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Abstract
Quantum-inspired metaheuristics emerged by combining the quantum mechanics principles with the metaheuristic algo-
rithms concepts. These algorithms extend the diversity of the population, which is a primary key to proper global search and 
is guaranteed using the quantum bits’ probabilistic representation. In this work, we aim to review recent quantum-inspired 
metaheuristics and to cover the merits of linking the quantum mechanics notions with optimization techniques and its 
multiplicity of applications in real-world problems and industry. Moreover, we reported the improvements and modifica-
tions of proposed algorithms and identified the scope’s challenges. We gathered proposed algorithms of this scope between 
2017 and 2022 and classified them based on the sources of inspiration. The source of inspiration for most quantum-inspired 
metaheuristics are the Genetic and Evolutionary algorithms, followed by swarm-based algorithms, and applications range 
from image processing to computer networks and even multidisciplinary fields such as flight control and structural design. 
The promising results of quantum-inspired metaheuristics give hope that more conventional algorithms can be combined 
with quantum mechanics principles in the future to tackle optimization problems in numerous disciplines.

Keywords Quantum-inspired algorithms · Quantum computing · Metaheuristics · Optimization techniques · Global 
optimization · NP-hard problems

1 Introduction

It is too costly for conventional algorithms to find exact 
solutions due to real-world problems’ complexity and high 
dimensionality. To tackle this issue, metaheuristic algo-
rithms are proposed to provide an approximate solution with 
a significant cut down on computational cost. Metaheuris-
tics are problem-independent frameworks and belong to the 
high-level category of algorithms that develop heuristic opti-
mizers using a series of steps and guidelines [1].

In recent years, there has been a growing tendency 
to research metaheuristics [2]. The main advantage of 
metaheuristics is their capability to solve NP-hard prob-
lems in polynomial time. Due to the vast domain of appli-
cations and high demand for stability and accuracy, several 
modifications and hybridizations are applied to classical 
metaheuristic algorithms.

A relatively large number of metaheuristic algorithms and 
their modifications have been proposed, spanning from those 
inspired by creation-evolution to algorithms based on natural 
laws. This wide variety is justified by taking the No Free 
Lunch Theorem [3] into account. Indeed, there is no single 
solution to solve the problems of different disciplines. Every 
improvement in metaheuristic algorithms in favor of some 
specific problems leads to a decline in solving some other 
problems’ performance. So, intensive study in this field and 
the introduction of new methods and modifications are nec-
essary to cover the wide range of real-world problems. One 
of the radical variants of metaheuristics is quantum-inspired 
metaheuristics, which have been generated through the com-
bination of quantum computing principles and metaheuristic 
algorithms concepts.

 * Mahboobeh Houshmand 
 houshmand@mshdiau.ac.ir

 * Esmaeil KheirKhah 
 kheirkhah@mshdiau.ac.ir

 Shahin Hakemi 
 shahinhakemi@gmail.com

 Seyyed Abed Hosseini 
 hosseyni@mshdiau.ac.ir

1 Department of Computer Engineering, Mashhad Branch, 
Islamic Azad University, Mashhad, Iran

2 Department of Electrical Engineering, Mashhad Branch, 
Islamic Azad University, Mashhad, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-022-00783-2&domain=pdf


628 Evolutionary Intelligence (2024) 17:627–642

1 3

Improvements in classical computers’ computation power 
do not satisfy the growing demands. Moore’s law is antici-
pated to fail by 2025 as the transistors’ size lower-bound 
is limited to the atom’s size [4]. Quantum mechanics can 
break through the limitations because of a property called 
quantum parallelism, which refers to the ability of quantum 
bits (qubit) to handle different processes simultaneously. For 
instance, utilizing only 30 qubits, it is possible to handle a 
billion data objects for executing parallel computing. All the 
data is retrievable by reading a single qubit using superposi-
tion, and entanglement [5].

The novelty and capabilities of quantum computing open 
a new horizon to solve optimization problems and improve 
the existing algorithms. Feynman [6], and Manin [7] estab-
lished the quantum computing idea in the 1980s, and it has 
received much attention since then, especially after Shor’s 
ground-breaking development of a super-efficient algorithm 
to factorize large numbers in 1994 [8]. Lov Grover pro-
posed another outstanding work in this field: an extremely 
fast algorithm to search in unstructured databases in 1996 
[9]. Algorithms that utilize the quantum computing concept 
are potentially efficient because of a quantum mechanics 
property called quantum parallelism which refers to the 
ability of quantum bits (qubit) to handle different processes 
simultaneously.

This work aims to conduct a review of recent quantum-
inspired metaheuristic algorithms that have been presented 
in recent years (2017–2022) and their applications in order 
to help researchers identify the current research trends of this 
field, the state-of-the-art technologies and applications that 
use this approach, the limitations, and potential gaps in this 
scope. The reviewed works in this survey were found in Web 
of Science, SienceDirect, and IEEE Xplore using keywords 
“quantum-inspired metaheuristic”, “quantum-inspired gentic 
algorithm”, and “quantum-inspired evolutionary algorithm”.

In order to categorize the quantum-inspired metaheuris-
tics in this study, different criteria could be applied. Type of 
candidate solutions, type of search, and source of inspiration 
are the most common criteria to categorize the metaheuristic 
algorithms [10]. This paper uses the latter criterion, source 
of inspiration, to organize the algorithms. We have divided 
the sources of inspiration into two major categories, namely 
biologically-inspired and nature-based. Biologically-inspired 
algorithms mimic the evolutionary process of living organ-
isms. In contrast, the source of inspiration for nature-based 
algorithms is nature’s laws, such as physical and chemical 
laws (as illustrated in Fig. 2).

In the remainder of this study, Sect. 2 introduces recent 
works on different types of biologically-inspired quantum 
metaheuristics, namely quantum-inspired genetic algo-
rithms, quantum-inspired evolutionary algorithms, quantum-
inspired swarm-based algorithms, and quantum-inspired 
human-based, as well as quantum-inspired nature-based 

algorithms. Section 3 introduces the recent conventional 
metaheuristics with no quantum-inspired version and can 
be considered for combination with quantum-mechanics 
concepts for even more promising performance. Research 
gaps are presented in Sect. 4. Finally, this study is summa-
rized in Sect. 5.

2  Quantum‑inspired metaheuristic 
algorithms

Quantum-inspired metaheuristics take the principles 
of quantum computing to elevate the performance of 
metaheuristics. A proper balance between exploration/global 
search and exploitation/local search in metaheuristic algo-
rithms has always been a challenge, as focusing on either 
of them weakens the other. The main advantage of utilizing 
quantum computing concepts in this field is to strengthen the 
global search capability without deteriorating the exploita-
tion phase of the algorithms.

Contrary to classical computing, which is based on sim-
ple bits which are limited to either 0 or 1 values, quantum 
computation’s fundamental unit of information is the qubit. 
Just like a classical bit, a qubit can be in either state of 0 
or 1, but unlike a classical bit, it can be in any state of the 
superposition of this pair of values. This property of qubits 
makes them enable to faster executing of numerous pro-
cesses. Mathematically, a qubit can be shown as follows:

� and � are called probability amplitudes, and the state of 
the qubit after measurement will be 0 with the probability 
of |�|2 and 1 with the probability of |�|2 . So as these values 
are probabilities:

An N-qubit register can hold 2N states at the same time while 
an N-bit register in a traditional computer can only have 
a single value out of 2N possible values. This property is 
the key to quantum parallelism which leads to exponential 
improvement in efficiency.

Structure of an N-qubit individual is represented as 
following:

Manipulation of qubits’ states can be done using quantum 
gates. There are several quantum gates, such as NOT gate, 
CNOT gate, Rotation Gate, Toffoli Gate, Fredkin Gate and 
Hadamard Gate. In fact, a quantum gate is a linear transfor-
mation and consequently is reversible. A quantum gate is 
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shown by a unitary matrix U. A complex square matrix U is 
called unitary if its adjoint U† and its inverse U−1 are identi-
cal. Also, the rows and the columns of U are orthonormal 
[11]. So:

Updating the values of �
i
 and �

i
 using the Rotation gate can 

be seen in the Fig. 1 and is calculated by:

where �
i
 is the rotation angle of the ith qubit and �′

i
 and �′

i
 

are probability amplitudes of the qubit after rotation [12].

UU
† = U

†
U = UU

−1 = U
−1
U = I

[
��
i

��
i

]
=

[
cos �

i
− sin �

i

sin �
i

cos �
i

] [
�
i

�
i

]

It is worth mentioning here that in the quantum-inspired 
metaheuristics literature, the three-dimensional model of 
qubits in the Bloch sphere is simplified to two-dimensional, 
representing the rotation angle and probability amplitudes 
before and after rotation. Also, the measurement of quantum 
bits is simulated by classical computers, considering prob-
ability amplitudes.

Like their ancestors, quantum-inspired metaheuristic 
algorithms’ source of inspiration is divided into two main 
categories: biologically-inspired and nature-based (Fig. 2). 
Biologically inspired metaheuristics are genetic, evolution-
ary, swarm, and human-based algorithms. Nature-inspired 
algorithms are those which have taken natural laws, like 
physical and chemical laws, as their source of inspiration. 
This section reviews recent advantages and novel appli-
cations of quantum-inspired metaheuristics in recent five 
years. During this period, about 60% of introduced quantum-
inspired metaheuristics were inspired by evolutionary and 
genetic algorithms, more than 25% were swarm-based, and 
this percentage was only about 10 and 5% for human-based 
and nature-inspired algorithms, respectively (see Fig. 3).

2.1  Biologically‑inspired metaheuristics

2.1.1  Quantum‑inspired genetic algorithms (QGAs)

The first quantum-inspired genetic algorithm was introduced 
by Kim and Han [13]. A quantum-inspired genetic algorithm 
is a variation and improvement of a classical genetic algo-
rithm that utilizes qubit chromosome representation instead 
of conventional models, namely binary, numerical, and sym-
bolic. Qubit chromosome representation is superior to its 
classical counterpart because of its ability to represent all 
states’ superpositions simultaneously. Figure 4 illustrates the 
f lowchart quantum-inspired genetic algorithm. The Fig. 1  Rotation operation for qubit

Fig. 2  Metaheuristics major 
categories
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algorithm starts by initializing all the qubits of the qubit 
chromosomes with 1√

2
 , which makes the representation of 

linear superposition of all states equally possible. Next, 
binary candidate solutions are generated by observing qubit 
chromosomes’ states. The best solution is then selected and 
stored by evaluating candidate solutions. Until the satisfac-
tion of the termination condition, candidate solutions are 
updated, considering quantum chromosomes. Finally, quan-
tum chromosomes must be updated using quantum gates for 
the next generation use.

Recent works using the quantum-inspired genetic 
approach and their application and improvements are listed 
in Table 1.

2.1.2  Quantum‑inspired evolutionary algorithms (QEAs)

Han and Kim proposed quantum-inspired evolutionary algo-
rithms two years after the introduction of QGAs in 2002 
[24]. Just like Evolutionary algorithms (EAs), QEAs are 
based on individual representation, fitness function, and 
the population dynamics such as the number of the initial 
population, selection, crossover, mutation operations, and so 
forth. QEAs utilize qubits which are defined as the smallest 
information units. A qubits individual consists of a string of 
qubits. Search diversification is performed more properly 
using qubit representation thanks to its probabilistic repre-
sentation. The first steps of QEA lead to a diverse population 
as the qubit individuals are in the superposition of all pos-
sible states with equal probability. As the algorithm carries 
on, the convergence of individuals to a single state intensi-
fies the search. An elegant balance between exploration and 
exploitation phases is achieved by this behavior of QEA. It 
is worth mentioning that despite being inspired by quantum 
computing, QEA is not actually a quantum algorithm and is 
just a new evolutionary algorithm for classical computers. 

The flowchart of quantum-inspired evolutionary is shown 
in Fig. 5.

Table 2 summarizes works using the QEA idea in recent 
five years and improvements and modifications made on 
QEA.

2.1.3  Quantum‑inspired swarm‑based algorithms

Swarm-based optimization algorithms take the behavior 
of swarms of animals as their source of inspiration. This 
approach is called swarm intelligence. The introduction of 
term “swarm intelligence” backs to 1989 by Beni and Wang 
[58]. Swarm-based algorithms that have been modified and 
improved by quantum computing approach in recent years 
are as follows:

The most swarm-based eminent algorithm is Particle 
Swarm Optimization (PSO) which was introduced by Ken-
nedy and Eberhart [59]. PSO is a stochastic optimization 
algorithm that simulates the social behavior of birds in a 
flock. Krill Herd (KH) [60] which simulates of the krill 
individuals herding behavior, Firefly Algorithm (FA) [61] 
inspired by flashing characteristics of fireflies, Grey Wolf 
Optimizer (GWO) [62] which is inpired by hierarchical lead-
ership and hunting of grey wolves, Ant Colony Optimization 
(ACO) [63] inspired by foraging behavior of some ants spe-
cies, Bat Algorithm (BA) [64] which mimics the echoloca-
tion or bio-sonar characteristics of bats, Glowworm Swarm 
Optimization (GSO) [65] that simulates the lighting worms 
behavior, Monarch Butterfly Optimization (MBO) [66] 
which is proposed by simplifying the monarch butterflies 
migration, Spider Monkey Optimization (SMO) [67] that 
simulates the social behavior and foraging of spider mon-
keys, Whale Optimization Algorithm (WOA) [68] inspired 
by hunting method of humpback whales, Salp Swarm Algo-
rithm (SSA) [69] which mimics the swarming behavior of 
salps, Satin Bowerbird Optimization (SBO) [70] inspired bt 
breeding behavior of satin birds, Sperm Motility Algorithm 
(SMA) which simulates the fertilization process [71], Squir-
rel Search Algorithm (SSA) [72] which mimics the flying 
squirrel’s foraging, and Reptile Search algorithm [73] which 
is inspired by hunting behavior of crocodiles.

Quantum-inspired particle swarm optimization algorithm 
(QPSO) was proposed by Yang et al. [74]. QPSO utilizes 
concepts of quantum mechanics to boost the performance 
of classic PSO. Figure 6 illustrates the flowchart of QPSO.

Quantum-inspired swarm-based metaheuristic algorithms 
were introduced in the last five years, and their applications 
are listed in Table 3.

2.1.4  Quantum‑inspired human‑based algorithms

Human-based heuristics are inspired by human behavior. 
Harmony search (HS) [94] and Tabu Search (TS) [95, 96] 

Fig. 3  Distribution of quantum-inspired metaheuristics’ source of 
inspiration from 2017 to 2022
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Fig. 4  Flowchart of QGA [13]
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are among the most famous human-based metaheuristic 
algorithms. Harmony search mimics the improvisations 
of musicians in pursuit of more satisfying harmony. Tabu 
Search relies on two key elements: classifying particular 
moves in search space as forbidden or ’tabu’ and ’strategic 
forgetting’, allowing individuals to temporarily break loose 
from constraints. Some novel quantum-inspired algorithms 
developed recently concerning these concepts, which are 
listed in Table 4.

2.2  Nature‑based metaheuristics

Nature has always been an infinite source of inspiration for 
humankind. Metaheuristics are no exception. Several nature-
based metaheuristics are based on natural phenomena and 
laws of physics and chemistry. Quantum-inspired versions 
of Gravitational Search Algorithm (GSA) [101] that is 
based on the law of gravity, Colliding Bodies Optimization 
(CBO) [102] which imitates the collision between objects, 
and Charged System Search (CSS) [103] which is based on 
Coulomb law from electrostatics and Newtonian laws from 
mechanics have been proposed recently. In 2019 Multi-scale 
Quantum Harmonic Oscillator Algorithm (MQHOA) was 
originally introduced as a quantum-inspired algorithm [104]. 
Quantum versions of nature-inspired metaheuristic algo-
rithms between 2017 and 2022 are summarized in Table 5.

2.3  Numerical optimization comparison

As the recent proposed quantum-inspired metaheuristic 
algorithms are applied to different applications, it is impos-
sible to compare their effectiveness fairly. In addition, the 
algorithms that are proposed for the same applications may 
differ in the methods and datasets they use.

However, numerical optimization is a relatively more 
common application among the proposed quantum-inspired 
metaheuristics. So, we conduct a comparison between some 
of the algorithms. The algorithms is this comparison are 
Entanglement-Enhanced Quantum-inspired Tabu Search 
Algorithm (Entanglement-QTS) [98], Multi-scale Quantum 
Harmonic Oscillator Algorithm (MQHOA) [104], Multi-
scale Quantum Harmonic Oscillator Algorithm With Multi-
Harmonic Oscillators (MHO-MQHOA) [110], Quantum 
Salp Swarm Algorithm (QSSA) [89], Half Significant Bit 
QEA (HSBQEA) [25], Stepwise Real QEA [25], enhanced 
Quantum behaved Particle Swarm Optimization (e-QPSO) 
[77], Quantum-Inspired Acromyrmex Evolutionary Algo-
rithm (QIAEA), and Quantum Enhanced Colliding Bodies 
Optimization (QECBO) [108]. Six well-known benchmark 
functions are selected for this comparison. The benchmark 
functions consist of two unimodal functions, namely the 
Sphere function and Rosenbrock function, and four multi-
modal functions, Schewel function, Rastrigin function, Ack-
ley function, and Griewank, and the reported results have 
been compared.

It is worth mentioning that unimodal benchmark func-
tions are mainly used to examine the exploitation power of 
the algorithms, while multimodal benchmark functions are 
suitable to evaluate the exploration abilities.

The reported results are taken from the original papers 
and are collected in Table 6. Although the experiments 
have been conducted on different dimensions using dif-
ferent maximum fitness function evaluations, the number 
of evaluations is somehow proportionate to the number of 
dimensions so that the results can be roughly compared 
together. From the results, it can be concluded that all 
the algorithms successfully solved the unimodal test func-
tions except the HSBQEA. The Schwefel function was the 

Table 1  Quantum-inspired genetic algorithms (QGA) applications (2016–2022)

Applications Year Contributions/innovations/modification References

Real-time task scheduling 2017 Association of evaluation function with heuristic earlier deadline 
first (EDF)

Konar et al. [14]

Precedence constrained job scheduling 2018 Minimization of both load imbalance and load balance cost ratio 
simultaneously

Alam et al. [15]

Multimodal optimization of flight control system 2019 Generating new chromosomes using stratification method Bian et al. [16]
The RNA secondary structure prediction 2019 Shi et al. [17]
Double digest problem 2020 DNA mapping (converting the binary qubit representation to map-

ping sequences)
Suo et al. [18]

Modified traveling purchaser problem 2020 Introducing in vitro fertilization (IVF) crossover method Pradhan et al. [19]
Crude oil scheduling 2020 Integration of grammar- based, linear, and quantum-inspired 

genetic programming
Pereira et al. [20]

Segmentation and optimization 2020 Sabeti et al. [21]
Resource-constrained project-scheduling 2021 Saad et al. [22]
Predictive BPaaS Management 2021 Utilizing the QGA for optimization the training phase of a neural 

network prediction model
Hedhli et al. [23]



633Evolutionary Intelligence (2024) 17:627–642 

1 3

most challenging in the multimodal functions, and QSSA, 
HSBQEA, and e-QPSO algorithms could not converge 
into the global minimum. However, it is not a significant 
drawback since several well-known metaheuristics fail to 

avoid the tricky local optima of the Schwefel benchmark 
function’s search space. The error result for the Rastrigin, 
Ackley, and Griewank functions was acceptable for all 
algorithms and was at least near zero.

Fig. 5  Flowchart of QEA [24]
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3  Recent metaheuristics without quantum 
version

This section introduces some novel conventional 
metaheuristics and their applications. To our best knowl-
edge, these algorithms have not been combined with 

quantum mechanics notions yet. So, quantum-inspired 
versions of these approaches can be developed in future.

One of the most prominent examples is the Arithme-
tic Optimization Algorithm (AOA) [113], which utilizes 
arithmetic operators to solve arithmetic problems. The 
Aquila Optimizer (AO) [114] is a state-of-the-art nature-
inspired metaheuristic inspired by Aquila’s hunting 

Table 2  Quantum-inspired evolutionary algorithms (QIEAs) applications (2017–2022)

Applications Year Contributions/innovations/modification References

Numerical optimization 2017 Rotation gates improvement Wright et al. [25]
Robotic flow shop scheduling 2017 Utilizing adaptive crossover and mutation operators Lei et al. [26]
Continuous optimization 2017 Talbi et al. [27]
Flexible job-shop scheduling 2017 Applying elitist attitude to boost convergence speed Wu et al. [28]
Disruption management in cloud manufacturing 2017 Integration of QEA with group leader optimization algorithm 

and chaotic mapping
Liu et al. [29]

Social networks’ community detection 2017 Using the QEA for parallel implementation of community 
detection algorithms

Gupta et al. [30]

Heterogeneous cellular networks design 2017 Introducing in vitro fertilization (IVF) crossover method Xie et al. [31]
Ordering problems 2017 Using the QEA solution to initialize a traditional order-based 

genetic algorithm population
Silveira et al. [32]

Numerical optimization problems 2018 Tirumala et al. [33]
Optimal view selection 2018 Kumar et al. [34]
Optimization of electromagnetic devices 2018 Keeping only promising solutions for performance checking 

mechanism
Yang et al. [35]

Fuzzy controller design 2018 Yu et al. [36]
Constrained fuel loading pattern optimization 2018 Oktavian et al. [37]
Hand gesture recognition 2018 Applying minimum redundancy maximum relevance criterion 

to QEA
Ryu et al. [38]

Quadratic assignment problem 2018 Chmiel et al. [39]
Fuzzy clustering parameters optimization 2018 Integration with fuzzy c-means algorithm Bharill et al. [40]
Complex networks’ community detection 2018 Use of conventional partitioning algorithm solution as a guiding 

quantum individual
Yuanyuan et al. [41]

Process planning and scheduling 2018 Integration with group leader optimization algorithm and cha-
otic mapping

Liu et al. [42]

Hybrid laminated composites design 2018 Using rank-based dynamical version of QEA Kaveh et al. [43]
Pitched roof frames design 2019 Using different quantum gate for exploitation improvement Arzani et al. [44]
Multi-objective fuzzy classifier 2019 Implementing QEA with categorical variables Nunes et al. [45]
Reactor loading design 2019 Using self-regulated learning Hsieh et al. [46]
Sensor placement optimization 2019 Development of a dynamic version of QEA Kaveh et al. [47]
Fuzzy cognitive maps 2019 Integration of QEA with particle swarm optimization algorithm Kolahdoozi et al. [48]
Efficient data clustering 2019 Combination of QEA with fuzzy c-means algorithm Bharill et al. [49]
Complex systems optimization problems 2019 Modification of QEA by inspiration from colony evolution of 

acromyrmex ants
Montiel et al. [50]

Multi-carrier communication 2020 Utilizing multi objective fitness function and characteristics 
information ranking

Hou et al. [51]

Robot path planning 2020 Handling discretized environment Gao et al. [52]
Network resource optimization 2020 Using self-adaptive evolution mechanism Qu et al. [53]
Feature selection 2020 Utilizing chaotic maps Ramos et al. [54]
Multi-objective optimization 2020 Implementing parallelism to solve large-scale problems Cao et al. [55]
Airport gate allocation 2021 Combination of cooperative co-evolution, random rotation 

direction, and hamming adaptive rotation angle
Cai et al. [56]

Predictive BPaaS Management 2021 Applying biological coevolution for sub-populations evolution Dias et al. [57]
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behaviour. Equilibrium Optimizer (EO) [115] is a phys-
ics-based optimization algorithm inspired by a volume 
mass balance equation. Social Engineering Optimizer 
(SEO) [116] is inspired by human social behavior. Red 
Deer Algorithm (RDA) [117] mimics the Scottish red 
deer’s mating behavior. Other examples of nature-inspired 
metaheuristics are Keshtel Algorithm [118] (KA), Afri-
can Vultures Optimizer (AVO) [119], and Harris Hawks 
Optimizer (HHO) [120].

Table 7 gives the metaheuristics without quantum-
inspired versions till now and some of their recent 
applications.

4  Research gaps

Searching through several recent quantum-inspired 
metaheuristics, we came across some areas that have not 
been covered thoroughly. The literature is full of innova-
tive and elegant contributions in terms of combining quan-
tum mechanics notions with conventional metaheuristic 
algorithms. However, the literature suffers from several 
gaps.

First, most of these algorithms perform a simulation 
of quantum bits and quantum gates manipulating their 

Fig. 6  Flowchart of QPSO [59]
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states. The emergence of real quantum computers and the 
implementation of quantum-inspired metaheuristics on 
them is a significant issue to be considered. One solu-
tion is to use a hybrid approach, using quantum circuits 
to implement quantum population and the quantum gates 
and utilizing conventional computers for fitness function 

evaluation. However, we cannot take advantage of the 
super-fast quantum computation, and we only profit from 
the true probabilistic nature of qubits which might not 
significantly outperform the simulated qubits in classical 
computers. In this manner, we will still struggle with the 
massive amount of time needed to run the metaheuristic 

Table 3  Quantum-inspired swarm-based algorithms applications (2017–2022)

Source of inspiration Application Year References

Particle swarm optimization (PSO) Engineering inverse problems 2017 Rehman et al. [75]
Grey level image clustering 2020 Dey et al. [76]
Numerical optimization 2021 Agrawal et al. [77]
Multimodal multi-objective problems 2021 Li et al. [78]
Virtual machines in smart computing cloud place-

ment optimization
2022 Balicki et al. [79]

Krill herd optimization algorithm (KH) Multi-objective optimization problems 2020 Liu et al. [80]
Firefly algorithm (FA) Segmentation of hippocampus images 2021 Choudhury et al. [81]
Grey wolf optimizer (GWO) Unit commitment problem 2021 Srikanth et al. [82]

0–1 Knapsack problem 2021 Wang et al. [83]
Ant colony optimization (ACO) Multi-objective routing in WSN 2019 Li et al. [84]
Bat inspired algorithm (BA) Classification of leukocytes in blood smear 2021 Sharma et al. [85]
Glowworm swarm optimization (GSO) Discrete optimization 2017 Gao et al. [86]
Monarch butterfly optimization (MBO) Air vehicle path planning navigation 2020 Yi et al. [87]
Spider Monkey optimization (SMO) Grey level image clustering 2020 Dey et al. [76]
Whale optimization algorithm (WOA) Wrapper feature selection clustering 2020 Agrawal et al. [88]
Salp swarm algorithm (SSA) Mechanical design 2019 Chen et al. [89]
Satin bowerbird optimization (SBO) Constrained structural optimization 2021 Zhang et al. [90]
Sperm motility algorithm (SMA) General optimization 2022 Hezam et al. [91]
Squirrel search algorithm (SSA) Global optimization problems 2022 Zhang et al. [92]
Reptile search algorithm (RSA) Global optimization and data clustering 2022 Almodfer et al. [93]

Table 4  Quantum-inspired 
human-based algorithms 
(2017–2022)

Source of inspiration Application Year References

Harmony search (HS) Multi-objective optimization 2021 Sadeghi Hesar et al. [97]
Tabu search (TS) Function optimization 2017 Kuo et al. [98]

Portfolio optimization 2019 Chou et al. [99]
Portfolio optimization 2021 Chou et al. [100]

Table 5  Quantum-inspired 
nature-based algorithms 
(2017–2022)

Source of inspiration Application Year References

Gravitation search algorithm (GSA) Job-scheduling 2017 Singh et al. [105]
Feature subset selection 2017 Barani et al. [106]
Wireless sensor networks 2021 Mirhosseini et al. [107]

Colliding bodies optimization (CBO) Numerical optimization 2020 Kaveh et al. [108]
Charged system search (CSS) Large-scale structure design 2022 Talatahari et al. [109]
Multi-scale quantum harmonic oscilla-

tor algorithm (MQHOA)
Numerical optimization 2018 Wang et al. [104]
Numerical optimization 2019 Li et al. [110]
Numerical optimization 2019 Mu [111]
Numerical optimization 2020 Mu et al. [112]
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algorithms since classical computers are in charge of fit-
ness function evaluations. In addition, this approach only 
works for binary-coded algorithms, and the issue for real-
coded algorithms is much more complicated. So, there is 
a considerable demand for translating quantum-inspired 
metaheuristics to real quantum computers.

Second, optimizing the current algorithm’s parameters 
has gotten inadequate attention. For instance, in a quan-
tum-inspired genetic algorithm, the number of the qubits 
in chromosomes, the state of being static or dynamic of 
chromosomes’ length, and the impact of the size and direc-
tion of rotation gates are potential subjects for further 
research.

Third, comparing and using the current quantum-inspired 
optimization algorithms on new applications is tedious 
because there is no programming library with compre-
hensive implementation of quantum-inspired optimization 
algorithms like the libraries implemented for conventional 
metaheuristics (see [146]).

5  Conclusions

This review covers quantum-inspired metaheuristics pro-
posed between 2017 and 2022 and organizes these algo-
rithms concerning their source of inspiration. The algo-
rithms’ modifications, innovations, and contributions are 
also introduced in tabular format for readability and quick 
reference.

The dominant sources of inspiration for quantum-inspired 
metaheuristics are evolutionary and genetic algorithms. The 
swarm-based inspired algorithms are the following most 
widely-used techniques. The quantum-inspired metaheuristic 
concept has been adapted to some classical problems such as 
time scheduling travelling salesperson, and 0-1 knapsack as 
well as numerous applications, namely image segmentation, 
RNA prediction, cloud computing, flight control, network 
community detection, network design, network routing, view 
selection, fuzzy controller design, multi-agent systems, air-
port gate allocation, and structural design. There has been 

Table 6  Error results of quantum-inspired metaheuristic algorithms applied on benchmark functions

Algorithm Maximum 
evaluations

Dim. Metric Sphere function Rosenbrock Schwefel func-
tion

Rastrigin func-
tion

Ackley function Griewank

Entanglement-
QTS [98]

15,000 30 Mean 0.00E+00 0.00E+00 8.27E−07 0.00E+00 0.00E+00 0.00E+00
SD 0.00E+00 0.00E+00 2.18E−11 0.00E+00 0.00E+00 0.00E+00

40 Mean 0.00E+00 0.00E+00 1.10E−06 0.00E+00 0.00E+00 0.00E+00
SD 0.00E+00 0.00E+00 1.22E−11 0.00E+00 0.00E+00 0.00E+00

50 Mean 0.00E+00 0.00E+00 1.38E−06 0.00E+00 0.00E+00 0.00E+00
SD 0.00E+00 0.00E+00 1.38E−11 0.00E+00 0.00E+00 0.00E+00

MQHOA [104] 300,000 30 Mean 4.65E−84 4.91E−01 NA NA 1.70E−01 2.51E−03
SD 4.82E−84 3.76E−01 NA NA 5.01E−01 4.87E−03

600,000 60 Mean 2.50E−86 6.09E−01 NA NA 1.93E+00 2.75E−03
SD 4.20E−86 5.79E−01 NA NA 7.27E−01 5.74E−03

MHO-MQHOA 
[110]

300,000 30 Mean 1.58E−177 2.17E+00 NA NA 4.50E−15 1.64E−04
SD 0.00E+00 9.65E+00 NA NA 4.59E−16 1.27E−03

600,000 60 Mean 8.40E−161 4.15E+00 NA NA 1.15E−14 3.70E−18
SD 6.51E−143 1.25E+01 NA NA 5.59E−15 2.01E−17

QSSA [89] 15,000 30 Mean 0.00E+00 3.42E+00 5.56E+03 2.47E−323 8.88E−16 0.00E+00
SD 0.00E+00 3.72E+00 1.18E+02 0.00E+00 2.01E−31 0.00E+00

HSBQEA [25] 500,000 50 Mean 1.63E+03 9.17E+07 1.88E+02 7.99E+01 1.72E+01 1.53E+01
SD 7.16E+02 7.77E+07 8.73E+01 1.82E+01 1.12E+00 5.86E+00

SRQEA [25] 500,000 50 Mean 0.00E+00 4.34E+01 0.00E+00 0.00E+00 5.63E−07 1.48E−02
SD 0.00E+00 3.09E+01 0.00E+00 0.00E+00 3.26E−06 2.59E−02

e-QPSO [77] 15,000 30 Mean 8.23E−95 2.76E+01 4.82E+03 0.00E+00 1.42E−15 0.00E+00
SD 8.15E−94 3.76E−01 8.05E+02 0.00E+00 1.27E−15 0.00E+00

QIAEA [50] 2000 2 Mean NA 2.48E−02 4.17E−04 3.81E−04 NA 3.52E−03
SD NA 6.48E−02 5.11E−04 4.34E−04 NA 3.75E−03

QECBO [108] 10,000 10 Mean NA NA 0.00E+00 1.05E+00 2.45E−01 4.52E−01
SD NA NA 6.65E−01 9.24E−01 6.93E−02 1.19E−01

20,000 30 Mean 2.90E−06 1.60E−01 NA NA NA NA
SD 1.05E−05 8.93E−02 NA NA NA NA
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a vast interest in the field of quantum-inspired metaheuris-
tics recently. Quantum computing elevates metaheuristics’ 
performance by its characteristics, such as parallelism and 
qubit probabilistic representation, which are in favour of 
efficiency and accuracy, respectively. However, quantum-
inspired metaheuristic algorithms adapt quantum mechanics 
concepts and are mostly executed on classical computers. 
Therefore, quantum qubits must be simulated on classical 
bits, and practically it leads to inefficiency. State-of-the-art 
quantum computers still have a limited number of qubits. 
So, it is impossible to execute most of these algorithms on 
real quantum computers for the time being. However, con-
cerning the pace of improvements in quantum hardware, 
the development of powerful quantum computers does not 
seem unachievable in the early future. Finally, although there 
have been remarkable works considering quantum-inspired 
metaheuristics, the literature lacks a comprehensive com-
parison between the algorithms in terms of performance and 
time complexity.

The potential future works consist of further studies 
on metaheuristic algorithms to be implemented solely on 
real quantum computers or at least to harness the quantum 

computing capabilities in favour of performance improve-
ment. Real-coded quantum-inspired algorithms also need 
more attention, as binary-coded algorithms require extra 
computations to convert binary and decimal representa-
tions for fitness function evaluation in numerical opti-
mization problems. Moreover, the proposal of the quan-
tum-inspired version of the conventional metaheuristics 
presented in Sect. 3 can be considered for future studies.
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Table 7  Recent applications of some conventional metaheuristics with no quantum-inspired version
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Arithmetic optimization algorithm (AOA) Numerical optimization and engineering problems 2022 Zhang et al. [121]
Solving industrial engineering problems 2022 Fang et al. [122]
Internet of healthcare things (IoHT) 2022 Dahou et al. [123]
Text document clustering 2022 Abualigah et al. [124]

Aquila optimizer (AO) Hyperspectral image classification 2022 Subha et al. [125]
Automatic voltage regulation 2022 Ekinci et al. [126]
Wind forcasting 2022 Xing et al. [127]

Red Deer Algorithm (RDA) Closed-loop supply chain network 2021 Chohan et al. [128]
Social engineering optimizer (SEO) Decision-making model design 2022 Chohan et al. [129]

Supply chain network design 2021 Mousavi et al. [130]
Relief supply chain for SARS-COV-2 pandemic 2021 Zahedi et al. [131]

Equilibrium optimizer (EO) Feature selection 2022 Varzaneh et al. [132]
Renewable energy systems design 2022 Zhao et al. [133]
Power flow optimization 2022 Houssein et al. [134]

Keshtel algorithm (KA) Shrimp supply chain design 2021 Mosallanezhad et al. [135]
Multitask supply chain network 2021 Zahedi et al. [136]
Sustainable agricultural supply chain network 2021 Hamdi et al. [137]
Multi objecti supply chain design 2021 Fasihi et al. [138]

African vultures optimizer (AVO) Skin cancer detection 2022 Hu et al. [139]
Combined systems modeling 2022 Chen et al. [140]
Feature selection 2022 Balakrishnan et al. [141]

Harris Hawks optimizer (HHO) Fault diagnosis of wind turbine 2022 Long et al. [142]
Numerical optimization and engineering problems 2022 Li et al. [143]
Hybrid energy systems optimization 2022 Anand et al. [144]
Image segmentation 2022 Dong et al. [145]
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