrained coverage problem
	2.2.2 A genetic algorithm for generating alternative mobile agent tracks to avoid moving obstacles
	2.2.3 A genetic algorithm for selecting the most appropriate compressed image

	3 Genetic algorithm for delaunay triangulation
	4 Representation and implementation of proposed algorithm
	4.1 Input and parameters
	4.2 Chromosome representation
	4.3 Population initialization
	4.4 Objective function
	4.5 Selection
	4.5.1 Stochastic selection
	4.5.2 Roulette selection

	4.6 Population crossover
	4.7 Mutation
	4.8 Reproduction
	4.9 Output file
	4.10 Remove illegal edges
	4.11 Specifications

	5 Evaluation
	6 Conclusion
	Acknowledgements
	References

