
SHORT NOTE

Embodied artificial evolution

Artificial evolutionary systems in the 21st Century

A. E. Eiben • S. Kernbach • Evert Haasdijk

Received: 28 November 2011 / Revised: 17 February 2012 / Accepted: 22 March 2012 / Published online: 20 April 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Evolution is one of the major omnipresent

powers in the universe that has been studied for about two

centuries. Recent scientific and technical developments

make it possible to make the transition from passively

understanding to actively using evolutionary processes.

Today this is possible in Evolutionary Computing, where

human experimenters can design and manipulate all com-

ponents of evolutionary processes in digital spaces. We

argue that in the near future it will be possible to imple-

ment artificial evolutionary processes outside such imagi-

nary spaces and make them physically embodied. In other

words, we envision the ‘‘Evolution of Things’’, rather than

just the evolution of digital objects, leading to a new field

of Embodied Artificial Evolution (EAE). The main objec-

tive of this paper is to present a unifying vision in order to

aid the development of this high potential research area. To

this end, we introduce the notion of EAE, discuss a few

examples and applications, and elaborate on the expected

benefits as well as the grand challenges this developing

field will have to address.

Keywords Evolution � Evolutionary computing �
Embodiment � Embodied evolution � Self-reproduction

1 Introduction

This is a position paper about what we call embodied

artificial evolution. Perhaps the best way to introduce this

vision is to follow a historical perspective concerning the

notion of evolution.1

In the nineteenth century the theory of evolution was put

forward to explain the emergence of Life on Earth. Thus,

originally, evolution was a passive notion that helped us

understand things. In the twentieth century the invention of

the computer made it possible to create worlds where we

could actively engineer evolutionary processes. The

resulting field, called Evolutionary Computing, was

groundbreaking in that it converted evolution from a pas-

sive explanatory theory to clarify a past process into an

active tool to create a new process. Of course, such an

evolutionary computing process takes place in an imaginary

space, while natural evolution takes place in the biosphere

on Earth. And thus, the birth of Evolutionary Computing

represents another major transition, that of transporting

evolution from biological spaces to digital spaces.

Evolutionary Computing has radically changed the way

we think about evolution and it has enabled us to play

around with it. We have constructed various forms of

evolvable digital objects. We have invented and tested

various selection and variation mechanisms, including ones

that do not exist in Nature, e.g., crossover mechanisms

between more than two parents [30]. And we have

designed numerous evolutionary algorithms inspired by

natural mechanisms, but not limited by constraints of

physical or biological reality. All in all, we have learned a

lot about how to set up and to control evolutionary
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processes and have developed the know-how to use them

for solving optimisation, design, and modelling problems

[23, 29].

To date, the one space where we can design, implement,

and execute all components of an evolutionary process—in

a simplified form—is inside computers, in digital space.

Therefore, the only type of evolution that we fully master is

inherently disembodied. However, in some cases the result

of such a digital evolutionary process can be constructed

physically. Hence we have two principal kinds of appli-

cations. In the first kind, the evolutionary process and the

result are both digital. Well known areas in this category

are evolutionary optimisation, evolutionary data modeling

and evolutionary simulations in artificial life, evolutionary

economy, etc. [4, 35, 60]. In the second kind, the evolu-

tionary process is digital, but the result of evolution (e.g.,

the blueprint of a chair or an antenna) is made physical by

an extra construction step afterwards. This is known as

evolutionary design with evolutionary art as a special sub-

area [7, 8]. Recent advances in rapid prototyping (3D

printing), material science, soft robotics, molecular engi-

neering, synthetic biology, combinatorial chemistry, pro-

grammable matter, etc. now open the door to creating

evolvable objects and to implement evolutionary operators

in physical space. This enables artificial evolution of the

third kind, where the evolutionary process and the result

are both physical. The resulting system means a radically

new use of evolution as a tool in a physical medium. From

the historical perspective, this will be the twenty-first

century variant defined by two essential features: It is fully

embodied—similar to biological evolution—and artifi-

cially engineered—similar to evolutionary computing.

Hence the name Embodied Artificial Evolution (EAE).

In this article we argue that EAE forms a high potential

research and application area that offers great opportunities

and poses great challenges. However, to realize the vision,

very diverse and presently segregated fields need to interact

and cross-fertilize each other. This necessitates a unifying

view, corresponding terminology, and vision to catalyze

developments in this direction. This is exactly the main

objective of this paper.

2 What is embodied artificial evolution?

The general concept of EAE as assumed here is indepen-

dent from the specific form of embodiment. One can think

of cell-like structures in a liquid solvent, a population of

robots exploring another planet, or anything else, as long as

the given system satisfies the following properties:

1. It involves physical units instead of just a group of

virtual individuals in a computer.

2. It has real ‘birth’ and ‘death’, where reproduction

creates new (physical) objects, and survivor selection

effectively eliminates them.

3. Evolution is driven by environmental selection or a

combination of environmental fitness and a user

defined task-based fitness.

4. In contrast to mainstream evolutionary computing,

reproduction and survivor selection are not coupled.

They are not executed through a centrally orchestrated

main loop, but in a distributed manner, controlled by

the individuals who ‘decide’ themselves when and

with whom to mate.

Observe that in terms of evolutionary computing these

properties concern representation, variation, selection, and

population management. Furthermore, it can be noted that

it is properties 1 through 3 that represent the physical

embodiment. The fourth feature smoothly fits this set of

properties and it is literally more natural than centrally

controlled population management. However, in a strictly

formal sense, it is not necessary for being embodied.

To aid further elaboration, we consider a number of

concrete examples and tasks and use these to illuminate

some important properties of EAE systems.

1. The evolutionary design of a robot controller for a

given robot body and some task(s) in a certain

environment. Here, the objects to be evolved are

digital, but are inherently part of a (mechatronic)

physical entity. To solve this design problem one could

port all evolutionary operators to the robot and execute

on-the-fly evolution of controllers. Birth and death,

i.e., reproduction and survivor selection, is restricted to

the digital space of all possible controllers, on the

robot’s processors. However, fitness evaluation hap-

pens in vivo here as the reproductive probabilities of

any given controller are determined by the real-world

performance of the robot driven by that controller.

2. The evolutionary design of a robot body for some

task(s) in a certain environment.2 Here, the objects to

be evolved are physical. Thus, one could solve this

problem by truly embodied evolution, with physical

birth and death. In such a system all evolutionary

operators work in vivo, including reproduction that

creates new robots and survivor selection that effec-

tively eliminates them. The main challenge here is

obviously formed by the reproduction operators cross-

over and mutation: how to engineer a system where

robots can be born (and die)?

3. The evolutionary design of a bacterium for some

medical or chemical task(s) in a certain environment.

2 For the sake of simplicity, let us disregard the design of the

corresponding robot controller.
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Here again, the objects to be evolved are physical.

However, while (re)production of mechatronic bodies

is a huge challenge, bacteria reproduce by themselves.

Thus, that part of the evolutionary machinery is for

free in this context. The challenge here is to implement

fitness evaluation and the selection operators suited to

the given application objectives. Furthermore, one

could implement special reproduction operators (muta-

tion and/or crossover) that do not exist in nature, but

are useful to solve the given problem.

We can note a couple of things about these examples that

help understand some essential aspects of EAE. To begin

with, observe that Example 1 is different from Examples 2

and 3 in that it is not truly embodied. To be specific,

Examples 2 and 3 illustrate applications where the objects to

be evolved are physical. In contrast, the objects to be evolved

in Example 1 are digital, only embodied in the sense that they

are hosted by a physical robot. Ironically, the term embodied

evolution has been introduced for systems like the one in

Example 1, cf. [98]. If needed, we can make a distinction by

calling this type of systems weakly embodied and using the

term strongly embodied for the ones in Examples 2 and 3.

Furthermore, let us note that in case of a robotic appli-

cation it is possible to separate the body, i.e., the physical

robot with its wheels, sensors, etc. and the mind, i.e., the

controller regulating the behavior of the robot. Conse-

quently, the task of designing them also can be split in two

(and combined, if needed). For the task of designing bac-

teria, this is not possible, because the regulatory and con-

trol mechanisms in bio-chemical organisms are not

separated so clearly from the bodies to be regulated.

Yet another difference between a robotic application and

a bio-chemical one is the fact that a robotic object is more

controllable for the experimenter. Robot bodies are built

and robot controllers are programmed by the human

experimenters. Even if we consider evolutionary develop-

ment of robot bodies and controllers, the process is driven

by human designed operators. These operators are usually

simple; complexity emerges by their interactions. This is

not the case for bio-chemical organisms, where the oper-

ators are those invented by nature. These are often very

complex to understand and to manipulate. For instance,

replacing one mutation operator by another one can be easy

in an evolutionary robotics application, but switching off

one molecular interaction and switching on another one in

a cell can be (nearly) impossible.

3 Motivations, expected benefits

A straightforward motivation to use a technology is that it

is . . . useful. Considering breeding livestock or plants as

EAE systems (technically: artificial selection and natural

reproduction in an embodied setting) we can argue that

their usefulness has already been proven. As for the new

kind of EAE systems we advocate here, there are multiple

reasons to investigate them.

Firstly, EAE can lead to solving new design and engi-

neering problems, and solving existing ones in new ways.

In fact, EAE technology can be the basis of a paradigm

change in how design tasks are solved. Traditionally, the

design process of some artifact ends with manufacturing it.

Using EAE, design and manufacturing become an inter-

twined, continuous, on-line activity, propelled by the

evolutionary operators (see Fig. 1 and the example appli-

cation in Sect. 5.3). In the long term, the basic design-and-

manufacture loop of the production industry may be

transformed from the present off-line type with a critical

role for the human designer to a more on-line process. In

this process new designs arise though evolutionary varia-

tions (are ‘born’), tested immediately in vivo, and repro-

duce to seed new designs, if successful. While this is

clearly not an appropriate workflow for all production

industries, there are several potential application areas

ranging from fashion items to bio-medical nano-robots.

Secondly, there is much evidence in traditional evolu-

tionary computing that evolution can solve problems not

solvable otherwise and that evolution can generate unex-

pected solutions. (Which, then, can be analysed and

reverse-engineered, and thus lead to new insights and better

understanding of the problem.) Well-known examples of

evolution outperforming human experts or surprising

researchers range from Keane and Brown’s experiments in

satellite boom design [52] to Koza et al.’s inventory of

human competitive genetic programming results [58].

Once we equip certain groups of artifacts with the ability to

evolve, we create the possibility that some of the evolved

designs may be truly original, stepping out of the box with

respect to human thinking.

(a) (b)

Fig. 1 Two circles showing the analogies between the biological

circle of reproduction (a) and the new kind of in vivo evolutionary

design (b). The effective lifetime is captured by the light gray arrow

labeled ‘‘Evaluation, selection’’ and ‘‘testing’’, respectively
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Thirdly, EAE systems can provide a basis for a new

experimentalism in biology, where evolution can be stud-

ied in a radically new way in a new medium. To this end it

is worth noting that mankind has thousands of years of

experience with artificial selection, for instance to breed

livestock or plants. As mentioned above, technically

speaking this amounts to artificial selection and natural

reproduction applied to natural bodies and it has been a

valuable tool in using as well as understanding biology and

evolution. The new kind of EAE systems we envision

extend this in two important ways: artificial evolvable

objects (bodies) and artificial reproduction operators

(mutation and recombination). The resulting artificial

evolutionary systems offer tools to perform real-world

evolutionary experiments that are controllable, repeatable,

and (relatively) fast, challenging current thinking about the

evolutionary process per se. This will enable a deeper

understanding of evolution in general, not restricted to or

constrained by evolution-as-we-know-it based on our only

example, life on Earth. Mastering all components of the

system enables us, for instance, to investigate the minimum

requirements of evolution, to estimate how (un)likely

evolution is, to distinguish different types of evolution, etc.

In the long term, this will lead to new scientific insights

regarding evolution and the origins of life.

Finally, EAE systems represent a great challenge from

the perspective of algorithm design. The twentieth century

science/art of designing and analysing evolutionary algo-

rithms needs to be reinvented, once we change the medium

from purely digital to embodied, physical. The funda-

mental problem lies in the inevitable physical restrictions

concerning the representation, the algorithmic operators,

and the limited options a user has in controlling the algo-

rithm as a whole. Simply put, in evolutionary computing

experimenters have great freedom in choosing any data

type to represent candidate solutions and defining suitable

mutation/crossover operators [23, 29]. However, in an EAE

system the bodies to be evolved and the reproduction

operators must be physically viable. Further to operator

design, we also face the problem of process control. Just to

mention one thing, population size management is trivial in

a genetic algorithm, but keeping an evolving population of

robots or bacteria from extinction as well as from explosion

can be a hard nut to crack [99]. Furthermore, EAEs mean a

great paradigm shift from evolving digital objects to

evolving things in the real world. This implies that the

environment where evolution takes place becomes orders

of magnitude more complex with inherent randomness

(‘‘the noise and the physics are for free’’) and a dynamics

never encountered in traditional evolutionary computation.

In fact, we can say that adopting this new technology,

digital algorithm design will become physical process

design, where the convenient distinction of algorithm

components (representation, variation operators, selection

operators, population management) may not be applicable

at all. All in all, EAE represents a new angle for Evolu-

tionary Algorithms for three main reasons: (1) the design of

the evolvable objects (representation) and the evolutionary

operators is constrained by physical restrictions, (2) pro-

cess control is much harder as we are not the superusers or

omnipotent system administrators in real life, (3) the

dynamics, noise etc. of the real world is much more

complex than in digital spaces.

4 Relevant research areas

We distinguish four possible scenarios for realisation of

embodied artificial evolution: micro-/nano- mechatronic,

top-down bio-synthetic, bottom-up chemo-synthetic and

hybrid ones. In this section, we briefly describe the current

state-of-the-art research for each of these areas.

4.1 Micro- and nano-mechatronic systems, evolvable

hardware

Mechatronic systems are attributed to different areas of

robotics [54, 92]. In the context of EAE, the embodiment

[77] of robotic systems (using specific properties of

materials to achieve a desired functionality, e.g., locomo-

tion for small jumping robots [57] or embodied sensor-

actor coupling [53]) has a decisive role. Modern robotics

utilises different fields of material science, e.g., [44], which

vary from modifications of surface properties up to com-

posite materials with specific mechanical features; minia-

turisation of micro-systems [71] and structuring of material

by micro-/nano- manipulation [36, 71]. To underline

these research areas, we denote this scenario as micro- and

nano- mechatronics. The relevance to EAE lies in three

approaches: using stand-alone robots for exploring situated

evolution, creating a programmable mechatronic matter

through guided self-assembling and non-biological self-

reproduction.

In the literature various references can be found to work

related to EAE in a population of stand-alone robots for

exploring evolutionary properties of such systems [41].

Watson et al. in [39, 98] envisioned embodied evolution: a

‘‘large number of robots freely interact with each other in a

shared environment, attempting to perform some task‘‘. In

this sense, a population of individuals (in this case, robots)

evolves in a completely autonomous manner, i.e., evalua-

tion, reproduction and selection operators are carried out by

and between individuals themselves. As in natural evolu-

tionary systems, adaptive mechanisms are asynchronous,

decentralised and distributed. Schut et al. [88] present a

related concept called situated evolution, where
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reproduction creates new minds that become active in a

pre-existing robot body, replacing an old one.3 In [95],

Usui and Arita address embodied evolution as in Watson

et al.: robots evolve based on interactions with the envi-

ronment and other robots. Nakai and Arita [70] extend

this framework by introducing a pre-evaluation mecha-

nism, intended to restrain robot behaviours that are esti-

mated to be have a low fitness contribution. Following

then same argumentation, Elfwing et al. in [33] also make

use of a subpopulation of virtual agents for each (physi-

cal) robot in order to overcome the restriction on popu-

lation size.

Another state of the art approach applies evolutionary

operators not only to the robot controllers but to the robots

themselves. In this case the body of the robot has a modular

structure and is created through self-assembling process

guided by evolution. Multiple research projects, such as

HYDRA [50], Molecubes [104], Polypod [102], M-TRAN

[51], SuperBot [91], SYMBRION [62] develop heteroge-

neous reconfigurable platforms. A number of publications

are devoted to application of evolutionary approaches [93]

or guided self-assembling [55] to create a body of modular

robots. Not just the evolution of robot’s body, but also the

co-evolution of body and mind is an important aspect of

such research [78]. The general technological trend here is

to switch from current mini-scale modules to micro- and

potentially to nano-scale elements [87]. In the context of

body-mind evolution, the concept of evolvable hardware

[45] needs to be mentioned. Flexibility and a develop-

mental plasticity of such devices allow deriving an

advanced computational functionality in hardware [47],

which is used in robotics, image processing and other

technological areas. Several open issues in the develop-

ment of evolvable hardware are in discussion, e.g., [26].

Finally, self-reproduction of micro- and nano-mecha-

tronic systems is of interest for EAE. One of the oldest

ideas is Von Neumann’s kinematic self-reproduction [97].

There are multiple attempts to create macroscopic self-

reproduction, e.g., by NASA [42] or in the context of

modular robotics [104]. They argue that mechanical self-

reproduction is possible and not unique to biology. Recent

works attribute capabilities of self-reproduction to nano-

technological systems [61], to additive plastic moulding

[90] (see also RepRap.org), or to advanced 3D prototyping

technology [82]. However, none of these technologies is

capable of reproducing complex functional elements, see

Sect. 6.2.

4.2 Top-down bio-synthetic systems

Biological systems have an advantage over mechatronic

devices because biological properties, such as reproduc-

tion, can be taken for granted: a biological system is nat-

urally equipped to carry out evolutionary processes.

Reproduction, self-preservation, but also selection and

adaptation are inherent capabilities of the system. How-

ever, an important challenge is how one can manipulate the

system to obtain the behaviour one is looking for. Pro-

gramming cells does not aim to substitute silicon com-

puting, but seeks access to the numerous functionalities and

properties on those cells in a predictable, reliable way.

Advances in the area of synthetic biology have allowed

some interesting recent results. For instance, in [94],

Tamsir et al. show how logic gates can be built in Esche-

richia coli cells and how complex computations can be

produced by ‘‘rewiring’’ communication between cells

[94]. Works in this area are related e.g., to a development

of bacterial systems [64], genome engineering [14], or

molecular synthesis of polymers [76]. Intensive research is

also devoted to biologically engineering multi-cellular

systems [6]; see more about general fields and challenges

of synthetic biology in [2].

In biological computing, natural processes can be often

described in terms of a networks of simple computational

components, or biobricks [3]. The main objective is to use

the power of natural processes for the purpose of compu-

tation. Because natural processes are intrinsically random,

changing functionalities of a cell, as well as adding new

desired behaviours is not a trivial exercise. Using an

alternative approach, Rigot et al. describe in [80] how to

implement complex Boolean logic computations, which

reduces wiring constraints. This is obtained through a

redundant distribution of the desired output among the

engineered cells. Following the idea of biobricks, a number

of cells can be combined into more complex circuits.

4.3 Bottom-up chemo-synthetic systems

The bio-synthetic systems utilise existing biological cel-

lular systems with their very complex metabolism. The

approach from bottom-up chemistry uses another method-

ology: creating elementary basic cellular (so-called vesi-

cles) and multi-cellular structures ‘‘from scratch‘‘.

Advantages of this approach are multiple degrees of free-

dom in designing metabolic networks (in simple cases –

autocatalytic reactions) and different internal and external

interaction mechanisms [68].

Examples of bottom up chemical systems can be found

in artificial chemistries [25], self-replicating systems [49],

using bio-chemical mechanisms for, for example, cognition

[21]. This approach is also denoted as swarm chemistry

3 Although it may be an oversimplification to view a human body

(including the brain) as hardware and the mind as software, we find

this distinction helpful when considering the parallel development of

bodies and their controllers.
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[85]. Researchers hope that such systems will answer

questions related to developmental models [5], chemical

computation [9], self-assembly, self-replication, and simple

chemistry-based ecologies [10] or that they will yield

technological capabilities for creating large-scale func-

tional patterns [103]. Several approaches consider meso-

and nano-objects, such as particles with functionalised

surfaces [86], colloidal systems [43], or molecular net-

works [73]; a system of elementary autonomous agents,

which possess rudimentary capabilities of sensing and

actuation. Information processing and collective actuation

are performed collectively as, for example, stochastic

behavioural rules. Several phenomena, such as meso-scale

self-assembling or diverse self-organising processes [22],

make these type of systems attractive in applications.

L. Cronin et al.’s work with polyoxometalate clusters

provides an example of chemical synthesis of advanced

functional materials on both the molecular level and the

nano/microscale [17, 20].

For the design of EAE in molecular, colloidal and par-

ticle systems, large-scale interaction patterns for whole

systems [59] can be used. Projects such as ECCell [15],

BACTOCOM [72], MATCHIT [66] or ’’Behavior-Based

Molecular Robotics‘‘ [63] are addressing the questions of

programmable chemo-ICT interfaces. Essential attention is

paid to a self-replication of chemo-synthetic systems [37,

38]. Research in collective nanorobotics is also focused on

the technological capabilities of creating such large-scale

patterns in molecular systems, e.g., [103].

4.4 Hybrid mechatronic and biochemical systems

Hybrid mechatronic and biochemical systems combine

advantages of both types of technologies and are of

essential interest for EAE. There are several reasons for

this: sufficient computational properties, high develop-

mental plasticity, utilization of natural self-reproduction

processes. Examples of hybrid systems are bacterial cel-

lular sensors [101], development of bio-hybrid materials

[84], molecular synthesis of biofuels [1]. Another example

of hybrid technologies are attempts to interact with bio-

logical populations by means of technological artifacts:

managing the grazing of cattle over large areas [18, 89],

controlling mixed societies of robot and insects [12], or a

social communication between robots and chickens [46]. A

similar approach is related to the integration of different

robot technologies into human societies, for example the

management of urban hygiene based on a network of

autonomous and cooperating robots [67].

One of the interesting approaches in the area of hybrid

technologies is a combination of cultured (living) neurons

and robots [74] to investigate the dynamical and adaptive

properties of neural systems [79]. This work is also related

to understanding of how information is encoded [19] and

processed within a living neural network [24]. The hybrid

technology can be used for neuro-robotic interfaces, dif-

ferent applications of in vitro neural networks [69] or for

bidirectional interaction between the brain and the external

environment in the EAE system. Several research projects,

e.g., NeuroBit, already addressed the problem of control-

ling autonomous robots by living neurons [65].

5 Applications

The proof of the pudding is in the eating: new technology is

largely justified by useful applications. In the present

embryonic stage of the EAE field, it is impossible to pre-

dict what the best applications will be. To this end, we see

an analogy with the first decade(s) of the computer industry

in the 1950s. This was when when an IBM executive

foresaw a world market for perhaps 5 computers all toge-

ther. Half a century later, there are more computing devices

than human beings and countless applications that one

could not imagine in the early years of the technology.

As for EAE, we are at the down of the technology, and we

dare not predict specific applications. Hence, in the rest of

this section we just briefly discuss some potential application

areas. In general, EAE systems are suitable for the design and

production of artifacts under complex circumstances, for

instance in case of (1) changing environments, (2) unfore-

seen environments, (3) ill-defined (implicit) objectives, or

(4) multiple objectives with complex interactions (possibly

conflicting). Furthermore, we can distinguish between arti-

facts that are passive, e.g., jewelry, and those that are active,

e.g., micro-robots. These two types differ substantially in

that active objects need an inner controller to govern their

behavior, while passive ones do not. With a biological

analogy we may say that passive objects need a only a body,

while active ones need a body and a mind.

5.1 Evolving robots

One could imagine whole ecosystems of robots on different

scales of size. On a very small scale we could have medical

nano-robots to be deployed in a human body. For example,

they could be used as ‘‘personal virus scanners’’, evolving to

the metabolism of the host and adapting to fight any new

threat be it a germ of cancer. On a larger scale, evolving robot

populations for planetary exploration could be interesting.

These could be sent to other (unknown) planets with just a

rough initial design but with the ability to evolve to the given

circumstances. This will enable them to perform exploration

and maybe even build a base station from the locally avail-

able resources. Still on the large scale, we can conceive

evolving robot companions in domestic and industrial
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environments. Regarding their bodies, these could range

from cat and dog size up to human comparable sizes. As for

their mental features, they should be human-friendly and

intelligent. From a functional point of view they should

perform specific tasks and in a domestic setting they could

provide more generic ‘emotional’ services (keeping com-

pany, being good listeners, acting as partners in simple

conversations) [100].

5.2 Functional organisms

April 2010 saw the largest oil spill in US history: the

equivalent of around 4 million barrels of oil flowed into the

Gulf of Mexico, with numerous ecological implications.

Analysis on the site, a couple of weeks after the disaster,

showed that many groups of bacteria were helping to clean

up the waters. These bacteria were able to break down the

chemicals found in crude oil and, in fact, responded quite

effectively to the incident. In general, there are many

possible applications of bacteria, or some other type of

organism, that are synthetically designed for a specific

functionality. Such artificially developed organisms can be

used, for instance, to provide environmental services, cre-

ate building material or biofuel, to store data, or to stop

desertification. An evolutionary approach is literally natu-

ral in this application area. At this moment, this line of

research—positioned in synthetic biology—is perhaps the

closest to a breakthrough, cf. Sect. 4.2.

5.3 Evolutionary personal fabrication

Imagine a world in which anything can be produced with just

a few clicks. Customised products are at the reach of your

hand, ranging from a child’s toy to a meal. Vilbrandt et al.

introduce in [96] the idea of universal desktop fabrication

(UDF) that can produce essentially any complete, finished,

and functional object. Fab@Home (http://www.fabathome.

org) is a desktop rapid prototyper (3D-printer) and a first step

towards UDF. Such personal fabricators can build a great

variety of objects from different materials and thus enable a

large group of people to produce stuff to fit their needs

locally. The range of applications is not restricted to solid

objects, such as personalised fashion items (jewels, sun-

glasses, smartphone cases), but may also include consum-

ables, like food: ‘‘You can imagine a 3-D printer making

homemade apple pie without the need for farming the apples,

fertilising, transporting, refrigerating, packaging, fabricat-

ing, cooking, serving and the need for all of the materials in

these processes like cars, trucks, pans, coolers, etc,’’.4

Embodied evolutionary technology is expected to play an

important role in the development of such fabricators, cf. [81,

82] : ‘‘Ultimately, the evolution of form and formation

become fully intertwined when the language of assembly

itself becomes subject to evolution […]. Through this co-

evolution of form and formation, Evolutionary Fabrication

discovers both how to build objects and what to build them

out of.’’

In general, evolutionary technology can be used on local

and global level. Locally, a limited set of users (one person,

a family, or a small firm) would represent the fitness

function governing evolution. The system could adapt to

their preferences advancing customisation. On a global

scale, such personal fabricators could be networked to yield

an evolutionary system involving billions of users, evolu-

tionary app stores, and almost incomprehensible dynamics.

6 Grand challenges

At this moment it is impossible to foresee how this field

will develop. However, we are able to identify some of

the grand challenges that certainly will have to be

addressed.

6.1 Body types

The essence of embodied evolution is the body. To this

end, we can distinguish hardware in the broad sense

(mechatronic-robotic systems, new materials, etc) and

wetware (bio-chemical systems) that may also be hybri-

dised. Regarding wetware, there are two options again:

bottom-up, relying on chemistry, or top-down, based on

biology. Recent developments in microfluidics, functional

fluids, or programmable matter also seem very promising.

The first grand challenge is thus to find body types suited

for (self-)reproduction. In essence, this means that we need

to inject dead matter with a human requested functionality.

This question is also known in other formulations, e.g.,

‘‘programmability of synthetic systems’’, or ‘‘open-ended

embodied evolution’’, and is one of the key points in

understanding principles of synthetic life. It is also

addressed by the European bio-ICT initiative and several

research projects, e.g., PACE [75] and e-FLUX [27], to

name but a few.

Summarizing, one of the principal challenges of EAE is

to find physical constructs that are suited to be the evolv-

able objects forming the population. Technically this

requires that they can be produced and reproduced. This is

akin to one of the main problems in Evolutionary Com-

puting: how to find a suitable representation, that is, a data

structure that can be used for the individuals representing

candidate solutions [83].

4 Homaro Cantu states in the BBC News article ‘‘The printed future

of Christmas dinner‘‘: http://www.bbc.co.uk/news/technology-1206

9495.
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6.2 How to start: reproduction of functional elements

The implementation of birth (reproduction operators) for

human engineered physical artifacts is a critical pre-

requisite for EAE. These operators must also realise some

form of inheritance. The approaches based on mechatron-

ics, chemistry, or biology differ greatly in this respect.

(Self-)reproducing mechatronic and chemical units are far

from being trivial, whereas reproduction comes for free in

biological systems.

As mentioned in Sect. 4.1, in current micro- and nano-

mechatronic systems there are two concepts that are crucial

for EAE: self-assembling and self-replication. Self-

assembling is a process which creates complex systems

from basic elements, whereas self-replication means a

reproduction of these basic elements. Robots are able to

make functional copies of artificial organisms that consist

of basic building blocks if they have access to a reservoir of

these basic modules. Things are different, however, when it

comes to the self-replication of basic modules that contain

functional elements such as motors, gears or silicon-based

microelectronics: due to their high technological com-

plexity, self-replication of these functional elements

remains, to date, an unsolved issue.

6.3 How to stop: kill switch

A serious concern regarding EAE is the possibility of

runaway evolution. By this term we do not mean the

Fisherian notion of sexual selection reinforcing useless

traits [40]. Runaway evolution as we use it here stands for

the process of uncontrolled population growth. Such a

growth might also be accompanied by the emergence of

new, unwanted features in the population. Obviously, it

would be highly irresponsible to expose ourselves to such a

risk. To reduce this risk, all such experiments could be

carried out in highly secured isolated environments, not

unlike current research into certain germs, bacteria, viruses,

etc. involving bio-hazard. However, this might disable the

whole application in cases where the evolving population is

inherently free, acting ‘out in the wild’ (robot companions,

waste-eating organisms, medical nano-robots in the human

body, etc.). In such cases a ‘kill switch’ is required to

guarantee that human supervisors are able to shut down the

system, if and when they deem necessary.

As of today, the kill switch problem has been already

recognized within synthetic biology. There are various

approaches to obtain a solution, such as for instance suicide

genes, programmed cell death (PCD) and apoptosis [11, 13,

34, 56], just to name a few. A particular challenge stem-

ming from the inherent use of evolution is possibility that

an evolutionary systems will find solutions that are well

‘outside the box’ for the human designers of these systems

(cf. the originality argument in Sect. 3). It is therefore

essential that great care be taken when designing kill

switches to ensure that evolution will not be able to cir-

cumvent them. In common parlance, we need to prevent

the ‘Jurassic Park problem’.

6.4 Evolvability and rate of evolution

It is well-known in biology as well as in evolutionary com-

puting that evolution is a relatively slow form of adaptation.

To put it simply, it can take many generations to achieve a

decent level of development. Obviously, ‘slow’, ‘many’, and

‘decent’ depend on the application context. For instance,

medical nano-robots put to work in a human body should

adapt within a few hours to their environment (the patient’s

body). In case of sending evolving robot explorers with a

rough initial design to Mars, one can wait months for

appropriate designs to emerge. In general, we can say that

useful EAE systems must exhibit a high degree of evolv-

ability and a high rate of evolution [48]. In practice, they

must make good progress in real time: have short repro-

duction cycles and/or large improvements per generation.

The main factors here are the application dependent time

requirements and quality criteria that define how progress is

measured, and the speed of progress determined by the

evolutionary operators.

Building fast evolutionary systems is a nontrivial chal-

lenge on its own. Failing to meet this challenge would

imply that the real time performance of EAE systems is too

low. Ultimately, this could even disqualify the whole

approach—at least, for certain applications. In general, the

speed of evolution should be used as one of the essential

assessment criteria for judging the feasibility of potential

applications.

6.5 Process control and methodology

A radical change caused by EAE technology is that design

and manufacturing become an intertwined, continuous

activity. This poses an unprecedented challenge for main-

taining human control during the process. In Evolutionary

Computing, on-line control of an evolutionary algorithm is

exercised through changing its parameter values on-the-fly

[32]. Such control is directed to improving the working of

the given algorithm, e.g., increasing its speed or recovering

from local optima. In the EAE systems we envision, there

is additional challenge: we need to combine open-ended

and directed evolution on-the-fly. This means that human

users should be able to perform on-line monitoring and

steering in line with the given user preferences. This could

be perhaps realised by directed selection (akin to breeding)

and/or directed reproduction (as in genetic manipulation).

On a conceptual level, this requires a new kind of
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methodology that must contain the traditional elements,

such as specification, validation, and tuning [28]. Mean-

while, we have to address the novel aspects, such as the

combination of free evolution and specific design objec-

tives. Part of this challenge is the ‘freeze switch’, that is,

the ability to recognize if/when the evolving objects have

obtained the required properties and stop further evolution

without killing the system.

6.6 Body-mind coevolution and lifetime learning

As explained in the introduction of Sect. 5, in general we

can distinguish passive and active artifacts. Obviously, an

active artifact needs an entity governing its activities. In

some life forms, e.g., bacteria, the control and regulatory

mechanisms form a unity with the body. In higher life

forms, such control mechanisms are augmented with a

designated control entity, the mind (the ‘software’), carried

by a separate part of the body, the brain (the ‘hardware’).5

Similarly, in EAE systems active artifacts can have a dual

structure with a body and a mind (controller) that must fit

the given body. This implies that bodies and minds have to

coevolve, they will be subject to reproduction and inheri-

tance. Obviously, we do not know how the reproduction

and inheritance mechanisms for bodies will be related to

those concerning the minds in any specific EAE system.

However, in general it cannot be assumed that the inherited

mind will perfectly match the inherited body. Therefore,

the system must include the possibility that a newborn

object undergoes a lifetime learning process—not unlike

baby animals have to learn walking, seeing, etc. soon after

birth. Depending on the given EAE system at hand, it may

be possible to make individually learned skills inheritable,

i.e., to make the system Lamarckian. The ‘Artificial’ in

EAE offers a possibly large degree of technical freedom,

and experimenters of such systems could make their sys-

tems Lamarckian, even though biological evolution is not.

7 Final remarks

In this paper we have presented the concept of Embodied

Artificial Evolution or the Evolution of Things. The systems

we envision are embodied because evolutionary operators

(reproduction, selection, fitness evaluation) are implemented

in/by the physical objects that undergo evolution. Further-

more, they are artificial because (i) the evolvable objects and

the population as a whole are being fabricated and/or pro-

grammed to fulfill a certain human purpose, to execute a

certain task,6 and (ii) the evolutionary operators (reproduc-

tion and selection) and their particular combination into one

working system are human engineered.

We believe that EAE offers a high potential research and

application area with exciting scientific and technological

challenges. This field is in an embryonic stage, where rele-

vant developments take place within different scientific

communities and technological areas that do not naturally

interact with each other. At the moment we see three main

streams of research towards building EAE systems: top-

down, biology-based, bottom-up working from chemistry

and ‘head-on’ engineering based on robotics and material

science. Furthermore, Evolutionary Computing can play an

important role as the field that collected a large body of

knowledge about designing, implementing, and executing

all components of an evolutionary process. We hope that by

introducing a unifying vision we can bring all stakeholders

together raising awareness of the shared research issues and

possible solutions.

Last, but not least, let us mention a particular issue all

approaches must address: the related ethical questions. In

this respect, several problems have already been noticed in

Life Sciences [16]. However, EAE systems based on non

living mediums could lead to very similar challenges, be it

in different forms. For instance, bio-hazard can turn into

robo-hazard. The ethical questions therefore form a clearly

horizontal issue, cross-cutting over different disciplines

and technical approaches to EAE. One of the main goals of

this paper is to create an overarching vision, which in turn

could contribute to help research communities and insti-

tutions develop a solid system of checks and balances thus

making such research a safe enterprise.
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