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Abstract
In this paper, we investigate the problem of wideband sensing for cognitive radio. Due to resource constraint, a cognitive 
node targets at finding a given number of spectrum holes, which is studied under a novel wideband sensing architecture. 
Specifically, the cognitive node can dynamically focus its sensing measurements on different portions of contiguous chan-
nels. An adaptive wideband sensing scheme is proposed under the standard Bayesian experimental design framework via 
three steps: (1) define a Bayesian cost that incorporates the numbers of desired spectrum holes, (2) design hypothesis test-
ing rule to detect access opportunities, and (3) identify a scheme to adapt the measurements during the sensing process. In 
order to facilitate implementation, we further propose an approximated Bayesian experiment design scheme to reduce the 
computational complexity. The performance gain of our wideband sensing scheme is demonstrated via numerical simulation.

Keywords  Wideband Sensing · Cognitive Radio · Bayesian Experimental Design

1  Introduction

Cognitive radio (CR) technique can opportunistically uti-
lize channels that are not temporally unoccupied by primary 
users (PUs), and it provides an attractive solution to tackle 
the spectrum scarcity [1–3]. Compared with single-band CR, 
wideband CR can explore and exploit spectrum holes over a 
broad range of spectrum, which promises better utilization 
of access opportunities and higher achievable throughput 
[4]. Spectrum sensing identifies available spectrum holes, 
and therefore, is pivotal for the design of wideband CR [5].

With the concept of “divide and conquer”, the wideband 
sensing task can be accomplished via sampling and detecting 
the channels separately with single band sensing techniques. 
However, when channels are sensed one-by-one, the sens-
ing time required for sweeping the whole spectrum band 
can be very high. In the contrast, simultaneously sensing all 

channels requires a bank of filters to cover the whole spec-
trum band [6], which can cause great hardware expenses.

Another approach is to sample the wideband signal 
directly, e.g., [7], and as long as the sample rate is at least 
twice of the signal bandwidth (known as the Nyquist rate), 
the information of each individual band can be recovered. 
However, because the bandwidth of the wideband signal is 
usually high, this approach often results in an unaffordable 
sampling rate.

Recently, compressive sensing (CS) technique has 
received considerable attention with the application for 
wideband spectrum sensing [8]. Given the wideband sig-
nal is sparse at the frequency domain, i.e., there are small 
amount of channels are occupied, the wideband spectrum 
signal or its spectrum power can be recovered from samples 
obtained at a rate smaller than the Nyquist rate. After infor-
mation at each channel recovered, the spectrum occupancy 
detection is made accordingly. However, the sparsity level, 
which is defined as the number of occupied channel, is cru-
cial for CS recovery algorithm and is typically time varying 
for wideband signal. Therefore, it is non-trivial to accom-
plish CS when the sparsity level information is unknown [9].

It can be seen that, all above schemes are targeting at 
detecting the spectrum occupancy of each individual chan-
nel. However, in many cases, the CR is only able to utilize 
up to certain number of channels. Therefore, it is possible 
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to ease the complexity burden of WSS, since only the cor-
rect detection of a portion of channels is of interest. With 
this motivation, we investigate the WSS problem under an 
architecture that was first studied in [10], and we name it as 
the “sweep-zoom” architecture. The key components are an 
adjustable local oscillator (LO) and an adjustable bandpass 
filter (BF), and it is able to sweep to different location of the 
spectrum according to the frequency the LO and to measure 
different number of channels according to the bandwidth of 
the BF. This architecture is of interest, due to its low imple-
mentation complexity of offering the flexibility of adapting 
measurements.

We study the WSS problem with the framework of Bayes-
ian experimental design [11], which consists of two dimen-
sions: one is how to make detection decision given the initial 
belief about channel’s occupancy and a sequence of obser-
vations taken over different portions of channels; the other 
is how to adaptively take measurements based on current 
belief about channel’s occupancy. These two processes boost 
each other with the total goal to detect the given number of 
access opportunities.

The most related work in literature is [12], and its dif-
ference with our work is two-fold. First, in [12], the CR 
only interests in finding a given number spectrum holes as a 
whole. In the contrast, we also value partial discovery, since 
a cognitive node may be able to adapt its transmission rate 
according to the number of available channels via, for exam-
ple, orthogonal frequency division multiplexing techniques. 
Second, work [12] focused on spectrum detection problem 
under a fixed measure process, while this paper further 
improves spectrum sensing performance via adapting sens-
ing measurements based on real-time sensing observations.

The rest of paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents the PUs’ signal 
model, and the CR’s sensing architecture and sensing pro-
tocol. An adaptive WSS scheme is proposed in Sect. 4, and 
it is modified in Sect. 5 with in order to reduce complexity. 
Section 6 demonstrates the performance of proposed AWSS 
scheme. Section 7 concludes the paper.

2 � Related work

2.1 � Spectrum sensing and access

Reliable spectrum sensing is critical for cognitive radio, 
since it enables secondary nodes to correctly identify 
spectrum holes while minimizing interference to primary 
users. Various spectrum sensing schemes have been con-
sidered [13] for handling the reliability and agility trade-
off. For example, when primary activities have temporal 
correlation [14, 15], sensing observations can be used for 
predicting spectrum statuses. Spectrum sensing decision 

may need to balance between the two goals: identifying 
idle channel for immediate use and tracking primary activ-
ities to guide future decisions.

Given sensing results, cognitive radio network can 
improve spectrum utilization by intelligently exploiting 
identified spectrum holes. For example, work [16] pro-
posed cooperative transmission scheme, which exploits 
intermediate nodes to relay message and enable data 
exchanging whenever there exists a multi-hop-multi-
channel path between two communicating nodes. The 
cooperative transmission scheme reduces the likelihood 
of experiencing communication breakdown due to “spec-
trum outage”. Furthermore, work [17] considered dynamic 
spectrum management scheme for 5G Non Orthogonal 
Multiple Access (NOMA) wireless networks. The cog-
nitive node attempts to optimize the power allocation 
between the licensed and unlicensed band in order to 
maximize throughput. The optimization problem was mod-
eled as a Common Pool Resource game and a distributed 
algorithm was proposed to solve a Pure Nash Equilibrium 
solution.

2.2 � Sequential wideband sensing

In general, for wideband cognitive radio, not all bands are 
equally important. For example, an SU may prefer to first 
sense channels with high idle possibility or good channel 
quality. Thus, by intelligently deciding the sensing order or 
sensing stopping rule, the throughput of SU system can be 
maximized [18, 19]. Furthermore, when there exists corre-
lation among different channels, historical sensing results 
can be exploited to improve sequential sensing actions and 
detection reliability [20, 21].

In works [18–21], the sensing decision of each channel 
is made based on a fixed length of data samples. However, 
it is shown [22] that the sensing duration of each channel 
can be considerably reduced with Sequential Probability 
Ratio Testing (SPRT). Therefore, by combining the con-
cept of SPRT [22] and the concept of sequential search 
over channels, works [23, 24] studied a sequential sensing 
scheme in frequency-temporal domain. Specifically, SU 
intelligently decides which channels to sample, and how 
many samples to collect at each channel, so as to mini-
mize sensing cost (e.g., sensing time) under the premise 
of ensuring reliable detection.

In works [18–20, 23, 24], a cognitive node can only 
allocate sensing resource to one channel a time, which 
may limit the sensing performance. In this work, we will 
further study the wideband sensing scheme where a cogni-
tive radio is capable of adapting its sensing resource over 
multiple channels.
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3 � System model

3.1 � Primary users’ signal model

We assume the system consists of L channels, and each band 
has bandwidth W. The PUs operates in a slotted manner, and 
during each time slot, the wideband signal, denoted as rl(t) , 
can be written as

where fl is the angular frequency at the center of the l-th 
channel; �l is the indicator variable for the status of the l-th 
channel at current time slot, where �l = 1 if the l-th chan-
nel is occupied, and �l = 0 , otherwise; and sI,l(t) and sQ,l(t) 
are the in-phase and quadrature components for the PU’s 
signal at l-th channel, respectively; and nI,l(t) and nQ,l(t) are 
the in-phase and quadrature components of the noise at l-
th channel, respectively. At each time slot, the occupancy 
of each channel is modeled as a Bernoulli random variable 
(r.v.) with P (𝜆l = 0) = 𝜔̄0(l) , and �l is independent with �n , 
∀n ≠ l . We assume 𝜔̄0 is known to the CR. The PU’s signal 
sI,l(t) and sQ,l(t) are modeled as two independent Gaussian 
r.v.s with are with zeros mean and variances equal to �2

l
∕2 . 

The noise nI,l(t) and nQ,l(t) are also modeled as two inde-
pendent zero mean Gaussian r.v.s with variance �2

0
∕2 , which 

implies the noise variance is the same for all channels1. We 
assume �2

l
∕2 and �2

0
∕2 are also known to the CR.

3.2 � Sweep‑zoom sensing architecture

We augment the classical sweep architecture an adjustable 
BF (Fig. 1), which operates at medium frequency and can 
be adjusted to cover a bandwidth from W up to BmaxW  . By 
setting the bandwidth of the filter as BW, and setting the 
operating angular frequency of the LO fc as fl +

B−1

2
W  , the 

signal and noise at L(fc,B) ≜ {l, l + 1, ..., l + B − 1} chan-
nels can pass the filter. After squaring and integrating with 

(1)

r(t) =

L∑

l=1

[
�l ⋅ sI,l(t) + nI,l(t)

]
cos(flt) +

[
�l ⋅ sQ,l(t) + nQ,l(t)

]
sin(flt),

duration T, which is set to 1
W

 , the output after integration can 
be approximated via as [25]

3.3 � Adaptive wideband sensing

We assume among L channels, the CR can use up to d chan-
nels, and when the number of detected spectrum holes is 
less than d, the CR is still able to utilize these access oppor-
tunities for transmission, although with reduced through-
put. At each time slot, the CR can use a fixed length sens-
ing budget with time duration KT, i.e., it can get totally K 
measurements. Combining the initial belief 𝜔̄0 with all the 
K measurements, the CR makes decision about the channels’ 
occupancy. If the number reported spectrum holes is more 
than d, the CR randomly picks d of them for transmission.

4 � Adaptive wideband sensing via standard 
Bayesian experimental design

Bayesian experimental design (BED) addresses the problem 
of how to collect data in order to achieve (near) optimal 
result for certain Bayesian inference task. Here we formulate 
the adaptive wideband sensing as an BED with Bayesian 
hypothesis testing task.

A joint channel status is defined as the combination of all 
channel status, and a hypothesis is corresponding to a guess 
of a joint channel status. Therefore, there are M = 2L differ-
ent hypotheses, and the set of the M hypotheses is defined 
as M.

Before any measurement is conducted, the initial prior 
probability distribution over M can be calculated easily 
from 𝜔̄0 . After observing K measurements, the CR can 
update its belief over the hypothesis space, and a proper 
decision should be made, such that it balances between the 
goal of finding d spectrum holes and protecting the PUs. We 
address this balancing problem via defining a proper Bayes-
ian cost in Sect. 4.1. And with Bayes’ theorem, the formula 
for CR iteratively update its belief after each observation 
is given in Sect. 4.2. After these preparation, the way for 
adaptively collecting the K measurements and the decision 
rule after the sensing budget is addressed in Sect. 4.3.

4.1 � Bayesian cost design for wideband spectrum 
hole detection

When the status of each channel is decided separately, the 
cost of deciding hypothesis Hi while hypothesis Hj is true, 
denoted as cS(Hi,Hj) , can be reasonably defined as

(2)y =
1

2

∑

l∈L(fc,B)

�l ⋅

(
s2
I,l
(t) + s2

Q,l
(t)
)
+ n2

I,l
(t) + n2

Q,l
(t).

Fig. 1   Sweep-zoom sensing architecture

1  This homogenous assumption is only for brevity, and the methods 
developed later holds for general noise models.
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where Hi(l) denotes the status of the l-th channel under 
hypothesis Hi.

However, we argue that, when the goal is to detect d spec-
trum hole out of L channels, it is more suitable to define the 
cost jointly as follows,

where Φij(s, t) is defined as

In the design of cJ(Hi,Hj) , mistakenly deciding 0 as 1 will 
not be penalized, as long as enough spectrum holes has been 
discovered. However, deciding 1 as 0 will always be penal-
ized, the CR is still obligated to protect the PUs.

4.2 � Inference posterior probability distribution

Suppose the filter’s bandwidth is BW and the central angular 
frequency of the LO is fc . When the filtered out signal covers 
integer number of channels, we define the joint setting of the 
filter and LO as a valid measure action, denoted as a, i.e., 
a ≜ (fc,B) , and denote L(a) as the set of indices of covered 
channels. Refer to Sect. 3.2 for the relationship between L(a) 
and (fc,B).

For any action a and hypothesis Hj , it is easy to show that 
the measurement y is the summation of positive weighted 
squared standard norm distribution, which has no closed 
form formula for the probability density function (PDF). But 
fortunately, via moment matching, Gamma distribution can 
be parametrized as an useful approximation as follows [26].

D e f i n e  ka,j ≜ �L(a)� +
∑

l∈L(a) Hj(l)  a n d 
�a,j ≜ 1

ka,j

�
�L(a)��2

0
+
∑

l∈L(a) Hj(l)�
2
l

�
 , the conditional PDF 

of y can be approximated as

which is the Gamma distribution with shape parameter ka,j 
and scale parameter �a,j.

With f (y|Hj, a) , the posterior probability P (Hj|y, a) after 
y and prior probability �(Hj) can be calculated as

(3)cS(Hi,Hj) ≜
L∑

l=1

1(Hi(l) ≠ Hj(l)),

(4)
cJ(Hi,Hj) ≜Φij(0, 1) +min{Φij(1, 0),

max{d − Φij(0, 0), 0}},

(5)Φij(s, t) ≜
L∑

l=1

1(Hi(l) = s,Hj(l) = t).

(6)f (y|Hj, a) =
1

Γ(ka,j)�
ka,j

a,j

yka,j−1e−y∕�a,j ,

(7)P (Hj|y, a) =
f (y|Hj, a)�(Hj)

f (y)
.

4.3 � Hypothesis testing and sequential 
measurement adaptation

Here, we limit the scope to greedy measurement adaptation via 
ignoring the information of K, which gives non-trivial solu-
tion, and is the standard methodology in the field of BED [11]. 
That is, before a measure action needs to be chosen, it treats 
this measurement as the final measurement, and the action is 
chosen in a way such that the expected Bayesian cost is mini-
mized under optimal decision rule given the action, which is 
formalized as follows.

Given action a and measurement y, define a decision rule 
�(⋅|a) ∶ ℝ

+
→ M , i.e., �(y|a) maps the measurement y to 

a joint channel status. Therefore, for any a and �(⋅|a) , the 
expected Bayesian cost is

Define LJ(�(y|a)) as

which is the expected Bayesian risk of decision �(y|a) given 
measurement y under action a. Given function LJ(�(y|a)) , 
the best decision to take given y under a is simply to find the 
decision with smallest function value, i.e.,

For fixed a, the optimal decision rule �∗
J
(y|a) divides the 

measurement space into different regions, and for measure-
ment inside a region the same decision is made. Define Yi(a) 
as the region where decision Hi is made, and we have

Given Yi(a) , the expected risk of taking each action a, 
denoted as R(a), can be formulated as

where the last equality comes via dividing the integration 
region of (8) into M regions according to Yi(a).

With function R(a) , the optimal action to choose is the one 
minimizing R(a), i.e.,

(8)RJ(�|a) = ∫
M∑

j=1

cJ(�(y|a),Hj)P (Hj|y, a) f (y)dy.

(9)LJ(�(y|a)) ≜
M∑

j=1

cJ(�(y|a),Hj)P (Hj|y, a),

(10)�∗
J
(y|a) = argmin

x∈H
{LJ(x)}.

(11)
Yi(a) ≜ {y ∣ �∗

J
(y|a) = Hi}

= {y ∣ LJ(Hi) ≤ LJ(Hn),∀n ≠ i}.

(12)

R(a) ≜ inf
�
{RJ(�|a)}

=

M∑

i=1

M∑

j=1

cJ(Hi,Hj)�
Yi(a)

f (y|Hj, a)dy�(Hj),

(13)a∗ = argmin
a
{R(a)}.



243Evolutionary Intelligence (2024) 17:239–247	

1 3

4.4 � Complexity analysis

The BED adapts sensing measurements by selecting the 
action with the smallest R(a), which requires the informa-
tion of Yi(a) defined in (11) for all i ∈ H in order to com-
pute the integral. However, solving Yi(a) requires to solve 
following equation, for all j, n ∈ H and n < j,

where �jn = �(Hj)
(
cJ(�(y|a),Hj) − cJ(�(y|a),Hn)

)
 . It can be 

seen that it requires to find all zeros for 4L∕2 different tran-
scendental equations, which is computationally unaffordable 
when L is large.

5 � Approximated Bayesian experimental 
design

In order to reduce the complexity of the standard BED, we 
introduce two approximations. One is to allow the Bayes-
ian cost adaptively changing after each measurement. The 
other is to allow the greedy action selection to be con-
ducted approximately.

5.1 � Adaptive Bayesian cost based on posterior 
distribution

Denote 𝜔̄k as the marginalized posterior probability after 
the k-th measurement, such that 𝜔̄k(l) denotes the probabil-
ity that the l-th channel is idle. We drop the subscript k, 
w h e n eve r  t h e r e  i s  n o  a m b i g u i t y.  D e f i n e 
�l
ij
(s, t) ≜ 1(Hi(l) = s,Hj(l) = t) , and the adaptive Bayesian 

cost, denoted as cA(Hi,Hj) , is constructed as

where 0 ≤ dl ≤ 1 , 
∑L

l=1
dl = d and dl ≥ dn if 𝜔̄(l) ≥ 𝜔̄(n) . 

And dl represents how much it should be penalized when 
the l-th channel is mistakenly decided as 1 when it is actu-
ally 0, and it will be penalized more if it is more likely to be 
idle. Note that, although cA(Hi,Hj) separates the cost into 
each channel’s decision, the penalty vector d̄ ≜ [d1,⋯ , dL] 
couples all channels together. One way to construct d̄ is to 
set dl = 1 , if l ∈ g (𝜔̄) , and dl = 0 , otherwise, where g (𝜔̄) 
returns the set of indices of the first d largest element of 𝜔̄ . 

EQjn ∶

M∑

j=1

�jn
1

Γ(ka,j)�
ka,j

a,j

yka,j−1e−y∕�a,j = 0,

(14)

cA(Hi,Hj) =

L∑

l=1

�l
ij
(0, 1) + �l

ij
(1, 0) ⋅ dl

≜
L∑

l=1

�(Hi(l),Hj(l))

And denote the d̄ that constructed this way as d̄max(𝜔̄) for the 
convenience of reference in Sect. 6.

5.2 � Hypothesis testing with adaptive Bayesian cost

Following similar development as (8), we have

Exploiting the structure of cA(Hi,Hj) , LA(�(y|a)) can be fur-
ther simplified as

where �l(y|a) denotes the decision of the l-th channel.
With the structure of LA(�(y|a)) in (16), it is easy to see 

that the decision of each channel is decoupled. And the opti-
mal decision for the l-th channel is

where dl(𝜔̄) is used to denote dl for reminding that dl is con-
structed via 𝜔̄.

5.3 � Approximated sequential measurement 
adaptation

Given the decision rule (17), the smallest risk of making 
decision given measurement y under action a is

Therefore, the risk of taking action a is

(15)
RA(�|a) = �

M∑

j=1

cA(�(y|a),Hj)P (Hj|y, a) f (y)dy

≜ � LA(�(y|a)) f (y)dy,

(16)

LA(𝛿(y|a)) =
M∑

j=1

L∑

l=1

𝜅(𝛿l(y|a),Hj(l))P (Hj|y, a)

=

L∑

l=1

(
L∏

n=1

1∑

𝜆n=0

)
𝜅(𝛿l(y|a), 𝜆l)P (𝜆1, ..., 𝜆L|y, a)

=

L∑

l=1

1∑

𝜆l=0

𝜅(𝛿l(y|a), 𝜆l)
(
∏

n≠l

1∑

𝜆n=0

)
P (𝜆1, ..., 𝜆L|y, a)

=

L∑

l=1

1∑

𝜆l=0

𝜅(𝛿l(y|a), 𝜆l)P (𝜆l|y, a)

=

L∑

l=1

1(𝛿l(y|a) = 0)(1 − 𝜔̄(l)) + 1(𝛿l(y|a) = 1) dl 𝜔̄(l),

(17)𝛿∗
l
(y|a) =

{
0, if 1 − 𝜔̄(l) ≤ dl(𝜔̄) 𝜔̄(l)

1, if 1 − 𝜔̄(l) > dl(𝜔̄) 𝜔̄(l)
,

(18)L
∗
A
(y|a) =

L∑

l=1

min
{
1 − 𝜔̄(l), dl 𝜔̄(l)

}
.
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Due to the complicated way of constructing d̄ , it is unlikely 
the evaluation of RA(a) can be done in closed form. However, 
for any given y, the evaluation of L∗

A
(y|a) is easy. Therefore, 

for each action a, we choose to first sample y for Q times, 
and then evaluate L∗

A
(y|a) with these samples, and finally 

use sample average to evaluate the risk of each given action. 
After this approximated evaluation is done, the action with 
smallest averaged risk is selected.

5.4 � Complexity analysis

It can be seen that, for our proposed the approximated BED 
scheme, the measurement adaptation decision, as shown in 
(17), can be easily made by evaluating the value of 𝜔̄(l) at 
each channel l. Therefore, the remaining computation com-
plexity is for computing the marginalized posterior prob-
ability 𝜔̄ after each measurement, which can be implemented 
with belief propagation (a.k.a. sum-product message pass-
ing) algorithm [27]. It is known that, the computation com-
plexity of applying belief propagation algorithm for a prob-
ability distribution with size S is of order O(2S).

Hence, considering that the size of joint hypothesis distri-
bution is with size 2Bmax , and the number of sequential time 
slot in K, the overall time complexity is of order O(K4Bmax ) . 
We argue that Bmax should not be set too large: with the 
increase of the BF’s bandwidth, the likelihood functions 
will becoming indistinguishable for different statuses of 
covered channels, and therefore, it may increase the num-
ber of required sensing measurements. Therefore, it can be 
seen that, the complexity of the proposed approximated BED 
scheme is significantly smaller than that of the conventional 
BED scheme.

6 � Numerical experiment

This section investigates the performance of our proposed 
wideband sensing scheme by comparing to three alternatives. 
To be specific, four different wideband sensing schemes are 
investigated: (1) ABED, the proposed approximated BED 
with the Bayesian cost cA constructed via d̄ = d̄max(𝜔̄) , and 
action evaluation is done with Q = 10 samples; (2) SBED, 
the standard BED using Bayesian cost cS ; (3) ASweep, an 
sensing scheme that measures the first K channels individu-
ally and sequentially, and makes hypothesis testing decision 
with the Bayesian cost cA constructed via dl = d̄max(𝜔̄) ; (4) 
CS, an sensing scheme based on ideal CS signal recovery 
algorithms, where if the number of occupied channels is less 
than half of the number of measurements, the joint status 
for the whole channels can be perfectly recovered and also 

(19)RA(a) = ∫ L
∗
A
(y|a) f (y)dy = �[L∗

A
(Y|a)].

perfectly detected [28], and otherwise, signal recovery fails 
and all channels are reported as occupied. The simulation 
is concluded with d = 6 , Bmax = 5 , �2

0
= 0.1 , ∀l , �2

l
= 3.1 

𝜔̄0(l) = 0.7 , and the number of measurements K varying 
from 1 to 8.

6.1 � Computation and energy cost evaluation

Here, we investigate algorithms’ performance in terms of 
computation and energy consideration. Specifically, algo-
rithms’ computation burden is measured via considering the 
CPU running time with L varying from 5 to 40. In addition, 
as sensing measurement is the main source of energy con-
sumption in cognitive radio nodes’ spectrum sensing, the 
number of sensing measurements is further considered for 
evaluating algorithms’ energy cost.

Figure 2 shows the CPU running time required for one 
measurement adaptation as L taking values from 5 to 40. 
Algorithms are implemented via Matlab R2017a on a com-
puter with Intel i7-3770 cores and 16GB RAM. It can be 
seen that SBED consumes the most of computation, since 
SBED requires to compute the Bayesian decision region for 
all hypothesis, which increases exponentially as the number 
of channels L increases. In contrast, thanks to cost construc-
tion and approximated measurement adaptation, the ABED 
shows considerably computational improvement compared 
to SBED. The CS algorithm accomplishes wideband sensing 
via solving sparse signal recovery problem via, for exam-
ple, minimizing the L1-norm, whose computation burden 
appears to be larger than that of ABED. Lastly, it can be 
seen that ASweep requires the least amount of computation, 
since ASweep limits its measurement adaptation to choosing 
one of the L channels, which can be efficiently achieved by 
posterior belief updating.

Figure 3 shows algorithms’ sensing measurements, which 
is the main source of cognitive radio’s energy consumption 
in spectrum sensing. It can be seen that ASweep enjoys 
the lowest energy consumption, as the ASweep algorithm 
always chooses to measure one channel at each sensing 
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moment, regardless of the number of total channels in the 
system. In contrast, the CS algorithm’s sensing measurement 
burden linearly increases as channels number increases, it 
is because that the number of measures required by the CS 
algorithm equals the sparse ratio times the number of total 
channels. SBED and ABED demonstrates similar sensing 
measurement cost, and shows sub-linear increase rate, which 
outperforms that of the CS algorithm as L increases. The 
reason is that SBED and ABED can exploit the Bayesian 
cost about spectrum hole requirement, and reduces sensing 
measurements whenever the requirement is satisfied during 
the sequential measurement adaptation process.

In summary, although ASweep appears to be the most 
attractive algorithm in terms of computation and energy 
cost, its sensing performance is inferior (as shown the next 
subsection) due to its inability of sensing adaptation. Thanks 
to Bayesian-based adaptation, SBED performs well in terms 
of sensing measurements, which, however, requires prohib-
itive computation. In contrast, CS and ABED algorithms 
show good balance between computation and energy cost. 
However, as shown in the next, the ABED algorithm out-
performs the CS algorithm in terms of sensing performance.

6.2 � Sensing performance evaluation

This part demonstrates algorithms’ sensing performance 
with the number of channel L fixed to 20. For any sens-
ing scheme, after K measurements collected, a detection 
decision is made, and define HF as the number of mistak-
enly reported spectrum holes, and HT  as the number of 
correctly detected spectrum holes, and HTF as the num-
ber of totally decided spectrum holes. With these defini-
tions, two performance metrics are calculated: the ratio of 
unsatisfied spectrum holes, denoted as RU , and the chance 
of interfering PUs, denoted as CI , and they are defined as 
RU ≜ min{1,HT∕d} , and CI ≜ HF∕HTF.

Figures 4 and  5 show the results averaged over 5000 
independent runs. It can be observed that, for ABED and 

ASweep, their individual metrics CI and RU are very close, 
and the reason is that in most of the time, they report exactly 
d spectrum holes, and therefore CI = RU . And with the 
increase of measurements, both ABED and ASweep can 
improve the detection result, and after 8 measurements, 
they demonstrates satisfactory performance for identifying 
spectrum holes and protecting PUs. ABED shows superior 
performance to ASweep, and it is because ABED can adapt 
its measurement during the sensing process and therefore 
provide richer information than the open-loop measurement 
allocation strategy of ASweep.

The benefit of the proposed cost cA for detection can be 
observed via comparing ABED with SBED. Observing 
Fig. 4, it may be surprising that SBED is able to completely 
satisfy the spectrum holes requirement even with 1 measure-
ment. The reason is that SBED reports all the channels that 
is not suspected as occupied as spectrum holes, and these 
reported spectrum holes include all unmeasured channels, 
since the belief for these unmeasured channels being idle 
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is 0.7. This aggressive detection rule satisfies the spectrum 
holes requirement with high probability, but it also increases 
the risk of interfering the PUs, which can be observed from 
Fig. 5. Furthermore, since the detection rule of SBED treats 
the detection of occupancy and spectrum holes equally 
important, some measurements in its sensing budget will 
be used over the channels that have been measured and are 
shown to not likely be spectrum holes. Although to further 
confirm a channel is truly occupied make total sense when 
the goal is to detect the status of all channels, it is clearly 
unreasonable when the goal is to find a certain number of 
spectrum holes and there are some channels unmeasured and 
they are likely to be idle (with probability 0.7). And this is 
the reason why, when compared with ABED, SBED makes 
low progress with increase sensing budget.

Finally, although the design of CS ensure that there is 
not interference to PUs, its performance of discovering the 
given number of spectrum holes is poor. Although CS is 
able to recover and detect the status for all channels if the 
number of occupied channels is less than the half of the 
number of measurements, it receives no extra credit with the 
extra detected spectrum holes if the recovery succeeds, but it 
gets full penalty when the recovery fails. This confirms that, 
when the sensing goal is to discovery a portion of spectrum 
holes, sensing scheme aims at detecting the status for all 
channels can be completely unsatisfactory.

7 � Conclusion

In this paper, we have proposed an adaptive wideband sens-
ing scheme under the framework of standard BED, which 
considers the design of joint channel status detection rule, 
and measurement adaptation with the goal of detecting a 
given number of spectrum holes. In order to reduce the com-
plexity of the standard BED, an approximated BED have 
been proposed via defining the cost adaptively based on pos-
terior probability and allowing the measurement adaptation 
to be done approximately. Finally, the satisfactory perfor-
mance of the proposed sensing scheme is demonstrated via 
simulation.
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