Skip to main content

Advertisement

Log in

Intelligent environment for advanced brain imaging: multi-agent system for an automated Alzheimer diagnosis

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Over decades Alzheimer’s disease (AD) researches presented increasing challenges. However, various methods were proposed to detect AD including image processing. This paper presents a concrete solution to diagnose AD based on a multi-agent system (MAS). This approach highlights the importance of the cooperation paradigm within a robust system, in which all agents cooperate to accomplish the segmentation tasks. The exchanges between agents remain an essential part of the segmentation process. The original contribution of this paper is twofold: (1) To present an agent-based segmentation methodology by highlighting the main characteristics, advantages, and disadvantages of MAS. (2) To provide a usable solution by facilitating the detection of AD while taking into account both the expertise and the requirements of specialists in the application domain. Ensuring a cooperative segmentation using the multi-agent system offers a strong point in terms of system stability as well as clarity of the process for physicians. For this, several tests have been carried out to prove the effectiveness of our work. The results ensure that the performance indices in our proposed method were higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feigin L et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 161(1):877–897

    Article  MathSciNet  Google Scholar 

  2. Jenna M et al (2015) Clearance systems in the brain—implications for Alzheimer disease. PMC Nat Rev Neurol 11(8):457–470

    Article  Google Scholar 

  3. Thomas DB (2018) Alzheimer disease overview. GeneReviews. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) Source gene reviews. University of Washington, Seattle, WA

  4. Dubois B, Feldman HH, Jacova C, Hampel H et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    Article  Google Scholar 

  5. Gabelle A, Schraen S, Gutierrez LA et al (2015) Plasma β-amyloid 40 levels are positively associated with mortality risks in the elderly. Alzheimer’s Dement 11:672–680

    Article  Google Scholar 

  6. Sutphen CL, Jasielec MS, Shah AR et al (2015) Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol 72:1029–1042

    Article  Google Scholar 

  7. Mattsson N, Smith R, Strandberg O et al (2018) Comparing 18F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology 90:e388–e395

    Article  Google Scholar 

  8. Liang W et al (2012) Alzheimer’s disease family history impacts resting state functional connectivity. Ann Neurol 72(4):571–577

    Article  Google Scholar 

  9. Mueller SG, Weiner MW et al (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Assoc 1(1):55–66

    Article  Google Scholar 

  10. Yudong Z et al (2014) Classification of Alzheimer disease based on structural magnetic resonance imaging by Kernel support vector machine decision tree. Prog Electromagn Res 144:171–184

    Article  Google Scholar 

  11. Drweesh Z, Al-Bakry A (2019) Medical diagnosis advisor system: a survey. Int J Adv Res Comput Eng Technol (IJARCET) 8(1). ISSN: 2278 – 1323

  12. Machairas V, Baldeweck T et al. (2016) New general features based on superpixels for image segmentation learning. In: IEEE 13th international symposium on biomedical imaging (ISBI). https://doi.org/10.1109/isbi.2016.7493531

  13. Yuan DL, Dong HJ, Tian XJ (2012) Gear surface defects measurement techniques based in image processing. J Dalian Jiaotong Univ 33(1):53–55

    Google Scholar 

  14. Eman A et al (2015) Brain tumor segmentation based on a hybrid clustering technique. Egypt Inf J 16(1):71–81

    Google Scholar 

  15. Chunsheng Z, Xiaoping L, Bing Z, Zhijian L (2017) Quantitative analysis of multi-components by single marker a rational method for the internal quality of Chinese herbal medicine. Integr Med Res 6(1):1–11

    Article  Google Scholar 

  16. Saurabh G et al (2014) Indoor scene understanding with RGB-D images: bottom-up segmentation, object detection, and semantic segmentation. Int J Comput Vis 112(2):133–149

    MathSciNet  Google Scholar 

  17. Xiaopeng Y, Jae D et al (2018) Segmentation of liver and vessels from CT images and classification of liver segments for preoperative liver surgical planning in living donor liver transplantation. Comput Methods Progr Biomed 158:41–52

    Article  Google Scholar 

  18. Abar S et al (2017) Agent-based modelling and simulation tools: a review of the state-of-art software. Comput Sci Rev 24:13–33

    Article  Google Scholar 

  19. Li Songze et al (2017) Coding for distributed fog computing. IEEE Commun Mag 55(4):34–40

    Article  Google Scholar 

  20. Jennings NR, Faratin P, Lomuscio AR, Parsons S, Wooldridge MJ, Sierra C (2001) Automated negotiation: prospects methods and challenges. Group Decis Negot 10(2):199–215

    Article  Google Scholar 

  21. Hayder WA, Husain MH (2018) Intelligent application implementation model for automated agent negotiation. Kurd J Appl Res (KJAR). https://doi.org/10.24017/science.2018.1.14

    Article  Google Scholar 

  22. Deepika B et al (2018) Comparative analysis of various machine learning algorithms for detecting dementia. Proc Comput Sci 132:1497–1502

    Article  Google Scholar 

  23. Itani S et al (2019) Specifics of medical data mining for diagnosis aid: a survey. Expert Syst Appl 118:300–314

    Article  Google Scholar 

  24. Brian P, Stephen MS, David NK, Mark J (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922

    Article  Google Scholar 

  25. Shi J, Malik J (2000) Normalized cut and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  26. Cocquerez JP, Syvie P (1995) Analysis of images: filtering and segmentation, physics education. Elsevier-Masson. ISBN-13: 978-2225849237

  27. Zu YS, Guang HY, Jing ZL (2002) Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images. NeuroImage 17(3):1587–1598

    Article  Google Scholar 

  28. Xiaofei S, Lin S, Yishan L et al (2015) Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. BMC, BioMed Eng 14:73. https://doi.org/10.1186/s12938-015-0064-y

    Article  Google Scholar 

  29. Kalavathi P (2013) Brain tissue segmentation in MR brain images using Otsu‘s multiple thresholding technique. In: IEEE 8th international conference on computer science & education. https://doi.org/10.1109/ICCSE.2013.6553987

  30. Kanmani P, Marikkannu P (2018) MRI brain images classification: a multi-level threshold based region optimization technique. J Med Syst 42:62

    Article  Google Scholar 

  31. Aiello M, Cavaliere C, Salvatore M (2016) Hybrid PET/MR imaging and brain connectivity. Front Neurosci. https://doi.org/10.3389/fnins.2016.00064

    Article  Google Scholar 

  32. Manasa N, Mounica G, Tejaswi BD (2016) Brain tumor detection based on canny edge detection algorithm and it’s area calculation. Brain. 5:10–13

    Google Scholar 

  33. Niu Z, Nie Y et al (2016) A brain-region-based meta-analysis method utilizing the Apriori algorithm. BMC Neurosci. https://doi.org/10.1186/s12868-016-0257-8

    Article  Google Scholar 

  34. Zhang H, Wu P et al (2017) Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain. NeuroImage 146:589–599

    Article  Google Scholar 

  35. Jakobsen E, Liem F et al (2018) Automated individual-level parcellation of Broca’s region based on functional connectivity. NeuroImage 170:41–53

    Article  Google Scholar 

  36. Kalavathi P, Priya T (2015) MRI brain tissue segmentation using AKM and FFCM clustering techniques. In: Proceedings of national conference on recent advances in computer science and application, Bonfring Publications, pp 113–118

  37. Ryali S, Chen T, Padmanabhan A, Cai W, Menon V (2015) Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI. J Neurosci Methods 240:128–140

    Article  Google Scholar 

  38. Panda A, Kanti T, Vishnu M, Phaniharam G (2018) Automated brain tumor detection using discriminative clustering based MRI segmentation. Smart Innov Commun Comput Sci Adv Intell Syst Comput 851:117–126

    Google Scholar 

  39. Bede P, Parameswaran ML et al (2017) Virtual brain biopsies in amyotrophic lateral sclerosis: diagnostic classification based on in vivo pathological patterns. NeuroImage Clin 15:653–658

    Article  Google Scholar 

  40. Arai T, Ogata H, Suzuki T (1989) Collision avoidance among multiple robots using virtual impedance. In: IEEE/RSJ international workshop on intelligent robots and systems '. (IROS '89). The autonomous mobile robots and its applications, pp 479–485. https://doi.org/10.1109/IROS.1989.637947

  41. Li Z, Liu J (2016) A multi-agent genetic algorithm for community detection in complex networks. Phys A 449:336–347

    Article  Google Scholar 

  42. Ding W, Lou C, Qiu J, Zhao Z, Zhou Q, Liang M, Ji Z, Yang S, Xing S (2016) Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice. Nanomed Nanotechnol Biol Med 12:235–244

    Article  Google Scholar 

  43. Liu J, Tang YY (1999) Adaptative image segmentation with distributed behavior based agents. IEEE Trans Pattern Anal Mach Intell 6:544–551

    Google Scholar 

  44. Bovenkamp EGP, Dijkstra J, Bosch JB, Reiber JHC (2004) Multi-agent segmentation of IVUS images. Pattern Recogn 37:647–663

    Article  MATH  Google Scholar 

  45. Sierra C, Fabregues A (2014) HANA: a human-aware negotiation architecture. Decis Support Syst 60:18–28

    Article  Google Scholar 

  46. Kardas G et al (2018) Domain-specific modelling language for belief–desire–intention software agents. IET Softw 12(4):356–364

    Article  Google Scholar 

  47. Germond L, Dojat M, Taylor C, Garbay C (2000) A cooperative framework for segmentation of MRI brain scans. Artif Intell Med 20(1):77–93

    Article  Google Scholar 

  48. Shariatpanahi HF et al (2006) Distributed behavior-based multi-agent system for automatic segmentation of brain MR images. IEEE Int Jt Conf Neural Netw Proc. https://doi.org/10.1109/IJCNN.2006.247079

    Article  Google Scholar 

  49. Pereira C, Veiga D, Mahdjou J, Guessoum Z, Gonçalves L, Ferreira M, Monteiro J (2014) Using a multi-agent system approach for microaneurysm detection in fundus images. Artif Intell Med 60(3):179–188

    Article  Google Scholar 

  50. Allioui H, Sadgal M, Elfazziki A (2019) A robust multi-agent negotiation for advanced image segmentation: design and implementation. Inteligencia Artificial 22(64):102–122

    Article  Google Scholar 

  51. Martinez-Murcia FJ, Gorriz JM, Ranmirez J, Ortiz A (2016) A spherical brain mapping of MR images for the detection of Alzheimer’s disease. Curr Alzheimer Res 13(5):575–588

    Article  Google Scholar 

  52. Anitha R et al (2016) A segmentation technique to detect the Alzheimer’s disease using image processing. In: International conference on electrical, electronics and optimization techniques, pp 3800–3803

  53. Kalavathi P, Christy AA, Priya T (2017) Detection of Alzheimer disease in MR brain images using FFCM method. Computational methods, communication techniques and informatics, ISBN: 978-81-933316-1-3

  54. Cai W, Chen S, Zhang D (2017) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838

    Article  MATH  Google Scholar 

  55. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  Google Scholar 

  56. Allioui H, Sadgal M, Elfazziki A (2016) A cooperative approach for 3D image segmentation. Int Conf Eng MIS (ICEMIS). https://doi.org/10.1109/ICEMIS.2016.7745378

    Article  Google Scholar 

  57. Dolon IL et al (2016) Segmentation analysis on magnetic resonance imaging (MRI) with different clustering techniques: Wavelet and BEMD. In: International conference on innovations in science, engineering, and technology (ICISET), https://doi.org/10.1109/iciset.2016.7856529

  58. Shira K (2012) Amygdata in Alzheimer‘s disease. InTechOpen, London

    Google Scholar 

  59. Ito M, Sato K, Fukumi M, Namura I (2011) Brain tissues segmentation for diagnosis of Alzheimer—type dementia. In: IEEE nuclear science symposium conference record, pp 3847–3849

  60. Plataniotis K, Venetsanopoulos A (2000) Color image processing and applications. CRC Press, Berlin, pp 1–355

    Book  Google Scholar 

  61. Fei Z, Guo J (2011) A new hybrid image segmentation method for fingerprint identification. Proc IEEE Int Conf Comput Sci Autom Eng Shanghai China 10–12:382–386

    Google Scholar 

  62. Zhou Z, Wei S, Zhang X, Zhao X (2007) Remote sensing image segmentation based on self-organizing map at multiple-scale. In: Proceedings of SPIE geoinformatics: remotely sensed data and information 6752, Nanjing, China, pp 67520E.1–67520E.9

  63. Barrah H, Cherkaoui A, Sarsri D (2016) MAS based on a fast and robust FCM algorithm for MR brain image segmentation. Int J Adv Comput Sci Appl (IJACSA) 7(7):191–196. https://doi.org/10.14569/IJACSA.2016.070726

    Article  Google Scholar 

  64. Priya T, Kalavathi P (2018) Histogram based multimodal minimum cross entropy thresholding method for magnetic resonance brain tissue segmentation. J Comput Theor Nanosci 15(6–7):2430–2436

    Article  Google Scholar 

  65. Pellegrini E, Ballerini L et al (2018) Machine learning of neuroimaging to diagnose cognitive impairment and dementia: a systematic review and comparative analysis. arXiv:1804.01961[q-bio.NC]

  66. Foundation for Intelligent Physical Agents (1999) http://www.fipa.org

  67. The JADE Project Home Page (2003) http://sharon.cselt.it/projects/jade

  68. Smart Python Agent Development Environment (2011) https://pypi.org/project/SPADE/

  69. Open Access Series of Imaging Studies (2010) https://www.oasis-brains.org

  70. Knight ADRC (2000) https://knightadrc.wustl.edu

  71. XNAT (2011) https://www.xnat.org

  72. Fisher P (1997) The pixel: a snare and a delusion. Int J Remote Sens 18(15):679–685

    Article  Google Scholar 

  73. Clinton N, Holt A, Scarborough J, Yan L, Gong P (2010) Accuracy assessment measures for object-based image segmentation goodness. Photogramm Eng Remote Sens 76(3):289–299

    Article  Google Scholar 

  74. Schoemaker D, Buss C, Head K et al (2016) Hippocampus and amygdala volumes from magnetic resonance images in children: assessing accuracy of FreeSurfer and FSL against manual segmentation. NeuroImage 129:1–14

    Article  Google Scholar 

  75. Schneider E, Nevitt M, McCulloch C, Cicuttini FM, Duryea J, Eckstein F, Tamez-Pena (2012) Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions. Osteoarthr Cartil 20(8):869–879

    Article  Google Scholar 

  76. Clarke LP, Velthuizen RP, Clark M, Gaviria J, Hall L, Goldgof D, Murtagh R, Phuphanich S, Brem S (1998) MRI measurement of brain tumor response: comparison of visual metric and automatic segmentation. Magn Reson Imaging 16:271–279. https://doi.org/10.1016/S0730-725X(97)00302-0

    Article  Google Scholar 

  77. Wafa M, Zagrouba E (2009) Tumor extraction from multimodal MRI. Comput Recognit Syst. 3:415–422

    Article  Google Scholar 

  78. Fletcher LM, Halla LO, Goldgofa DB, Murtaghb FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63

    Article  Google Scholar 

  79. Aslam A, Khan E, Beg MMS (2015) Improved edge detection algorithm for brain tumor segmentation. Proc Comput Sci 58:430–437

    Article  Google Scholar 

  80. Zhang X, Li X, Feng Y (2015) A medical image segmentation algorithm based on bi-directional region growing. Optik 126(20):2398–2404

    Article  Google Scholar 

  81. Dubey YK, Mushrif MM (2016) FCM clustering algorithms for segmentation of brain MR images. Adv Fuzzy Syst 2016(8):3406406. https://doi.org/10.1155/2016/3406406

    Article  MathSciNet  Google Scholar 

  82. Kautzky A, Seiger R, Hahn A, Fischer P, Krampla W, Kasper S, Kovacs GG, Lanzenberger R (2018) Prediction of autopsy verified neuropathological change of Alzheimer’s disease using machine learning and MRI. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00406

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanane Allioui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allioui, H., Sadgal, M. & Elfazziki, A. Intelligent environment for advanced brain imaging: multi-agent system for an automated Alzheimer diagnosis. Evol. Intel. 14, 1523–1538 (2021). https://doi.org/10.1007/s12065-020-00420-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00420-w

Keywords

Navigation