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Abstract
We consider the standard neural field equation with an exponential temporal kernel. We analyze the time-independent (static) 
and time-dependent (dynamic) bifurcations of the equilibrium solution and the emerging spatiotemporal wave patterns. We 
show that an exponential temporal kernel does not allow static bifurcations such as saddle-node, pitchfork, and in particular, 
static Turing bifurcations. However, the exponential temporal kernel possesses the important property that it takes into 
account the finite memory of past activities of neurons, which Green’s function does not. Through a dynamic bifurcation 
analysis, we give explicit bifurcation conditions. Hopf bifurcations lead to temporally non-constant, but spatially constant 
solutions, but Turing–Hopf bifurcations generate spatially and temporally non-constant solutions, in particular, traveling 
waves. Bifurcation parameters are the coefficient of the exponential temporal kernel, the transmission speed of neural signals, 
the time delay rate of synapses, and the ratio of excitatory to inhibitory synaptic weights.

Keywords  Neural fields · Exponential temporal kernel · Leakage · Transmission delays · Bifurcation analysis · 
Spatiotemporal patterns

Introduction

It is a well-established and basic neurophysiological fact that 
neural activity leads to particular spatiotemporal patterns in 
the cortex; see, for instance, the survey in (Wu et al. 2008), 

and other brain structures like the hippocampus, see, for 
example, Lubenov and Siapas (2009). These spatiotemporal 
patterns have the qualitative properties of periodic or trave-
ling waves, see, for instance, Townsend et al. (2015). Such 
patterns, like periodic and traveling waves, play important 
roles in neurophysiological models of cognitive process-
ing, beginning with the synchronization models of von der 
Malsburg (von der Malsburg 1994) or the synfire chains of 
Abeles (Abeles 1982). It is, therefore, important to under-
stand the emergence of these patterns in densely connected 
networks of neurons that communicate with each other by 
transmitting neural information via their synapses (Kandel 
et al. 2000). For understanding such macroscopic patterns, 
it seems natural to abstract from details at the microscopic, 
that is, neuronal, level, and to study pattern formation from 
a more general perspective. One recent approach (Galinsky 
and Frank 2020) looks at the electromagnetic properties and 
the folding geometry of brain tissue. A more classical and 
by now rather well-established approach is the neural field 
theory. Neural field theory considers populations of neu-
rons embedded in a coarse-grained spatial area, and neu-
ral field equations describe the spatiotemporal evolution of 
coarse-grained variables like the firing rate activity in these 
populations of neurons (Wilson and Cowan 1973). Wilson 
and Cowan first introduced neural field models as a spatially 
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extended version of Hopfield neural networks (Wilson and 
Cowan 1973, 1972). A simplified model that could be math-
ematically treated in a rather explicit form was developed 
by Amari (Amari 1977), which consists of nonlinear inte-
grodifferential equations. These equations play an important 
role also in other fields, such as machine learning, which 
combines ideas from neural field modeling and model-based 
recognition (Veltz and Faugeras 2011; Perlovsky 2006).

Neural fields have seen significant progress in both 
theoretical and numerical studies over the recent years 
(Alswaihli et al. 2018; Abbassian et al. 2012; Bressloff 
2011; Haken 2007; Karbowski and Kopell 2000; Morelli 
et al. 2004; Prager and Geier 2003; Spiridon and Gerstner 
2001). An important fact in neural field modeling is the 
consideration of axonal conduction delays arising from the 
finite speed of signals traveling along the axonal distance. 
Some recent and significant contributions to neural field 
modeling with transmission delays are presented in (Atay 
and Hutt 2004, 2006; Hutt and Atay 2005, 2006; Veltz 
and Faugeras 2011; Spek et al. 2022; van Gils et al. 2013). 
In (Atay and Hutt 2004), a stability analysis is given for 
neural field equations in the presence of finite propagation 
speed and for a general class of connectivity kernels, and 
sufficient conditions for the stability of equilibrium solutions 
are given. It is shown that the non-stationary bifurcations 
of equilibria depend on the propagation delays and the 
connectivity kernel, whereas the stationary bifurcations rely 
only on the connectivity kernel. In (Hutt and Atay 2005), the 
stability of neural fields with a general connectivity kernel 
and space-dependent transmission delays is analyzed. It is 
found that Turing instability occurs with local inhibition 
and lateral excitation, while wave instability occurs with 
local excitation and lateral inhibition. The standard neural 
field model with propagation speed distribution of signal 
transmission speeds is considered in (Hutt and Atay 2006), 
where the effect of distributed speeds on the dynamical 
behavior is investigated. It is shown that the variance of 
the speed distribution affects the frequency of bifurcating 
periodic solutions and the phase speed of traveling waves. 
It is also shown that the axonal speed distributions increase 
the traveling front speed. The results in (Hutt and Atay 
2006) were extended in (Atay and Hutt 2006), where long-
range feedback delays are considered in the standard neural 
field model. There, it is shown that in a reduced model, 
delayed excitatory feedback generally facilitates stationary 
bifurcations and Turing patterns while suppressing the 
bifurcation of periodic solutions and traveling waves. In 
the case of oscillatory bifurcations, the variance of the 
distributed propagation and feedback delays affect the 
frequency of periodic solutions and their traveling speed 
(Muller et al. 2018; Watt et al. 2009).

The study in (Veltz and Faugeras 2011) considers neural 
field equations with space-dependent delays and uses 

two techniques: (i) the computation of the eigenvalues 
of the linear operator defined by the linearized equations 
to establish a sufficient condition for stability, which is 
independent of the characteristics of the delays, and (ii) 
the formulation of the problem as a fixed point problem to 
find new sufficient conditions for the stability of stationary 
solutions which depend upon the values of the delays. The 
work in (Spek et al. 2022) investigated a neural field model 
that incorporates transmission delays and a connectivity 
kernel consisting of a linear combination of exponentials. 
The authors examined the dynamics and stability of this 
model within a two-dimensional spatial domain. They 
analyzed the spectrum of the linearized equation and 
identified the presence of a supercritical Hopf bifurcation. 
They also explored the possibilities of extending this model 
to incorporate multiple populations and higher-dimensional 
spatial domains. Moreover, the investigation in (van Gils 
et al. 2013) showed that one could recast neural field models 
with transmission delays into abstract delay differential 
equations (DDE) and subsequently use standard results from 
dynamical systems theory, such as the principle of linearized 
(in)stability, center manifold reduction and normal form 
computation to study the bifurcations of the delayed neural 
field models. In particular, they showed that the associated 
steady state of the DDE might destabilize under certain 
conditions via a Hopf bifurcation.

Various experimental methods of recording the activity 
of brain tissue in vitro and in vivo demonstrate the existence 
of traveling waves. Neural field theory offers a theoretical 
framework for studying such phenomena. The question, 
then, is to identify the structural assumptions and the 
parameter regimes for the emergence of traveling waves in 
neural fields. This work aims to analytically and numerically 
study the static and dynamic bifurcations and spatiotemporal 
wave patterns generated by the classical neural field model 
with an exponential temporal kernel which is more general 
than the Green’s function used in (Atay and Hutt 2004) 
and (Senk et al. 2020). In (Senk et al. 2020), the temporal 
connectivity kernel is the product of an alpha function1 and 
the Heaviside function, which yields a function with the 
same properties as the Green’s function, and thus yields the 
same characteristic polynomial as in (Atay and Hutt 2004). 
We recall that Green’s function G(t, t�) is the solution to 
LG(t, t�) = �(t − t�) satisfying the given boundary conditions, 
where L is a differential operator. This is a differential 
equation for G (or a partial differential equation if we are in 
more than one dimension), with a very specific source term 
on the right-hand side: the Dirac delta, which is 0 if t ≠ t′ , 
and hence does not consider finite memory of past activities 
of neurons.

1  See Sect. 2 for a definition of the alpha function.
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In contrast, in this paper, the derivative of the exponential 
temporal kernel tends to 0 as t → ∞ . Also, it decreases 
monotonically in finite time, meaning that it takes into 
account a finite memory of past activities of neurons, 
which Green’s function does not. Ref. (Senk et al. 2020) 
is quite inspiring for reducing a biologically more realistic 
microscopic model of leaky integrate-and-fire neurons 
with distance-dependent connectivity to an effective neural 
field model. Because of the type of kernels used there, two 
different neuron populations, excitatory and inhibitory 
ones, are needed to induce dynamic bifurcations. Here, we 
work with a Mexican hat-type spatial kernel (which models 
short-range excitation and mid-range inhibition), and an 
exponential temporal kernel, and we will demonstrate 
similar types of dynamic bifurcations as in (Amari 1977; 
Senk et al. 2020) with only a single population. Thus, in our 
model, we have identified the parameter regimes for periodic 
patterns via Hopf bifurcations and traveling wavelike 
spatiotemporal patterns via Turing–Hopf bifurcations. These 
patterns are typically seen in electrophysiological recordings 
of the activity of cortical and other brain tissues and may 
support basic cognitive processes at the neurophysiological 
level.

This paper is organized as follows: In Sect. 2, we present 
the model equation and obtain its equilibrium solution. 
Section 3 is devoted to the static bifurcation analysis of the 
equilibrium solution. In Sect. 5, we investigate dynamic 
bifurcations of the equilibrium solution and the ensuing 
patterns of traveling waves, and finally, we conclude with a 
general discussion and some remarks in Sect. 6.

The model and the equilibrium solution

We consider a neural field model represented by an 
infinite-dimensional dynamical system in the form of an 
integrodifferential Eq. (Polner et al. 2017; Arqub 2017; 
Faugeras and Inglis 2015; Rankin et al. 2014), with axonal 
conduction delay (Fang and Faye 2016; Breakspear 2017; 
Pinto and Ermentrout 2001). In this equation, the position 
of a neuron at a time t is given by a spatial variable x, in the 
literature usually considered to be continuous in ℝ or ℝ2 . 
The state of the neural field, v(x, t) (membrane potential), 
evolves according to

with an arbitrary initial condition v(x,−∞) = vi . Here, 
v(x, t) is interpreted as a neural field representing the local 
activity of a population of neurons at position x and time t, 

(2.1)
v(x, t) = ∫

t

−∞

�(t − s)S(x, s) ds

+ ∫
t

−∞

[
I1(x, s) −

1

�
v(x, s)

]
ds,

and I1(x, t) is an external input current originating from the 
surrounding environment or other neural populations, e.g., 
from other cortical regions or the midbrain (Nunez 1995). 
The first integral converts the incoming pulse activity S of 
the neuron at x into its state by convolution with a temporal 
kernel (impulse response function) � . The second integral 
balances the external input I1 with a decay or leakage term, 
with a time constant 𝜏 > 0 arising from the temporal decay 
rate of synapses. In this paper, we take the past activity of 
neurons into account for the impulse response using an 
exponential temporal kernel. In (Atay and Hutt 2004), such 
a kernel was taken as the Green’s function of a first-order 
differential operator. Here, in order to be able to carry out a 
detailed bifurcation analysis depending on that kernel, we 
use a more explicit form, namely an exponential decay:

where �1 and �2 are positive constants. A normalization 
condition requiring that the integral of the kernel be 1 gives 
�1 = �2 ∶= � . Such kernels are standard in the neuroscience 
literature and are usually called �-functions (see, e.g., 
Gerstner and Kistler (2002)). We want to explicitly point 
out that even though the exponential kernel used in this 
work reduces to the kernel used in (Atay and Hutt 2004) as 
� → ∞ , our bifurcations cannot, in general, automatically 
reduce to those in (Atay and Hutt 2004). The presence of a 
leakage term (which is neglected in (Atay and Hutt 2004)), 
characterized by a temporal decay rate parameter 𝜏 > 0 in 
our model, does not allow for such a reduction.

The crucial idea in neural field models is that the 
incoming activity S(x, t) is obtained by a spatial convolution 
via an integral with some convolution kernel J(x, y), that is,

Here, c > 0 is some constant that involves various temporal 
and spatial scales, Ω is the spatial domain which is 
usually taken as ℝ or ℝ2 in the literature, although other 
choices, like ℝ3 or S2 , are neuro-biologically plausible and 
mathematically tractable. The synaptic weight function J 
typically describes local excitation–lateral inhibition or local 
inhibition–lateral excitation. The function F is a the transfer 
function (for instance, a sigmoid or a Heaviside function 
H(v − vth) , for some threshold vth ; however, later on, F needs 
to be smooth), I2(x, t) is an internal input current originating 
from the synaptic connectivity between the neurons in 
the neural population. When a neuron fires, it releases 
neurotransmitters into the synaptic cleft, influencing the 
neighboring neurons by exciting or inhibiting their activity. 
This synaptic interaction results in an internal input current 
I2(x, t) (i.e., feedback from within the neural population 

(2.2)𝜅(t − s) =

{
𝛼1e

−𝛼2(t−s) if t − s ≥ 0,

0 if t − s < 0,

(2.3)S(x, t) = c∫Ω

J(x, y)F
(
v
(
y, t −

|y − x|
�

))
dy + I2(x, t).
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itself) that affects the rate of change of neural activity at 
each point in space. It is worth noting that, unlike most 
studies where only the external input current is considered, 
the presence of external and internal input currents (i.e., 
I1(x, t) and I2(x, t) , respectively) in neural field modeling 
allows for a more comprehensive description of how neural 
activity evolves over space and time, considering both the 
impact of external stimuli and the intrinsic interactions 
among neurons within the population. The distance |y − x| 
between x and y (for instance, the Euclidean distance), and 
𝜈 > 0 is the transmission speed of neural signals. Thus, a 
finite transmission speed introduces a distance-dependent 
transmission delay, which approaches 0 as � → ∞ . We also 
assume a homogeneous field where the connectivity J(x, y) 
depends only on the distance |y − x| , and so, we replace 
J(x,  y) by an even function J(y − x) . In our numerical 
investigations, we will use the following spatial convolution 
kernel (Hutt and Atay 2005) and sigmoid transfer function 
(Wilson and Cowan 1973; Robinson et al. 1997):

respectively, where ae and ai , respectively, denote the 
excitatory and inhibitory synaptic weights and r denotes 
the relation of excitatory and inhibitory spatial ranges (Hutt 
et al. 2003). The combination of excitatory and inhibitory 
axonal networks may yield four different spatial interactions, 
namely pure excitation (i.e., when ai = 0 ), pure inhibition 
(i.e., when ae = 0 ), local excitation–lateral inhibition (i.e., 
when ae ≠ 0 , ai ≠ 0 , and r < 1 ) giving J a Mexican hat 
shape, and local inhibition–lateral excitation (i.e., when 
ae ≠ 0 , ai ≠ 0 , and r > 1 , giving J an inverse Mexican hat 
shape.

Differentiating (2.1) with respect to t yields

Inserting (2.2) and (2.3) in (2.6) gives

(2.4)J(y − x) =
ae

2
e−|y−x| −

ai

2
re−|y−x|r,

(2.5)F(v) =
1

1 + exp(−1.8(v − 3))
,

(2.6)

d

dt
v(x, t) = ∫

t

−∞

d�(t − s)

dt
S(x, s) ds

−
1

�
v(x, t) + �S(x, t) + I1(x, t).

In order to analyze the dynamic behavior of (2.7), we 
assume constant internal and external input currents, i.e., 
I1(x, s) = E , I2(x, s) = I0 , and a constant solution

Substituting into (2.7) shows that v0 satisfies the fixed point 
equation

which is satisfied by the fixed point (equilibrium solution)

The other terms in (2.9) cancel because if v and I2 are con-
stant, then so is S, and hence, the first integral in (2.1) is 
independent of t. In the following sections, we study the 
static and dynamic bifurcations of this equilibrium solution.

Static bifurcations of the equilibrium 
solution

For the purpose of this paper, we will consider only one 
spatial dimension, i.e., we take Ω = ℝ . However, one should 
note that the results presented in this paper may not automat-
ically translate to higher dimensions (i.e., Ω = ℝN ,N ≥ 2 ) 
where entirely new dynamical behaviors could emerge.

To obtain the parametric region of the stability 
of the equilibrium solution (2.10), we linearize the 
integrodifferential equation (2.7) around the equilibrium 
solution v0 = �E . Let w(x, t) = v(x, t) − v0 . Then,

(2.7)

d

dt
v(x, t) = − �2c∫

t

−∞

e−�(t−s)

∫Ω

J(y − x)F
(
v
(
y, s −

|y − x|
�

))
dy ds

− �2 ∫
t

−∞

e−�(t−s)I2(x, s)ds

−
1

�
v(x, t) + �c∫Ω

J(y − x)F
(
v
(
y, t −

|y − x|
�

))
dy

+ �I2(x, t) + I1(x, t).

(2.8)v(x, t) = v0.

(2.9)
v0 + ��cF(v0)∫Ω

J(y − x)dy + ��I0 − ��I0

− ��cF(v0)∫Ω

J(y − x)dy − �E = 0,

(2.10)v0 = �E.
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which simplifies to

To check the stability of the equilibrium solution, we 
substitute the general Fourier–Laplace ansatz for linear 
integrodifferential equations

into (3.2) to get

From (2.10), we note that �E − v0 = 0 in (3.4). The first 
integral in (3.4) is independent of y, so

By making a change of variable: z = y − x in (3.4), and 
considering � ≠ −� , we obtain the linear variational 
equation as

For static bifurcations, that is, for bifurcations leading to 
temporally constant solutions, we must have � = 0 (Atay and 
Hutt 2004). However, � = 0 is not a solution of (3.6). And 
in fact, for a constant solution v0 ≠ �E , the second integral 
in (2.1) would diverge. Therefore, static bifurcations (such 

(3.1)

d

dt
w(x, t) = − �2c∫

t

−∞

e−�(t−s)

∫
∞

−∞

J(y − x)
[
F(v0) + F�(v0)w

(
y, s −

|y − x|
�

)]
dy ds

− �I0 −
1

�
w(x, t) −

v0

�
+ �c∫

∞

−∞

J(y − x)

[
F(v0) + F�(v0)w

(
y, t −

|y − x|
�

)]
dy + �I0 + E,

(3.2)

d

dt
w(x, t) = − �2cF�(v0)∫

t

−∞

e−�(t−s)

∫
∞

−∞

J(y − x)w
(
y, s −

|y − x|
�

)
dy ds

−
1

�
w(x, t) + �cF�(v0)

∫
∞

−∞

J(y − x)w
(
y, t −

|y − x|
�

)
dy + E −

v0

�
.

(3.3)w(x, t) = e�teikx, � ∈ ℂ, k ∈ ℝ,

(3.4)

(�� + 1)e�teikx = − �2c�F�(v0)∫
t

−∞

e−�(t−s)e�s ds

∫
∞

−∞

J(y − x)eikye−�
|y−x|
� dy

+ �c�F�(v0)e
�t ∫

∞

−∞

J(y − x)eikye−�
|y−x|
� dy

+ �E − v0.

(3.5)�
t

−∞

e−�(t−s)e�sds =
1

� + �
e�t, � + � ≠ 0.

(3.6)�� + 1 = �c�F�(v0)
(

�

� + �

)
∫

∞

−∞

J(z)e−�
|z|
� e−ikzdz.

as saddle-node and pitchfork bifurcations) cannot occur, and 
hence, in particular, we conclude the following:

Theorem 1  The neural field Eq. (2.1) with the exponential 
temporal kernel (2.2) does not admit static bifurcations from 
the spatially uniform equilibrium solution (2.8).

This is in contrast to the models investigated in 
(Coombes et  al. 2007; Hutt et  al. 2003) where such 
patterns may occur.

A stability condition for constant 
equilibrium

We next give a sufficient condition for the asymptotic 
stability of the equilibrium solution v0 . We make use of the 
following lemma from (Atay and Hutt 2004).

Lemma 1  Let L(�) be a polynomial whose roots have non-
positive real parts. Then |L(� + i�)| ⩾ |L(i�)| for all � ⩾ 0 
and � ∈ ℝ.

Theorem 2  Let D ∶= |�| ∫ ∞

−∞
|J(z)|dz , where � = �c�F�(v0) , 

and L(�) be a polynomial whose roots have non-positive 
real parts. If

then v0 is locally asymptotically stable. In particular, the 
condition

is sufficient for the local asymptotic stability of v0.

Proof  : In the ansatz w(x, t) = e�teikx , let � = � + i� , where 
� and � are real numbers. We will prove that 𝜎 < 0 if (4.1) 
holds. Suppose, by contradiction, that (4.1) holds but � ≥ 0 . 
Let L(�) ∶= �� + 1 , then by (3.6), it follows that

Since 𝛼 > 0 , we have |||
𝜎+i𝜔

𝛼+𝜎+i𝜔

||| < 1 , which means

By Lemma 1,

(4.1)D < min
𝜔∈ℝ

|L(i𝜔)|,

(4.2)D < 1,

|L(� + i�)| = |�|||||
� + i�

� + � + i�

||||
||||∫

∞

−∞

J(z)e−(�+i�)
|z|
� e−ikzdz

||||
⩽ |�|||||

� + i�

� + � + i�

||||∫
∞

−∞

|J(z)||||e
−(�+i�)

|z|
�
|||dz

⩽ |�|||||
� + i�

� + � + i�

||||∫
∞

−∞

|J(z)|dz.

(4.3)|L(𝜎 + i𝜔)| < |𝛽|∫
∞

−∞

|J(z)|dz.
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for some � ∈ ℝ . This, however, contradicts (4.1).
Thus, 𝜎 < 0 , and the equilibrium solution v0 is locally 

asymptotically stable. This proves the first statement of the 
theorem. From L(�) ∶= �� + 1 , one has |L(i�)|2 = 1 + �2�2 . 
Hence, if (4.2) is satisfied, then

for all � ∈ ℝ , which is a sufficient condition for stability by 
(4.2). 	�  ◻

(4.4)|L(i𝜔)| ≤ |L(𝜎 + i𝜔)| < |𝛽|�
∞

−∞

|J(z)|dz = D,

(4.5)D2 < 1 ≤ 1 + 𝜏2𝜔2 = |L(i𝜔)|2,

In Fig. 1a–c, we present the bifurcation diagrams showing 
the regions of stability and instability of the equilibrium solu-
tion v0 . In the panels, the quantity D ∶= |�| ∫ ∞

−∞
|J(z)|dz is 

plotted against the bifurcation parameters � , r, and �.
We are interested in parameter constellations where spa-

tiotemporal patterns emerge, where the constant solution is 
not stable. From the diagrams, this requires that the memory 
decay � and the time constant � of the synapses both be suf-
ficiently large and the excitation and inhibition be sufficiently 
imbalanced. In fact, the case r < 1 , where inhibition is weaker, 
but more widely spread than excitation, is usually assumed in 
the literature to let J acquire its Mexican hat shape. However, 
in this paper, we would use both cases: when r < 1 (giving 

Fig. 1   The solid curves represent the quantity D from Theorem  2 
plotted against the bifurcation parameters: � in a with � = 0.7 , 
r = 0.5 ; r in b with � = 2.0 , � = 0.7 ; and � in c with � = 2.0 , r = 0.5 . 
The intervals of � ∈ (0.0, 1.4) , r ∈ (0.60, 1.84) , and � ∈ (0.0, 0.51) 
in which the solid curves are below the dashed horizontal line ful-

fills the sufficient condition of asymptotic stability of the equilibrium 
solution v0 = �E , following Theorem  2. Other parameters are fixed 
at c = 15.0 , E = 0.275 , a

e
= 10.0 , a

i
= a

e
∕r . The nonlinear depend-

ence on � , as opposed to the linear dependence on � , arises because in 
� = �c�F�(v0) , we get an additional dependence since v0 = �E
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J a Mexican hat shape) and when r > 1 (giving J an inverse 
Mexican hat shape.)

Dynamic bifurcations of the equilibrium 
solution

In Sect. 3, we have seen that static bifurcations are not pos-
sible since � = 0 is not a solution of (3.6). In this section, 
we investigate the conditions for oscillatory (dynamic) 
bifurcations. In the case of a homogeneous neural field, 
we use the kernel function J and the sigmoid transfer func-
tion F in (2.4) and (2.5), respectively. An infinitesimal 
perturbation of the form w(x, t) = e�teikx by (3.6) would 
then need to be satisfied and could be written as

In (5.1), we shall consider the solution � as a function of k. 
The solution loses its stability when the real part of a root 
� in (5.1) changes from negative to positive. By tuning the 
parameters r, � or � , a critical point is eventually reached at 
k = kc in which the real part of the corresponding eigenvalue 
�(kc) of (5.1) become zero. From this critical point, one 
gets the critical wave number kc and the critical frequency 
�c = ℑ[�(kc)] . The case kc = 0 and �c ≠ 0 corresponds to 
a Hopf bifurcation (Folias and Bressloff 2005; Laing 2005; 
Folias and Bressloff 2004), and the case kc ≠ 0 and �c ≠ 0 
to a Turing–Hopf bifurcation (Coombes et al. 2007; Venkov 
et al. 2007; Touboul 2012). We shall investigate both cases 
in more detail.

Hopf bifurcation

Now, we insert � = i� in (5.1), and because we are 
searching conditions for Hopf bifurcation (i.e., when 
kc = 0 ), we insert k = kc (so that the real part of the 
corresponding eigenvalue �|(kc=0) becomes zero) to get a 
polynomial of degree six in � given by

(5.1)

��2 + (�� + 1)� + �

= �c�F�(v0)�∫
∞

−∞

J(z)e−�
|z|
� e−ikzdz

= ��

[
∫

∞

−∞

(ae
2
e−|z| −

air

2
e−|z|r

)
e
−�

|z|
� e−ikzdz

]

= ��

[
ae

1 +
�

�

(1 +
�

�
)2 + k2

− air
r +

�

�

(r +
�

�
)2 + k2

]

− i��

[
aek

(1 +
�

�
)2 + k2

−
airk

(r +
�

�
)2 + k2

]
.

(5.2)q6�
6 + q5�

5 + q4�
4 + q3�

3 + q2�
2 + q1� = 0,

where the coefficients are given by

A trivial solution of (5.2) is � = 0 , but � should be purely 
imaginary, i.e., � ≠ 0 . However, this trivial solution allows 
us to reduce the degree of (5.2) to get

Substituting a solution i�c ( �c ≠ 0 ) in (5.4) and separating 
the real and imaginary parts yield

where

From the first equation of (5.5), we get

Since �c ∈ ℝ − {0} , 𝜔2
c
> 0 . And because a3 > 0 , (5.7) can 

be satisfied only if

When we substitute �2
c
= (−a2 +

√
a2

2 − 4 a1 a3)∕2a3 into 
the second equation of (5.5), we obtain

(5.3)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q6 =
�

�4
,

q5 =
�� + 1

�4
,

q4 =
�(1 + r2)

�2
+

�(ae − air)

�3
−

�

�4
,

q3 =
(r2 + 1)(�� + 1) + �(air − ae)

�2
,

q2 = �r2 +
�r(aer − ai)

�
−

�(1 + r2)

�2
,

q1 = r2(�� + 1) + �r(ai − aer).

(5.4)q6�
5 + q5�

4 + q4�
3 + q3�

2 + q2� + q1 = 0.

(5.5)
{

a3�
4
c
+ a2�

2
c
+ a1 = 0,

b3�
4
c
+ b2�

2
c
+ b1 = 0,

(5.6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a3 =
1 + ��

�4
,

a2 = −
�(air − ae) + (�� + 1)(r2 + 1)

�2
,

a1 = �r(ai − aer) + r2(�� + 1),

b3 =
�

�4
,

b2 =
�

�4
−

�(ae − air)

�3
−

�(1 + r2)

�2
,

b1 = r2� +
�r(aer − ai)

�
−

�(1 + r2)

�2
.

(5.7)�2
c
=

−a2 ±
√
a2

2 − 4 a1 a3

2a3
.

(5.8)
⎧

⎪

⎨

⎪

⎩

air − ae ≥ 0,

Γ =
[

�(air − ae) + (�� + 1)(r2 + 1)
]2 − 4

[

1 + ��
][

�r(ai − aer) + r2(�� + 1)
]

≥ 0.
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where

The relations in (5.8) provide the parametric region in which 
the neural field oscillates due to Hopf bifurcation that occurs 
at �2

c
= (−a2 +

√
a2

2 − 4 a1 a3)∕2a3 in (5.7) and which must 

(5.9)

[
� Δ2 − �

(
r2 + 1

)
Δ + r2�

]
�2

+
[
�
(
ai r − ae

)
Δ

+ � r
(
ae r − ai

)]
� +

[
�Δ − �

(
r2 + 1

)]
= 0,

(5.10)

Δ = 1
2�� + 2

[√

−4 (� � + 1)
[

� r
(

−ae r + ai
)

+ (� � + 1)r2
]

+
[

�
(

ai r − ae
)

+ (� � + 1)
(

r2 + 1
)]2

+ �
(

ai r − ae
)

+ (� � + 1)
(

r2 + 1
)

]

.

also satisfy the first equation in (5.5). It is worth noting that 
in (5.8), the first condition is always satisfied (since in our 
analysis, we always have r = ae∕ai ). Hence, it suffices to find 
the parametric regions where the second condition in (5.5) 
(i.e., Γ ≥ 0 ) holds, for each parameter of interest. Figure 2a 
and b shows the Hopf bifurcation curves for the parameters � 
and � , respectively. Figure 2 c–e shows the Hopf bifurcation 

curves (in blue) in the parameter spaces �-� , �-� , and r-� , 
respectively, in which the gray regions satisfy (5.8).

Fig. 2   Panels a and b show the interval of � ∈ (0.0, 8.0) and 
� ∈ (0.0, 2.0) for which (5.8) is satisfied. In the panels (c–e), the blue 
curves represent the solutions of (5.9) in the parameter spaces �-� , �
-� , and r-� , respectively. The gray areas in the panels represent the 
region of the parameter spaces where (5.8) holds, i.e., the oscilla-
tory region. The parts of blue curves from (5.9) that lie in the gray 

region represent the values of the parameters for which oscilla-
tions exist, as these values satisfy (5.8). In a � = 0.75 , r = 5.0 ; in b 
� = 6.0 , r = 5.0 ; in c � = 0.75 , r = 5.0 ; in d � = 6.0 , r = 5.0 ; and in e 
� = 6.0 , � = 0.75 . In (a–e), the other parameter values are: c = 15.0 , 
E = 0.275 , a

e
= 10.0 , v0 = �E , � = �c�F�(v0) , and in (e) a

i
= a

e
∕r 

(color figure online)
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Figure 3 shows corresponding space–time patterns of 
the membrane potential oscillating in different regions 
of the Hopf bifurcation parameter space of Fig. 2c. In 
Fig. 3a–c, the values of the parameters � and � are chosen 
below, on, and above the Hopf bifurcation curve of Fig. 2c, 
leading to oscillatory regimes with different frequencies 
and amplitudes.

Turing–Hopf bifurcation

Theorem 3  Let D ∶= |�| ∫ ∞

−∞
|J(z)|dz and L(�) be a polyno-

mial whose roots have non-positive real parts. Then there 
exists B > 0 depending only on L and D such that

whenever w(x, t) = ei�teikx , �, k ∈ ℝ , is a solution of (3.2). 
Furthermore, if D < 1 , then there exists A > 0 , depending 
on L and D, such that

In particular, if L(�) = �� + 1 , then

(5.11)|�| ≤ B,

(5.12)0 < A ≤ |𝜔|.

(5.13)�2�2 ≤ D2 − 1.

Proof  If � = i� satisfies the dispersion relation (3.6) for 
some k, then

Since |L(i�)| → ∞ as � → ±∞ for any non-constant 
polynomial L, the above inequality implies an upper bound 
B on |�| , which proves (5.11). For the particular case 
L(�) = �� + 1 , (5.14) gives

which proves (5.13). 	�  ◻

The following analytical result will be used in the rest of the 
numerical computations. The conditions for Turing–Hopf 
bifurcation require that with the Fourier–Laplace ansatz (3.3), 
that is, w(x, t) = e�teikx , we find � = ±i� with � ≠ 0 at some 
critical value kc ≠ 0 . Inserting � = i� in (3.6), we obtain

which yields upon expansion,

(5.14)|L(i�)| ≤ � �
∞

−∞

|J(z)|dz = D.

(5.15)|L(i�)|2 = �2�2 + 1 ≤ D2,

(5.16)

L(i�) ∶= 1 + i�� = �

(
i�

� + i�

)
∫

∞

−∞

J(z)e−i�
|z|
� eikzdz,

Fig. 3   Panels a–c show color-coded space–time patterns of the mem-
brane potential v(x, t) emerging from Hopf instability. In (a), � = 7.0 , 
� = 0.16 , i.e., below the Hopf bifurcation (blue) curve. In (b), 
� = 7.0 , � = 1.83 , i.e., on the Hopf bifurcation curve. In (c), � = 7.0 , 
� = 2.5 , i.e., above the Hopf bifurcation curve. In all cases, we have 
periodic oscillations of spatially constant solutions. The solutions 

are obtained for the Gaussian connectivity kernel in the panels, with 
initial conditions chosen randomly from a uniform distribution on 
[v0 − 0.1, v0 + 0.1] . Other parameters are fixed at � = 0.75 , a

e
= 10.0 , 

a
i
= 2.0 , r = a

e
∕a

i
= 5.0 , c = 15.0 , and k = 0 (color figure online)
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By substituting the power series

(5.17) is written as

We define Jm as

and the integrals are assumed to exist. Substituting (5.19) 
into (5.18) yields

Equating the right-hand side of (5.20) to the left-hand side 
of (5.16), we get

The number of terms required for the above series to be 
helpful depends on the values of � and k as well as the 
shape of the kernel J. If J is highly concentrated near the 
origin, as in our case (see (2.4)) or, more generally, if J is 
of exponential order, then a few terms will suffice. That is, 
assume there exist positive numbers �1 and �2 such that

Then by (5.19)

so the mth term in the series (5.21) is bounded in absolute 
value by

(5.17)

�
�2 + i��

�2 + �2 ∫
∞

−∞

J(z)e−
i�|z|
� cos(kz)dz

= �
�2 + i��

�2 + �2 ∫
∞

−∞

J(z)
[
cos

(
�|z|
�

)
− i sin

(
�|z|
�

)]
cos(kz)dz

=
�

2

�2 + i��

�2 + �2 ∫
∞

−∞

J(z)
[
e
i|z|( �

�
+k) + e

i|z|( �
�
−k)

]
dz.

e
i|z|( �

�
±k) =

N∑
m=0

im(
�

�
± k)m

m!
|z|m + O(�−(N+1)),

(5.18)

�

2

�2 + i��

�2 + �2 ∫
∞

−∞

J(z)
( N∑

m=0

im

m!

[(
�

�
+ k

)m

+
(
�

�
− k

)m]|z|m + O(�−(N+1))
)
dz.

(5.19)Jm ∶= ∫
∞

−∞

J(z)|z|mdz,

(5.20)

L(i�) = �
�2 + i��

�2 + �2

[
J0 + i

�

�
J1 −

1

2!

(
k2 +

�2

�2

)
J2 +⋯

]
.

(5.21)

1 + i�� = �
�2 + i��

�2 + �2

[
J0 + i

�

�
J1 −

1

2!

(
k2 +

�2

�2

)
J2 +⋯

]
.

(5.22)|J(z)| ≤ �1e
−�2|z| for all z ∈ ℝ.

||Jm|| ≤ �
∞

−∞

|z|m�1e−�2|z|dz = 2�1 �
∞

0

zme−�2zdz

= 2�1�
−(m+1)

2
Γ(m + 1) = 2�1�

−(m+1)

2
m!,

where we have used Theorem 3 to bound the values of � . In 
the case of a high transmission speed � or B (for example, 
small � ) or a large value of �2 (rapid decrease of J away 
from the origin) or a bounded value of k, the finite series 
has increased precision. At least one of these conditions is 
assumed to be true, so a few terms are sufficient to determine 
the general behavior. To observe the qualitative effects of a 
finite transmission speed, we, therefore, neglect the terms 
from the fourth and higher orders in the series (5.21).

Equating the real parts of both sides in (5.21), and 
similarly with the imaginary parts, and considering � ≠ 0 (a 
Turing–Hopf bifurcation condition), we have

From (5.23), we have

which gives

2
�1

�2

( |�|
�2�

)m ≤ 2
�1

�2

(
B

�2�

)m

,

(5.23)

⎧⎪⎨⎪⎩
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(5.24)
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�2
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)
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=
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(
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�2
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)
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,

(5.25)
�J0 +

�2

�
J1 −

�
2

(

k2 + �2

�2
)

J2

= ��2J0 − ���
2

�
J1 − � �

2

2

(

k2 + �2

�2
)

J2.

Fig. 4   A dispersion relation of the neural field satisfying the 
Turing–Hopf bifurcation equation given by (5.27) for a fixed set of 
parameters values: � = 5.0 , � = 1.0 , � = 0.75 , r = 5.0 , a

e
= 10.0 , 

a
i
= a

e
∕r = 2.0
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After substituting (2.4) into (5.19), the convergent improper 
integrals Jn (n = 0, 1, 2) are explicitly calculated as

Substituting (5.26) into (5.25), we obtain

Thus, (5.27) represents the Turing–Hopf bifurcation in the 
parameter space ( �, �, �, r, ae, ai ) for some k ≠ and � ≠ 0 . 
We use (5.27) to obtain the results presented in Figs. 4, 5 
and 7.

In Fig.  4, we show a dispersion relation (i.e., 
a k–� curve) of the neural field for a particu-
lar set of values of the other parameters, i.e., 

(5.26)

J0 = −ai + ae,

J1 =
rae − ai

r
,

J2 =
2(r2ae − ai)

r2
.

(5.27)

�

�2

(
r2ae − ai

r2

)
�4 +

[
�(ai − ae) +

(
�k2 −

�

�2

)( r2ae − ai

r2

)

+
(
�� + 1

�

)( rae − ai

r

)]
�2

+ �

(
(ae − ai) − k2

( r2ae − ai

r2

))
= 0.

� = 5.0, � = 1.0, � = 0.75, r = 5.0, ae = 10.0,  a n d 
ai = ae∕r = 2.0.

In Fig. 5a–d, we, respectively, show the Turing–Hopf 
bifurcation curves in different parameter spaces: ( �-� ), ( �
-� ), ( �-� ), and (r-� ) for a fixed value of the spatial mode 
k = 25.0 . We note from Fig. 5a and c that the memory decay 
� and the leakage parameter � have opposite effects. The 
former increases the frequency � of the oscillations, whereas 
the latter decreases it. From Fig. 5b, the transmission speed 
� has a non-monotonic influence, with a minimum for � 
at a particular value of � . Similarly, Fig. 5d shows that the 
ratio of the excitatory and inhibitory synaptic weights r 
has a non-monotonic influence on � . However, when the 
excitatory and inhibitory synaptic weights are balanced, i.e., 
when r = ae∕ai = 1 , (5.27) has many trivial solutions, that 
is, there exist infinitely many � values that satisfy (5.27). 
This explains the vertical line in Fig. 5d and Fig. 7d at r = 1.

In Fig. 6, we display the space–time patterns in three 
distinct regions of the Turing–Hopf bifurcation curve of 
Fig. 5a, for example. Here, one can see, as expected, that 
the Turing–Hopf bifurcation leads to spatially and tempo-
rally non-constant solutions. With values fixed at k = 25.0 , 
� = 1.0 , � = 0.75 , r = 5.0 ae = 10.0 , and ai = ae∕r = 2.0 , we 
chose a value for the exponential temporal kernel � and then 
calculate the corresponding temporal mode � from (5.27), 
such that both values ( �,� ) lie above (as in Fig. 6a), on 

Fig. 5   The curves in panels a–d represent the Turing–Hopf bifur-
cation curves in (5.27) in the ( �-� ), ( �-� ), ( �-� ), and (r-� ) planes, 
respectively. Parameter values are: a k = 25.0 , � = 1.0 , � = 0.75 , 

r = 5.0 ; b k = 1.0 , � = 5.0 , � = 0.75 , r = 5.0 ; c k = 1.0 , � = 5.0 , 
� = 1.0 , r = 5.0 ; d k = 1.0 , � = 5.0 , � = 1.0 , � = 0.75 . The remaining 
parameters are fixed at a

e
= 10.0 , a

i
= a

e
∕r
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(as in Fig. 6b), and below (as in Fig. 6c) the Turing–Hopf 
bifurcation curve in Fig. 5a. Comparing the patterns in 
Fig. 6a, b, and c, one can see that for a total time interval 
of 10 units, there is a change in the number of temporal 
oscillations, while the number of spatial oscillations does 
not change (because, of course, the spatial mode is fixed at 
k = 25.0 ). In Fig. 6a, with the values of � and � lying above 
the Turing–Hopf bifurcation curve, the neural field admits 
temporal oscillations with a relatively high frequency (12 
oscillations per 10 units of time, i.e., 1.2 hertz (Hz)). In 
Fig. 6b with � and � lying on the Turing–Hopf bifurcation 
curve, the frequency is reduced to 0.6 Hz, and in Fig. 6c, 
with � and � lying below the Turing–Hopf bifurcation curve, 
the frequency is further reduced to 0.2 Hz.

In Fig.  7a–d, we show the Turing–Hopf bifurcation 
curves in different parameter spaces: ( �-k), ( �-k), ( �-k), and 
(r-k), respectively, for a fixed value of the temporal mode 
� = 0.1 . We should contrast these relations with those of 
Fig. 5. In effect, the dependence of the temporal and the 
spatial frequency values at the bifurcation on those other 
parameters is essentially the opposite.

In Fig. 8, we display the space–time patterns in three 
distinct regions of the Turing–Hopf bifurcation curve of 
Fig. 7a, for example. One can also see, that the Turing–Hopf 
bifurcation leads to spatially and temporally non-constant 
solutions. Here, for the sake of comparison, we have also 
fixed the parameters to the same values given in Fig. 6, i.e., 
� = 1.0 , � = 0.75 , r = 5.0 ae = 10.0 , ai = ae∕r = 2.0 , and 
temporal mode parameter is fixed at � = 0.1 . As in Fig. 6, 
the patterns in Fig. 8 are obtained with values of the spatial 
frequency k and the exponential temporal kernel � , where 
we choose � and then calculate the corresponding spatial 
frequency k from (5.27), such that both values ( �, k ) lie 
above (as in Fig. 8a), on (as in Fig. 8b), and below (as in 
Fig. 8c) the Turing–Hopf bifurcation curve in Fig. 7a.

Comparing the panels in Fig. 8, one can see a change in 
the patterns already observed in Fig. 6, but in terms of the 
frequency of the spatial oscillations, for a total space interval 
of 50 units and a temporal mode fixed at � = 0.1 . In Fig. 8a, 
k and � which are above the Turing–Hopf bifurcation curve 
in Fig. 7a, and the neural field oscillates with a relatively 
high spatial frequency, i.e., 0.26 Hz. In Fig. 8b, k and � lie 

Fig. 6   Panels a–c show color-coded space–time patterns of the 
membrane potential v(x,  t) emerging from a Turing–Hopf insta-
bility, leading to periodic oscillations of spatially and temporally 
non-constant solutions, obtained with the Gaussian connectivity 
kernel. Initial conditions are chosen randomly from a uniform dis-
tribution on [v0 − 0.1, v0 + 0.1] . In panel (a), (�,�) = (10.0, 1.0) 
lies above the Turing–Hopf bifurcation curve of Fig.  5a. In (b), 

(�,�) = (10.0, 3.62) lies on this Turing–Hopf bifurcation curve, and 
in (c) (�,�) = (10.0, 7.0) lies below the curve. We observe a decrease 
in the frequency of the temporal oscillations of Turing–Hopf patterns 
from panel (a–c), and a constant frequency in the spatial oscillations. 
Parameter values are: a

e
= 10.0 , r = 5.0 , a

i
= a

e
∕r = 2.0 , � = 1.0 , 

� = 0.75 , k = 25.0 (color figure online)
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on the Turing–Hopf bifurcation curve, and the spatial fre-
quency of oscillation is reduced by 0.16 Hz. In Fig. 8c, k and 
� lie below the Turing–Hopf bifurcation curve and spatial 
frequency is further reduced to 0.1 Hz. However, in terms 
of the wavelengths in both space and time, the space–time 
patterns of the Turing–Hopf bifurcation in Figs. 6 and  8 are 
different: Fig. 8 shows fewer oscillations on larger space and 
longer time intervals than in Fig. 6.

Summary and concluding remarks

In this paper, we have studied the bifurcation behavior and 
the wave patterns generated by a neural field equation with 
an exponential temporal kernel. The exponential temporal 
kernel in (2.2) takes into account the finite memory of past 
activities of the neurons, which the Green’s function utilized 
in (Atay and Hutt 2004) does not. Our first observation was 
that static bifurcations, such as saddle-node and pitchfork, 
as well as static Turing patterns, are not possible with an 
exponential temporal kernel, because the characteristic 
polynomial does not have an eigenvalue 0. This is in contrast 
to (Atay and Hutt 2004), where the temporal kernel was 
taken as the Green’s function rather than an exponential 
function, and thus allowed zero eigenvalues. In analyzing 
the dynamic bifurcations of the equilibrium solution, we 

have obtained the conditions for the occurrence of Hopf 
and Turing–Hopf bifurcations. Furthermore, we have 
numerically illustrated these dynamic bifurcations with 
bifurcation diagrams and space–time patterns.

Neural fields by now are an old paradigm in computational 
neuroscience. They were intended to generate spatiotemporal 
patterns at a level above individual neurons that may 
possibly underlie cognitive behavior, or more precisely, 
support, at least in qualitative terms, neurophysiological 
models of cognition, like those of (von der Malsburg 
1994; Abeles 1982) and many subsequent ones. In order 
to support cognition, such patterns should be qualitatively 
diverse and temporally flexible. That is, the model should 
allow for rapid switches between different cognitive states. 
In terms of a dynamical model, such switches should occur 
as bifurcations, depending on parameters that can be readily 
tuned. This has motivated our study. And, of course, the 
models should include neurophysiologically plausible 
mechanisms. In that regard, we have assumed transmission 
delays and exponentially decaying memory, both of which 
are neurophysiologically well supported. And with these 
assumptions, we could indeed produce qualitatively diverse 
and temporally flexible patterns, most notably Turing–Hopf 
bifurcations. These generate patterns that are non-constant 
in time and space. Periodic oscillations or patterns that 
propagate in time are at the basis of the synchronization 

Fig. 7   The curves in panels a–d represent the Turing–Hopf bifurca-
tion curves in (5.27) in the ( �-k), ( �-k), ( �-k), and (r-k) planes, respec-
tively. Parameter values are: a � = 0.1 , � = 1.0 , � = 0.75 , r = 5.0 ; 

b � = 0.1 , � = 5.0 , � = 0.75 , r = 5.0 ; c � = 0.1 , � = 5.0 , � = 1.0 , 
r = 5.0 ; d � = 0.1 , � = 5.0 , � = 1.0 , � = 0.75 . The remaining param-
eters are fixed at a

e
= 10.0 , a

i
= a

e
∕r
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model first advocated in (von der Malsburg 1994) and at 
the synfire chain model of (Abeles 1982). Such dynamical 
modes should be easily triggered, but also easily terminated, 
and therefore require fine-tuning of a bifurcation parameter 
in the models. On the other hand, there also needs to be 
spatial patterns so as to enable cognitive processing to make 
distinctions, as required, for instance, for feature binding, 
and as supported, for instance, by (Gray and Singer 1989) 
and many subsequent studies. Importantly, this should not 
depend on anatomical differences between brain regions, 
but such patterns should occur within specific regions. A 
simplifying, but in this context reasonable, assumption is 
a homogeneous field of neurons, as in neural field models, 
and the question then is to understand how such a field 
can generate behavior that is both temporally and spatially 
inhomogeneous, which model assumptions support this, and 
how this arises through bifurcations.

It is worth pointing out that it is not necessarily the case 
that the results presented in our work can directly (i.e., 
without a further and detailed investigation that may even 
require completely different mathematical tools than those 

used here) be taken into account to interpret the bifurcation 
dynamics of any given modified neural mean field model. 
For example, a stochastic neural field equation (Touboul 
2012; Faugeras and Inglis 2015; Bressloff 2019) with 
exponential temporal kernel and leakage term will almost 
surely behave differently and require stochastic analysis 
(Faugeras and Inglis 2015), which is beyond the methods 
used in our deterministic neural mean field equation. Thus, 
a future and more comprehensive research study is necessary 
to analyze the stochastic static and dynamics bifurcations 
of a neural mean field equation with exponential temporal 
kernel and leakage term.
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Fig. 8   Panels a–c show color-coded space–time patterns of mem-
brane potential v(x,  t) emerging from Turing–Hopf instability, 
leading to periodic oscillations of spatially and temporally non-
constant solutions obtained with the Gaussian connectivity kernel. 
Initial conditions are chosen randomly from a uniform distribution 
on [v0 − 0.1, v0 + 0.1] . In panel (a), (�, k) = (0.5, 0.5) lies above the 
Turing–Hopf bifurcation curve of Fig.  7a. In b, (�, k) = (0.5, 0.907) 

lies on this Turing–Hopf bifurcation curve, and (�, k) = (0.5, 1.5) 
lies below this curve. We observe a decrease in the frequency of the 
spatial oscillations of Turing–Hopf patterns from panel (a–c), and a 
constant frequency in the temporal oscillations. Parameter values are: 
a
e
= 10.0 , r = 5.0 , a

i
= a

e
∕r = 2.0 , � = 1.0 , � = 0.75 , � = 0.1 (color 

figure online)
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