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Abstract
A two-patch logistic metapopulation model is investigated both analytically and numerically focusing on the impact of 
dispersal on population dynamics. First, the dependence of the global dynamics on the stability type of the full extinction 
equilibrium point is tackled. Then, the behaviour of the total population with respect to the dispersal is studied analytically. 
Our findings demonstrate that diffusion plays a crucial role in the preservation of both subpopulations and the full metap-
opulation under the presence of stochastic perturbations. At low diffusion, the origin is a repulsor, causing the orbits to flow 
nearly parallel to the axes, risking stochastic extinctions. Higher diffusion turns the repeller into a saddle point. Orbits then 
quickly converge to the saddle’s unstable manifold, reducing extinction chances. This change in the vector field enhances 
metapopulation robustness. On the other hand, the well-known fact that asymmetric conditions on the patches is beneficial 
for the total population is further investigated. This phenomenon has been studied in previous works for large enough or 
small enough values of the dispersal. In this work, we complete the theory for all values of the dispersal. In particular, we 
derive analytically a formula for the optimal value of the dispersal that maximizes the total population.

Keywords Dynamical systems · Bifurcations · Metapopulations · Theoretical ecology · Stochastic extinctions

Introduction

Metapopulation theory has provided key results into the 
dynamics of species inhabiting fragmented populations 
(patches). Since the seminal work by Levins (1969, 1970), 
metapopulation models have been widely used to investi-
gate the dynamics and persistence of fragmented populations 
under different scenarios (Clobert et al. 2012; Abbott 2011). 
The stability of metapopulations relies on the dynamics of 
the constituent subpopulations and their synchrony, where 
dispersal plays a significant role by affecting both subpopu-
lation dynamics and such synchrony (Abbott 2011). Experi-
mental evidence has confirmed the role of dispersal in medi-
ating metapopulation stability (Ellner et al. 2011; Bonsall 
et al. 2002; Dey and Joshi 2011; Smith 2022). While some 
studies specifically examined the effects of dispersal rates on 
the dynamics and synchrony in single-species systems (Dey 
and Joshi 2011; Smith 2022), others focused on local extinc-
tions with varying degrees of linkage between patches host-
ing multiple interacting species (Fahrig and Merriam 1985; 
Ellner et al. 2011; Bonsall et al. 2002; Ruiz-Herrera 2018).

Metapopulations are common and widespread in both ter-
restrial and marine ecosystems, especially for species relying 
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on dispersal to maintain interconnected populations. In ter-
restrial systems, some plant species in grasslands rely on 
seed dispersal to colonize new patches, and their populations 
go through cycles of local extinctions and recolonizations 
(Honnay et al. 2002). The bog copper butterfly (Lycaena 
epixanthe) inhabits wetlands and bogs, which are often iso-
lated from one another, undergoing local extinctions and 
recolonizations within these isolated habitats (Hanski and 
Ovaskainen 2003). The Glanville fritillary butterfly (Meli-
taea cinxia) inhabits a mosaic of meadows and patches of 
suitable habitat in Europe, and its populations experience 
regular extinctions and recolonizations (Hanski and Gilpin 
1994). The spotted owl (Strix occidentalis) in North Amer-
ica exhibits a metapopulation structure across its range, as 
it relies on different forest patches for nesting and foraging 
habitats. These forest patches are often separated by unsuit-
able habitats, leading to a fragmented distribution of the 
populations (Franklin et al. 2000). More recently, the tran-
sient dynamics of a metapopulation of the colonial coastal 
bird Audouin’s gull have been studied under the framework 
of nonlinear collective dispersal responses to biotic perturba-
tions (Oro et al. 2023). Metapopulations are also common 
in marine species such as fishes in estuaries and both rocky 
and coral reefs, seagrass, intertidal invertebrates and coastal 
decapodes, among others (Kritzer and Sale 2006).

These previous examples, among many others, suggest 
that metapopulation theory can play a crucial role in delving 
into the dynamics of spatially-distributed populations hav-
ing applications for conservation. Metapopulation dynam-
ics have been studied with discrete- (Allen et al. 1993; Dey 
et al. 2014) and continuous-time (Levin 1974; Pulliam 1988; 
Sardanyés and Fontich 2010; Sardanyés et al. 2019) models. 
For instance, the study of two Ricker maps with symmetric 
and asymmetric coupling showed that dispersal rates stabi-
lized chaotic behaviour (Dey et al. 2014). In a similar direc-
tion, Allen and co-workers identified that chaotic dynamics 
provided robustness under local and global perturbations in 
coupled subpopulations modelled with logistic and Ricker 
maps (Allen et al. 1993). Another model considering two-
patch discrete models using coupled logistic maps studied 
the sensitive dependence on initial conditions for the basin 
of attraction of the periodic orbits, showing that chaos in 
one patch can be stabilized by dispersal from the other 
patch (Hastings 1993). Two-patch time-continuous models 
have been also thoroughly investigated (see, e.g. Fang et al. 
(2020) and references therein). For instance, using two cou-
pled logistic systems to study the total population for arbi-
trarily large dispersal rates and the impact of key parameters 
such as intrinsic growth rates and carrying capacities (Arditi 
et al. 2015). The same system of coupled logistic models 
was later inspected by using the so-called balanced disper-
sal model instead of linear diffusion (Arditi et al. 2016). 
The exploration of two-patch models with a generic growth 

function indicated some conditions of optimality also show-
ing that the total population can be higher than the addition 
of the carrying capacities of each independent patch (Holt 
1985). Two-patch models have been also investigated con-
sidering local autocatalytic growth (Sardanyés and Fontich 
2010).

Despite the intensive research on two-patch metapopu-
lation models, such works often explored only a limited 
range of dispersal rates and focused on local dynamics. This 
approach hindered a comprehensive examination of potential 
interactions between dispersal rates and asymmetry reflected 
in different local dynamics within the subpopulations. For 
instance, some studies focused on homogeneous patches 
with symmetric dispersal (Gonzalez-Andujar and Perry 
1993; Gyllenberg et al. 1993; Hastings 1993; Lloyd 1995), 
while others allowed variations in the parameter determin-
ing dynamics between the subpopulations but maintained 
symmetric dispersal (Kendall and Fox 1998). Conversely, 
certain studies examined asymmetric dispersal but limited 
their analysis to cases with identical qualitative dynamics in 
both subpopulations (Doebeli 1995; Ylikarjula et al. 2000). 
Other authors studied the interaction between several species 
in a rock-paper-scissor interaction (Park 2022; Wang et al. 
2011). To gain a deeper understanding in metapopulation 
dynamics, it is necessary to investigate a broader range of 
local dynamics and dispersal rates in a systematic manner, 
considering their potential interactions with spatial hetero-
geneity and asymmetry in dispersal. Moreover, most of these 
models lack results on global dynamics and have not con-
sidered stochastic perturbations, either intrinsic or extrinsic, 
in the overall metapopulation dynamics. As far as we know, 
few works have explored the interplay between dispersal, 
noise and metapopulations’ persistence, mainly providing 
numerical results in discrete-time models (Allen et al. 1993; 
Sardanyés et al. 2019).

This paper is organized as follows. In “Mathematical 
model and dynamical aspects” section, we present the model 
and its adimensionalization of units, which allows to reduce 
the system from five to three parameters without loss of gen-
erality. In subsequent subsections, we discuss the existence 
of equilibrium points and their stability, bifurcations and 
global dynamics. Most of the results regarding local dynam-
ics were already known by the community (this is pointed 
out along the text). The main take-home message of these 
sections is that global dynamics are affected remarkably by 
the stability of the origin. We prove that a certain region 
of the phase space is foliated by heteroclinic connections 
between the global extinction and the coexistence equilibria 
if the origin is a source, but, if the origin is a saddle, there is 
a single heteroclinic connection connecting both equilibria. 
This phenomenology is further explored in “On the role of 
the heteroclinic connection” section. In “Role of diffusion 
in metapopulation robustness to perturbations” section, we 
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provide numerical evidence on how the results identified 
in “Local and global dynamics” and “On the role of the 
heteroclinic connection” sections impact on the persistence 
of the metapopulation under stochastic population fluctua-
tions. In “Optimal dispersal rate” section, we conduct an 
analytical study of the dependence of the total population 
with respect to dispersal. This problem has been addressed 
previously in the literature in the limit case when the dis-
persal tends to infinity (see (Holt 1985; Arditi et al. 2015) 
and references therein), and for a small values of the dis-
persal (Ruiz-Herrera 2018). In the infinite case, the authors 
showed that having a certain asymmetric conditions on the 
patches lead to the total population to overcome the sum 
of the carrying capacities of both patches. In Ruiz-Herrera 
(2018), a different and less restrictive conditions were shown 
to be beneficial for small enough values of the dispersal. We 
here analyse the general case (any value of the dispersal) 
integrating the previously studied hypotheses in a unified 
theory. Moreover, we derive an analytic formula to com-
pute the optimal value of the dispersal that maximizes the 
total population. Finally, “Conclusions” section is devoted 
to main conclusions.

Mathematical model and dynamical aspects

We introduce the two-patch metapopulation model given 
by two logistic models coupled by linear diffusion as the 
simplest way to model within-patch population dynamics 
and dispersal of individuals between patches. The model is 
given by the next couple of autonomous ordinary differential 
equations (ODEs):

State variables xi represent the population numbers at patch 
i, ri the within-patch intrinsic growth rate, ki being the the 
carrying capacity at patch i. Parameter D denotes the dif-
fusion (dispersal) among patches, which is assumed to be 
symmetric and follow Fick’s law. Let us consider the unit 
of the population as the carrying capacity of the first patch 
(dividing all the population variables by k1 ) and the unit of 
time such that the rate of birth in the first patch is equal to 
1 (dividing ri by r1 ). This fixes r1 = k1 = 1 without loss of 
generality considering dimensionless variables. We let the 
parameters r2 , k2 and D free for the present study. The role 
of the asymmetric configurations can be studied by fixing 
those free parameters bigger or smaller than 1.

In order to avoid cumbersome notation, we rename r2 as 
r and k2 as k. With these modifications, the system reads as

(1)
ẋi =ri xi

(
1 −

xi

ki

)
+ D ⋅ (xj − xi),

with i, j = 1, 2;i ≠ j.

Notice that the parameters k and r are non-dimensional. As 
we have mentioned in the Introduction, this model has been 
largely studied. The motivation of this work is to obtain an 
analytical estimate of the dispersal rate optimizing the size 
of the population at the subpopulation level thus maximizing 
global density. Also, we will provide a detailed investigation 
of the dynamics close to the origin (involving full extinc-
tion) considering random fluctuations and seek how disper-
sal determines the fate of the population with low initial 
conditions in both patches and in the metapopulation under 
random fluctuations.

Let us now investigate the dynamics of Eqs. (2), focus-
ing on the global aspects of the phase space, namely 
how trajectories of the system connect the origin and the 
coexistence equilibrium point. These analyses provide 
an important theoretical support of “Role of diffusion 
in metapopulation robustness to perturbations” section. 
Some of the results presented here are known but they are 
included here for completeness. For example, the existence 
of a coexistence equilibrium point was given in Freedman 
and Waltman (1977) for small values of the parameter D. 
The existence and local stability for any dispersal rate has 
been proved in several papers, as well as the global stabil-
ity of the coexistence equilibrium (Angelis et al. 1979; 
Holt 1985; Arditi et al. 2015).

Local and global dynamics

We first inspect the number of equilibrium points for Eq. (2). 
Since the vector field consists of two quadratic polynomi-
als with degree two and no independent term, it is trivial to 
prove that the origin is always an equilibrium point and, by 
Bezout’s theorem, at most, there exist four equilibria. We 
now prove this elementary result since it will be useful for 
further analysis that we will develop below.

Lemma 2.1 (Number of equilibrium points) System (2) has 
two, three or four equilibrium points.

Proof Let us assume, first, that D ≠ 0 (the case D = 0 can 
be studied separately). The nonlinear system of equations 
verified by the equilibrium points is:

Here, � = r∕k . We isolate x2 with respect to x1 using the 
first equation:

(2)
ẋ1 = x1

(
1 − x1

)
+ D ⋅ (x2 − x1),

ẋ2 = rx2

(
1 −

x2

k

)
+ D ⋅ (x1 − x2).

x1 − x2
1
+ D ⋅ (x2 − x1) = 0,

rx2 − �x2
2
+ D ⋅ (x1 − x2) = 0.
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Now, we substitute x2 in the second equation, obtaining:

Obviously, x1 = 0 is always a solution of this quartic. Substi-
tuting x1 = 0 in (3), we get x2 = 0 and we recover the equi-
librium point corresponding to the extinction in both patches 
(the origin). We can factor the later equation as x1p(x1) = 0 , 
where p is a cubic polynomial (which always has a real solu-
tion). Two additional real solutions may appear depending 
on the parameters r, k, and D.

The system for D = 0 has four equilibrium points given 
by (0, 0), (1, 0), (0, k) and (1, k).   ◻

As we said, the existence of at least two equilibrium 
points was given in Freedman and Waltman (1977); Ange-
lis et al. (1979); Holt (1985); Arditi et al. (2015). One of 
those points is the origin and the other one is located at the 
interior of the first quadrant. The typical argument to prove 
the existence of the later is to show that the two nullclines 
of the system cross in the interior of the first quadrant (we 
reproduce the argument in Lemma 2.3).

The behaviour of the coexistence equilibrium point when 
D → ∞ is a recurrent issue being thoroughly discussed in 
references (Freedman and Waltman 1977; Angelis et al. 
1979; Holt 1985; Arditi et al. 2015). These authors were 
interested in the limit case as a model for perfectly mixing 
conditions and, more precisely, in the sum of the coordi-
nates of the coexistence point (namely, the numbers at which 
the metapopulation is stabilized). This aspect of system (2) 
will be further explored in “Optimal dispersal rate” section. 
For the moment being, we let the following remark, stating 
that the limit of the total population can be obtained from 
the quartic expression given by (4) recovering the results of 
previous papers in an alternative way. Before analysing the 
limit cases, numerical results displaying the interior equi-
librium points are shown in Fig. 1 together with some orbits 
in phase portraits. These orbits actually provide information 
on how they move away from the origin and from the axes. 
This behaviour, as we discuss below, plays a crucial role in 
the fate of the species and the entire metapopulation under 
stochastic perturbations (see “Role of diffusion in metapopu-
lation robustness to perturbations” section). The equilibrium 
values of the species at each patch are also displayed for 
different values of D and r in Fig. 2.

Remark 1 (Limit case) If D → ∞ , the quartic (4) converges 
uniformly to the polynomial

(3)x2 =
1

D
x2
1
+

D − 1

D
x1.

(4)
−

�

D2
x4
1
−

2�(D − 1)

D2
x3
1

+

(
r

D
−

�(D − 1)2

D2
− 1

)
x2
1
+
(
1 + r −

r

D

)
x1 = 0.

Its non-trivial root is

On the other hand, Eq. (3) implies that

It holds that,

In Angelis et al. (1979), the stability of the origin is 
explored. There, the authors proved that there always exist 
a repelling direction and that the origin is never a sink. 
Thus, extinction can never be achieved under the deter-
ministic setting modeled with Eqs. (2). From Eq. (3), it is 
clear that the multiplicity of the origin as an equilibrium 
point is the same as the multiplicity of x1 = 0 as a root of 
the quartic (4).

Remark 2 (Multiplicity of zero) If r = D∕(1 − D) , zero has 
multiplicity two as solution of the quartic Eq. (4). If, besides, 
k = 1∕r2 , it has multiplicity three.

Lemma 2.2 (Bifurcation of the origin) The origin is a repel-
ling node for r < D∕(1 − D) and a saddle for r > D∕(1 − D).

Proof The Jacobian matrix of the vector field evaluated at 
the point (0, 0) is given by:

An elementary computation shows that the eigenvalues are:

Notice that �+ is always positive. On the other hand, �− is 
negative for r > r∗ ∶= D∕(1 − D) and positive for r < r∗ . 
Therefore, the origin changes from repelling node to saddle 
as r crosses the curve r∗ from above (see Fig. 1). The type of 
bifurcation is determined by the multiplicity of the origin as 
equilibrium point (see Remark 2): If the zero has multiplicity 
two, the bifurcation is transcritical while if it has multiplicity 
three, it is, generically, a pitchfork.   ◻

The following result establishes that the nullclines 
enclose a region of the phase space which is positively 
invariant by the flow. This is sketched in Fig. 3.

−(� + 1)x2
1
+ (1 + r)x1.

x1 =
1 + r

� + 1
=

k + kr

r + k
.

lim
D→∞

x2(D) = lim
D→∞

x1(D).

(5)lim
D→∞

(
x1(D) + x2(D)

)
= 2

k + kr

r + k
.

J(0, 0) =

(
1 − D D

D r − D

)
.

�± =
1

2

�
1 − 2D + r ±

√
4D2 + (1 − r)2

�
.
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Lemma 2.3 (Intersection of the nullclines) For any positive 
values of r, k and D, the horizontal and vertical nullclines 
define a positively invariant region.

Proof The vertical nullcline, d
dt
x1 = 0 , is described by the 

parabola:

The horizontal nullcline, d
dt
x2 = 0 , is given by:

x2 = gv(x1) ∶=
1

D

(
x2
1
− (1 − D)x1

)
.

x1 = gh(x2) ∶=
1

D

(
�x2

2
− (r − D)x2

)
.

Notice that the vertical nullcline crosses the horizontal axis 
at N1 = ((1 − D), 0) while the horizontal nullcline crosses 
the vertical axis at N2 = (0, (r − D)∕�) . It holds that,

and

The two parabolas intersect in a point contained in the first 
quadrant. Indeed, if r > D (see Fig. 3, left), at the vertical 
axis, the horizontal nullcline gh is above the vertical one gv . 

d

dx1
gv(N1) = (D − D2),

d

dx2
gh(N2) =

D(−D + r)

�
.

Fig. 1  Stability of the origin for Eq. (2) in the plane (r, D), where the 
curve D = r∕(1 + r) separates the source from the saddle behaviour. 
Several phase portraits are shown at increasing values of diffusion for 
r = k = 1 and: a D = 0 , b D = 0.1 , and c D = 1 . The arrows indicate 

the direction of the orbits. Stable equilibrium points are shown with 
black circles, while the saddle and the repeller are displayed with 
grey and white circles, respectively
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Moreover, it behaves as 
√
x1 when x1 is large. On the other 

hand, the vertical nullcline behaves as x2
1
 . A direct applica-

tion of the Bolzano theorem shows that there exists a cross-
ing point for x1 > 0 and x2 > 0 . If r < D (see Fig. 3, right), 
the horizontal nullcline crosses the vertical axis for x2 = 0 
and for a negative value of x2 . At the origin, the slope of the 
horizontal nullcline is positive and the slope of the vertical 
nullcline is negative. Therefore, near zero, the horizontal 

nullcline is above the vertical one and the same argument 
can be used to establish the existence of the crossing point 
at the first quadrant.

From the fact that the two nullclines always cross, we 
get a region that separates the phase space. Let us see that 
this region is positively invariant. If r > D the first compo-
nent of the vector field is positive along the vertical axis for 
values of 0 < x2 < (r − D)∕𝛼 while the second component 

Fig. 2  Interior equilibrium of Eqs.  (2) in the parameter space (r,  D) for x1 (left) and x2 (right) computed numerically with k = 0.5 and 
x1(0) = 0.45 and x2(0) = 0.2 . Overlapped we display the curve separating the source from the saddle of the origin shown in Fig. 1

Fig. 3  Sketch of the positive invariant region (blue) defined by the vertical and horizontal nullclines. Left: r = 1 > D . Right: r = 0.3 < D . In 
both cases D = 0.4 , k = 0.4 . Observe that the blue region is surrounded by the isoclines and their direction points inwards
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of the vector field is positive along the horizontal axis for 
x1 < (1 − D) . This, together with the fact that the parabo-
las are nullclines establishes the positive invariance of the 
region. If r < D the result follows from the second compo-
nent of the vector field being positive along the horizontal 
axis for x1 < (1 − D) .   ◻

Remark 3 (Positively invariant region) The first quadrant 
is also positively invariant. The region enclosed by the 
nullclines is not contained in it (see Fig. 3). For the next 
result, we shall focus on the intersection between the region 
enclosed by the isoclines and the first quadrant. This inter-
section, that we name as I+ , is also positively invariant.

Remark 4 (Unstable eigenvector of the origin) The eigenvec-
tor associated to the �+ eigenvalue always points towards I+ . 
Indeed, the eigenvector associated to �+ is given by:

Observe that the first component of v+ is always positive, 
therefore, pointing to the first quadrant. If r > D , the iso-
clines cross the axis for positive values. Therefore, always 
point to I+ . If r < D , then the slope of the eigenvector must 
be between the slopes of gv and gh:

Both inequalities are true while

Theorem 2.4 (Global dynamics) The following sentences 
hold for system (2): 

1. There are no periodic orbits.
2. It has an equilibrium point ( P3 ) inside the first quadrant 

that is globally asymptotically stable (GAS) in the first 
quadrant.

3. If D < r∕(1 + r) , there exist infinitely many heteroclinic 
connections between the origin ( P0 ) and P3.

4. If D > r∕(1 + r) there is a unique heteroclinic connec-
tion between P0 and P3.

Proof We shall prove the statements by order.

1. We have shown that the two nullclines cross at a point in 
the first quadrant. A periodic orbit in the first quadrant 
should encircle the crossing points of the vertical and 
horizontal nullclines. But this would contradict the fact 
that they are positively invariant.

v+ =

�
1 − r +

√
(1 − r)2 + 4D2

2D
, 1

�
.

D − 1

D
<

2D

1 − r +
√
(1 − r)2 + 4D2

<
D

D − r
.

r < D.

2. We discuss first the case D = 0 . It is elementary to show 
that it has four equilibrium points, (0, 0) being a repel-
ling node, (1, 0), (0, k) being saddle points; and (1, k) 
being an attracting node. The lines x1 = 0 and x1 = 1 are 
vertical nullclines and, similarly, x2 = 0 and x2 = 1 are 
horizontal nullclines. Therefore, the rectangle defined by 
the four equilibrium points is positively invariant. This 
means that there are no periodic orbits around none of 
the equilibria and, therefore, the �-limit for a full meas-
ure set of initial conditions is (1, k). For the case D ≠ 0 
we argue that, because of the positively invariant region 
defined by the nullclines, the coexistence point has to be 
an attractor. Finally, since there are no periodic orbits (in 
the first quadrant), it is a global attractor.

3. If P0 is a source, any initial condition on I+ with �-limit 
P0 must have P3 , which is GAS, as �-limit.

4. If P0 is a saddle, the unstable manifold has P3 as �-limit. 
Any other initial condition in I+ has its �-limit outside 
the first quadrant.

  ◻

On the role of the heteroclinic connection

In this section, we study the fact that the existence of a 
unique heteroclinic connection affects the global dynam-
ics. This is done by studying the attracting character of the 
connection.

Lemma 2.2 establishes that the stability type of the origin 
changes from a repelling node (a source) to a saddle point 
(as D crosses a certain critical value depending on r). This 
phenomenon has a significant impact on the dynamics near 
the origin, and as we will see below, will play a central role 
in the robustness of the metapopulation under stochastic 
fluctuations. Indeed, by Hartman’s theorem, the linearized 
system provides an approximation on the trajectories nearby. 
When the origin is a source, every initial condition in the 
positively invariant region lies on a heteroclinic connection 
between the origin and the coexistence equilibrium point. 
Additionally, two initial conditions that are very close to the 
origin tend to separate from each other exponentially over 
time. Conversely, when the origin is a saddle point, there is 
a single locally attracting heteroclinic connection. In this 
case, nearby solutions to the origin converge rapidly to its 
unstable manifold and then follow the heteroclinic connec-
tion towards the coexistence equilibrium point.

To gain a better understanding of this phenomenon, we 
restrict ourselves to the symmetric case with r = 1 and k = 1 , 
which albeit being the simplest case gathers all the elements 
playing a role in this scenario. When r = 1 , the bifurcation of 
the origin occurs at D = 1∕2 . At this value of r, the eigenval-
ues of the Jacobian matrix evaluated at the origin are
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and the corresponding eigenvectors are given by

Consider the linear change of variables given by the 
eigenvectors.

Notice that the new variables y1 and y2 represent the differ-
ence of population between the patches and the total popu-
lation, respectively. Negative values of y1 represent initial 
conditions with more individuals in the second patch. Con-
versely, positive values mean that the first patch is more 
populated. These variables where used in Holt (1985) for 
different purposes. The change of variables casts the original 
vector field (with r = 1 ) to:

This vector field will be used later to study how the het-
eroclinic connection depends on the normalized carrying 
capacity k. For the time being, we focus on the symmetric 
case. If we chose k = 1 , then, some terms vanish and the 
resulting ODE is

Let us analyse this system more carefully. In first place, we 
notice that it has only ecological meaning for trajectories 
within the region y2 > 0 and −y1 ≤ y2 ≤ y1 . That is, when 
the total population is positive, and the difference of the 
subpopulations is less than the total one. It is evident that 
this region is positively invariant by the flow. In these coor-
dinates, the four equilibria are given by

The Jacobian matrix in these coordinates reads

�1 = 1, �2 = 1 − 2D.

v1 = (1, 1)T , v2 = (−1, 1)T .

(
y1
y2

)
=

(
1 − 1

1 1

)(
x1
x2

)
.

(6)

ẏ1 = (1 − 2D)y1 +
(
1

4k
−

1

4

)(
y2
1
+ y2

2

)
−
(
1

2
+

1

2k

)
y1y2,

ẏ2 = y2 −
(
1

4k
+

1

4

)(
y2
1
+ y2

2

)
−
(
1

2
−

1

2k

)
y1y2.

(7)
ẏ1 = (1 − 2D)y1 − y1y2,

ẏ2 = y2 −
1

2

(
y2
1
+ y2

2

)
.

P0 = (0, 0),

P1 =
�√

1 − 4D2, 1 − 2D
�
,

P2 =
�
−
√
1 − 4D2, 1 − 2D

�
,

P3 = (0, 2).

(
(1 − 2D) − y2 − y1

−y1 1 − y2

)
.

It is easy to see that the determinant of the matrix for 
both P1 and P2 is 4D2 − 1 which is negative for D < 1∕2 . 
This means that these equilibria are always saddle points 
whenever they exist. The points P1 and P2 lie outside the 
region, and therefore are not ecologically meaningful. When 
D = 1∕2 , P1 and P2 merge with the origin in a pitchfork 
bifurcation.

The vertical axis, {y1 = 0} , is invariant and it is, for each 
value of D, an heteroclinic connection between P0 and P3 . 
Moreover, it is the only heteroclinic connection for D > 1∕2 . 
Notice that {y1 = 0} corresponds to the line {x1 = x2} in the 
original coordinates. The first equation of system (7) cap-
tures the horizontal flow of the system. Let us rewrite it as:

When 0 < D < 1∕2 and y2 < (1 − 2D) the horizontal flow is 
positive for y1 > 0 and negative for y1 < 0 , meaning that the 
vertical axis is repelling for y2 < (1 − 2D) . This is sketched 
in Fig. 4. If D > 1∕2 , the vertical axis is always attracting.

This global property of the phase space is relevant in the 
capacity of the system to exploit the population of one patch 
to recover population of the other one, at least, at a short 
time scale. In the region of the phase space in which the 
vertical axis is repelling, the trajectories of the system that 
start close to the lines {y2 = ±y1} remain close to them (see 
Fig. 4). This suggests that the recovering of a patch is much 
slower when the origin is a source. A natural conjecture, to 
be tested in “Role of diffusion in metapopulation robustness 

ẏ1 = y1
(
(1 − 2D) − y2

)
.

Fig. 4  Sketch of the phase space of System (7). The red lines delimit 
the admissible region (i.e. points outside the admissible region cor-
respond to points of the original system with some negative coordi-
nate). The vertical axis is an heteroclinic connection between P0 and 
P3 , and it is repelling if y2 < 2D − 1 . The dashed arrows determine 
this attracting character of the heteroclinic connection. See “On the 
role of the heteroclinic connection” section for more details
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to perturbations” section, is that having a saddle is favour-
able for recovery if one of the patches is populated by few 
individuals, thus providing more robustness to survival to 
the metapopulation. The area of the subregion in which 
the vertical axis is attracting is given by 2D(1 − 2D) and 
decreases linearly with D until it gets zero at D = 1∕2.

The dependence of the unstable manifold of the origin on 
k starts at second order. We can study the second term of the 
Taylor expansion of the manifold by applying the parameter-
ization method (Haro et al. 2016). That is, we consider sys-
tem (6) and consider a parameterization U of the manifold as

Where s is a real parameter and a and b are constants to be 
determined. These constants can be obtained by imposing 
invariance of the manifold up to second order. That is, we 
select a and b so the following equation is fulfilled:

Here, Y stands for the vector field of system (6) and � = 1 
is the unstable eigenvalue related to the origin. Solving the 
latter equation for a and b results in

Looking at the sign of a we can understand how the mani-
fold bends (at second order) when k ≠ 1 . As expected, if 
k < 1 the manifold bends towards the region y1 > 0 , where 
the population of the first patch is larger than the population 
of the second patch. The situation is opposite if k > 1.

We have seen that when the origin is a source the line 
x1 = x2 is locally repelling and gets attracting as the origin 
becomes a saddle. To do so, we have used adapted coor-
dinates ( y1-y2 ). This allows us to conjecture that having a 
saddle benefits the recovering capacity of the system. This 
fact is studied in next section introducing random population 
fluctuations.

Role of diffusion in metapopulation 
robustness to perturbations

In “On the role of the heteroclinic connection” section, we 
analysed the local dynamics close to the origin and con-
cluded that if D is chosen such that the origin is a saddle-
type equilibrium point, the heteroclinic connection is locally 
attracting. In this section, we provide numerical evidence 
showing how this can be beneficial to the persistence of the 
metapopualtion under the effect of stochastic perturbations. 
Specifically, we conjecture that a homoclinic connection that 
attracts initial conditions nearby may have a positive effect 

{
U1(s) = as2 +O(s3),

U2(s) = s + bs2 +O(s3).

Y(U(s)) = U̇(s)𝜆s +O(s3),

a =
1 − k

4k(1 + 2D)
, b = −

1 + k

4k
.

on the persistence of the metapopulation when one of the 
two subpopulations is close to extinction.

To investigate this phenomenon, we designed a simple 
numerical experiment simulating random deaths due to 
some external agent (e.g. sick animals, predators, climatic 
factors, hunting). The process is as follows: 

1. We consider system  (7) and fix a maximal integra-
tion time of T = 10 system units. This value has been 
selected experimentally to ensure effective stabilization 
for all the initial conditions in the unperturbed system. 
Here, effective stabilization means that the initial condi-
tion is closer to P3 than 10−3 in �2-norm. Notice that, in 
these symmetric conditions, P3 does not depend on D.

2. We select a grid of 500 × 250 initial conditions in 
the region 0 < y2 < 4∕5 and −y2 < y1 < y2 . Note that 
0 < y2 < 4∕5 are the values of y2 for which the vertical 
axis is repelling if we pick D = 0.1.

3. For each initial condition, we perform an integration 
and, at random intervals following a uniform distribution 
U(0, 0.1) , we subtract a random quantity from the total 
population y2 . This quantity also follows a uniform dis-
tribution U(0, 1∕50) , i.e. the maximum subtracted value 
is the total carrying capacity divided by 100.

4. If this random perturbation is large enough to cause y2 to 
become negative, the integration is terminated, and we 
consider the population to be extinguished. If y1 > y2 , 
i.e. x2 < 0 in the original coordinates, we then rear-
range the initial condition to y1 = y2 , and the integration 
continues. A similar procedure is done if y2 < −y1 , i.e. 
x1 < 0 . When the integration is completed, any initial 
conditions that result in one of the subpopulations being 
smaller than 1/100 are labelled as being at risk of extinc-
tion in patch 1 (or 2).

We perform this experiment (steps 1–4) N times for each 
initial condition, associating an extinction probability with 
each initial condition. The extinction probability associated 
to each initial condition is computed by dividing the number 
of simulations that result to extinction by the total number 
of simulations N (we have chosen N = 100).

In Fig. 5a, we display the direction of the vector field of 
system (2) for D = 0.1 and D = 0.9 (under symmetric condi-
tions, k = r = 1 ). In each of the pictures there appear three 
trajectories, the heteroclinic connection {x1 = x2} and the 
trajectories starting at (10−2, 0) and (0, 10−2) , respectively. 
When the origin is a source ( D = 0.1 ) these trajectories 
spend some time close to the axes. When D = 0.9 , both tra-
jectories are rapidly attracted by the heteroclinic connection 
(Fig. 5a). These two plots provide an illustration of the main 
point of “On the role of the heteroclinic connection” section, 
namely the system is better at recovering a patch which is 
close to extinction if the origin is a saddle.
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Figure 5b displays some representative time series with 
local and global extinctions together with survival dynam-
ics at increasing diffusion simulating the random perturba-
tions described above. The first row displays the dynamics 
of the population at patch 2 ( D = 0.1 first column, D = 0.9 
second column). In the upper panel for D = 0.1 , the local 
population goes to extinction, but recovery is still possi-
ble from the other patch although the population remains 
at extremely low values. The lower panel for this diffusion 
value displays another simulation with full extinction of the 
metapopulation. In the case D = 0.9 , the attracting charac-
ter of the heteroclinic connection permits the total popula-
tion to exit the extinction zone rapidly and, therefore, the 
population persists. The upper plot clearly shows this effect 
and the population at patch 2 rapidly increases. The lower 
panel displays another simulation for the entire metapopu-
lation, which already has large population values at initial 
times while it progressively grows towards larger values. We 
notice here that the population continues increasing after 
time = 10 (results not shown).

Finally, panel (c) displays both local ( P1,2 ) and global 
(total, PT  ) extinction probabilities for D = 0 (first row), 
D = 0.1 (second row) and D = 0.9 (third row) in the space 
of initial conditions (x1(0), x2(0)) . The case D = 0 is included 

for completeness. We notice that extinction probabilities 
shall be interpreted differently for local and total popula-
tions. Total extinction involves that both time series x1 and 
x2 abandon the first quadrant simultaneously and the integra-
tion is terminated. The extinction probability for subpopula-
tions refers to the event the number of individuals at patch 
i = 1, 2 is below 1/100 after 10 units of time. In this case, 
the ecological interpretation is: if the subpopulation starts 
in the danger zone, then the system is not able to take it out 
from it with a certain probability. We notice that, for D = 0.1 
the probability of subpopulation extinction is close to one 
along the axis when the line {x1 = x2} is not attracting. In 
the case D = 0.9 the system is always able to recover a 
patch in danger unless the total population becomes extinct. 
These analyses also show that at low diffusion values, both 
local and global extinctions occur for wide ranges of initial 
conditions. A slight increase in diffusion (from D = 0 to 
D = 0.1 ) decreases local extinctions although global ones 
are still found. The simulations done with D = 0.9 indicate 
that local extinctions only take place for smaller population 
sizes and global extinctions are also restricted to low popula-
tion values. As expected, diffusion ensures persistence of the 
populations at a local level keeping the entire metapopula-
tion in a safe state.

Fig. 5  a Vector field (the colours of the arrows denote the norm of 
the field) of the system  (2) for D = 0.1 (left) and D = 0.9 (right). b 
Time series with local ( x2 ) and global populations for D = 0.1 and 
D = 0.9 . c Extinction probabilities ( P1,2 and PT denote local and 
global extinctions, respectively) for initial conditions close to the 

origin for D = 0 (first row), D = 0.1 (second row) and D = 0.9 (third 
row). The dashed red lines indicate the values of x1(0) where extinc-
tions are observed  for D = 0.0 . The red diagonal line indicates the 
union of these values including x2(0) to ease the visualization of the 
extinction regions. In all the panels we fix k = r = 1
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Optimal dispersal rate

A well-studied phenomenon from metapopulation theory is 
the fact that, under suitable conditions, the total population 
can exceed the sum of the carrying capacities of the patches 
(Holt 1985). This is known to happen when the conditions in 
one of the patches are better than the conditions in the other 
one. When this hypothesis is fulfilled, the less advantageous 
patch acts as a source of population.

For fixed values of any pair of values r and k, system (2) 
has always a coexistence equilibrium point P3(D) that is 
globally asymptotically attracting. Therefore, for any selec-
tion of the parameters of the system and any initial condi-
tion, the population tends to stabilize at P3(D) . That is, for 
any threshold � , any values r, k D and any initial condition 
(x1(0), x2(0)) , there exist a time t for which

Here, �D,r,k
t  denotes the flow of system (2). Therefore, the 

behaviour of the coordinates of P3(D) with respect to D 
determines the long-term behaviour of the total population 
( x1 + x2 ) of the system for any initial condition. In Ruiz-
Herrera and Torres (2018), the authors define the function

They are able to prove the following result.

Lemma 4.1 (Ruiz-Herrera and Torres 2018)

Henceforth, the function Ω is increasing nearby D = 0 
if r > 1 and k > 1 or if r < 1 and k < 1 . As Ω(0) > 1 + k , 
under these conditions, Ω can exceed the sum of the carry-
ing capacities of the patches. The behaviour of Ω has been 
analysed previously for arbitrarily large diffusion values 
(namely D → ∞ ). For instance, results in Holt (1985); Arditi 
et al. (2015) show that dispersal is beneficial if k > 1 and 
r∕k > 1 or k < 1 and r∕k < 1 . These conditions are usually 
refereed as positive (negative) r − k relation. As it is stated in 
Ruiz-Herrera and Torres (2018), this last condition is more 
restrictive than r > 1 and k > 1 or if r < 1 and k < 1 . In Arditi 
et al. (2015), the authors derive the following formula:

Notice that formula (5) from Remark 1 is a compact ver-
sion of this one. In particular, using (5) it can be shown 
that Ω(∞) > 1 + k whenever k is contained between 1 and r 
(without assuming r > 1 or r < 1).

‖‖‖𝜑
D,r,k
t

(x1(0), x2(0)) − P3(D)
‖‖‖2 < 𝜀.

Ω(D) ∶= ‖P3(D)‖1.

Ω�(0) =
(
1

r
− 1

)
(1 − k).

lim
D→∞

Ω(D) = 1 + k + (1 − k)
k − r

k + r
, k ≥ 1, r∕k > 1.

The qualitative behaviour of the function Ω with respect 
to D is also analysed in Arditi et al. (2015). It is shown 
that, for some values of the parameters the function is 
strictly increasing while for some other, it has a maximum. 
Asking which dispersal rate maximizes Ω is a natural ques-
tion. In this section, we provide an answer and, moreover, 
recover some insights on the qualitative behaviour of the 
function Ω.

The first step to tackle the problem is to understand 
the locus of the equilibrium points of system (2). Particu-
larly, while the system is two dimensional, the equilibrium 
points are located, for fixed values of k and r, in a closed 
1-dimensional manifold given by an ellipse, as the follow-
ing result shows.

Lemma 4.2 (Equilibria lie on an ellipse) The equilibrium 
points of system (2) are contained on an ellipse with centre 
(1/2, k/2) and axes 

√
a and 

√
b , where:

Proof We consider once again the system of equations for 
the equilibria:

Adding both equations, we get the following expression.

which is equivalent to:

This is, in fact, the equation of an ellipse centred at (1/2, k/2) 
and with semi-axes 

√
a and 

√
b .   ◻

The previous argument only states that, if (x1, x2) is 
an equilibrium point, then it is contained in the ellipse. 
The converse is tackled in the following Lemma for some 
points of the ellipse.

Lemma 4.3 (The points of the ellipse are equilibria) If 
(x1, x2) verify Eq. (8), the following identity holds:

Moreover, the point (x1, x2) is an equilibrium point of sys-
tem (2) for

a = (1 + rk)∕4,

b = (k2 + k∕r)∕4.

x1 − x2
1
+ D ⋅ (x2 − x1) = 0,

rx2 −
r

k
x2
2
+ D ⋅ (x1 − x2) = 0.

x1 − x2
1
+ rx2 −

r

k
x2
2
= 0,

(8)
(x1 −

1

2
)2

a
+

(x2 −
k

2
)2

b
= 1.

(9)
x2
1
− x1

x2 − x1
=

�x2
2
− rx2

x1 − x2
, � =

r

k
.
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Proof Notice that the second statement is trivial if iden-
tity (9) holds. Before proving (9), we observe that, if a and 
b are defined as in the statement of Lemma 4.2, then:

Notice also that, by square completion,

If (x1, x2) verify Eq. (8), then the above quantity is equal to

The identity is proven by noticing that

and recalling that �k = r . Indeed,

  ◻

We stress the fact that identity (9) does not provide a 
one-to-one map from the ellipse to the set of equilibria 
of system (2). For instance, the origin always belongs to 
both the ellipse and the set of equilibria but identity 9 does 
not make any sense if x1 = x2 = 0 . On the other hand, if 
x2 = x1 , the value of D cannot be recovered from iden-
tity (9). For the coexistence equilibrium point, this hap-
pens, for instance, in the case r = 1 , k = 1 . In this case, 
however, the coexistence equilibrium does not depend 
on D (see “On the role of the heteroclinic connection” 
section).

To obtain the best dispersal rate, i.e. the one that maxi-
mizes the total population, one has to look for the maximum 
of the function Ω on the ellipse (8). Notice that as the objec-
tive function is continuous and the set of feasible solutions 
a compact, this problem has always a solution. However, the 
solution may correspond to a negative value of the dispersal 
rate D. Interestingly enough, the singularity of identity (9) 
implies that, for some choices of r and k, the population is 
maximized at the limit D → ∞ . The next result provides the 
solution of the aforementioned optimization problem, and it 
is tackled using Lagrangian Multipliers.

Theorem  4.4 (Optimal dispersal rate) Let (x̄1(D), x̄2(D)) 
be the coexistence solution of system  (2)  and 
Ω(D) = x̄1(D) + x̄2(D) , then:

D =
x2
1
− x1

x2 − x1
.

a

b
=

1 + �k2

k2 + �−1
= �.

x2
1
− x1 = (x1 − 1∕2)2 − 1∕4.

a − (1∕4 + k2�∕4) − (�x2
2
− �kx2).

(1∕4 + k2�∕4) = a,

x2
1
− x1

x2 − x1
=

−(�x2
2
− �kx2)

x2 − x1
=

�x2
2
− rx2

x1 − x2
.

Moreover, this bound is sharp: There exist D∗ for which 
Ω(D∗) = Ω∗.

Proof In view of Lemma 4.2, the maximal total popula-
tion can be obtained by maximizing the function Ω on the 
ellipse (8). This is equivalent to solve the following optimi-
sation problem:

Here, X1 = x1 − 1∕2 and X2 = x2 − k∕2 . To solve the prob-
lem, we name f (X1,X2) = X1 + X2 +

1

2
(1 + k) the objective 

function and H(X1,X2) =
X2
1

a
+

X2
2

b
− 1 the restriction func-

tion. Let us maximize the Lagrangian function.

for some real parameter � . If we look for the roots of ∇L we 
notice that those are:

Since we are looking for a maximum of f, it is clear that 
we must use the solutions with positive sign (the negatives, 
which have no ecological meaning, correspond to the global 
minimum). This optimal point being an equilibrium point 
comes as a straightforward application of Lemma 4.3. The 
maximal value of f is given by

which corresponds to Ω∗ if we expand a and b in terms of k 
and r. Moreover, if we recast (X1,X2) to the original coordi-
nates, we can use Lemma 4.3 to find the value of D for which 
the optimum is an equilibrium point:

with

  ◻

(10)Ω(D) ≤
1

2

(√
1 +

r2 + 1

r
k + k2 + (1 + k)

)
=∶ Ω∗.

maximize X1 + X2 +
1

2
(1 + k),

subject to
X2
1

a
+

X2
2

b
= 1.

L(X1,X2) = f (X1,X2) + �H(X1,X2),

�
±

a√
a + b

,±
b√
a + b

�
.

√
a + b +

1

2
(1 + k),

(11)D∗ =
x2
1
− x1

x2 − x1
,

x1 =
a√
a + b

+
1

2
, x2 =

b√
a + b

+
k

2
.
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There are several consequences of Theorem 4.4. Notice 
first that, if r = 1 , then Ω(D) = 1 + k . This means that, if the 
two patches have the same growth rate, the total population 
is maximized at the sum of the carrying capacities. This is a 
known fact that can be recovered from Eq. (10). Moreover, 
the linear coefficient of the quadratic polynomial inside the 
square root is

which is a function whose minimal value is 2 and it is 
achieved precisely at r = 1 . That is,

Hence, Ω∗ is always superior (or equal) to the sum of the 
carrying capacities of the patches. As we stated before, this 
does not mean that the optimal total population is achieved 
for positive D. To check when the optimal population is 
achieved for a positive value of the dispersion rate we have 
to examine the sign of Eq. (11). The parameter space (r, k) 
can be partitioned according to the behaviour of the total 
population with respect to the dispersion rate (see Fig. 6). 
The following result provides this classification.

r2 + 1

r
,

Ω∗(D) ≥
1

2

�√
1 + 2k + k2 + (1 + k)

�
= (1 + k).

Corollary 4.5 (Behaviour of the total population) Ω∗ is 
achieved for a positive dispersion rate D∗ if one of the fol-
lowing conditions hold: 

1. r > 1 and k > k∗(r),
2. r < 1 and k < k∗(r),

where

Moreover, if r < 1 and k∗(r) < k < 1 then Ω�(D) > 0 for 
D > 0 . In any other case, Ω(D) < 1 + k if D > 0.

Proof From the proof of Theorem 4.4 we know that Ω has 
only one critical value that is an equilibrium point inside 
the first quadrant. We also know that the maximal value is 
achieved at:

where,

k∗(r) =
r(3 + r)

1 + 3r
.

D∗ =
x2
1
− x1

x2 − x1
,

Fig. 6  Behaviour of the total 
population Ω in the parameter 
space (r, k). Green areas denote 
those values of the parameters 
for which the total population 
is achieved for a positive value 
of the dispersal rate. Grey ones 
are areas where r-k positiveness 
is fulfilled. Note that green and 
grey areas overlap. Grey area 
which does not overlap with 
green area are those values 
for which the total population 
increases monotonically for 
positive dispersal rate but the 
optimal value is not achieved. 
Red regions denote those 
values of r and k for which the 
total population decreases for 
positive dispersal rates. See 
Corollary 4.5 for more details. 
Boxes with letters from a to d 
correspond to the values of r 
and k used in Fig. 7 where the 
total population is shown at 
increasing values of D 
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Of course, D∗ is positive whenever the numerator and the 
denominator have equal sign. The numerator has positive 
sign if and only if r > 1 . On the other hand, the denominator 
has positive sign if and only if k > r(3 + r)∕(1 + 3r) . This 
proves points 1 and 2. If r < 1 and k∗(r) < k < 1 , the optimal 
value is achieved for some negative value of D. However, 
Ω(D) is increasing near D = 0 (see Lemma 4.1). As there 
are no other relative optimal values of D, Ω(D) must be an 
increasing function of D for D > 0 .   ◻

Remark 5 For k = r(3 + r)∕(1 + 3r) , the optimal value is 
achieved in perfectly mixing conditions, that is, D∗

→ ∞.

The information provided by Corollary 4.5 is shown in 
Fig. 6. The horizontal axis represents the value of r and, 
the vertical, the value of k. Different regions are coloured 
according to the behaviour of the function Ω with respect 
to the dispersal rate. The red zone represents values of the 
parameters r and k for which having positive D is always 
detrimental in terms of total population. This is because 
the function Ω is monotonically decreasing with respect to 
D. Zones which are not coloured in red corresponded to 
the conditions appearing in Ruiz-Herrera (2018). There-
fore, in non-red zones Ω is locally increasing for D near to 
zero. We coloured in grey regions in which r − k positive-
ness condition is fulfilled. In this region, the population at 
the limit case D → ∞ is larger than the sum of the carry-
ing capacities of the patches (see, for instance, Freedman 
and Waltman (1977)). The line k = r determines the limit 
case Ω(∞) < 1 + k if k > r and r > 1 or k < r and r < 1 . 
The region determined by the curves k = r(3 + r)∕(1 + 3r) 
and k = r correspond to values for which Ω∗ > 1 + k but 
Ω(∞) < 1 + k . The green regions represent values of the 
parameters for which Ω∗ is achieved for some positive D. 
Notice that the green region and the grey region overlap 
(this overlapping is seen as a dark green). For values of 
the parameters in this overlapped region, D∗ is larger than 
the limit case. In the grey region, the function Ω is strictly 
increasing for positive D as the maximal value is achieved 
for some negative D.

Figure 7 displays the evolution of Ω as function of D for 
four different choices of the parameters r and k, labelled 
from a to d in Fig. 6. The plots have been obtained by 
implementing a pseudo arc-length continuation to the equa-
tion of the equilibrium points starting at the point (1, k) for 
D = 0 . The program is terminated when the characteristic 
curve crosses the homotopy level {D = 10} . This program 
has been also used to check the correctness of the formulas 
obtained in this section. Figure 7a has been obtained with 
r = 1.5 and k = 1.5 . At D = 0 the value of Ω is 1 + k = 2.5 . 

x1 =
a√
a + b

+
1

2
, x2 =

b√
a + b

+
k

2
.

The characteristic curve increases until some maximal 
value that can be computed using formula (10) (in this case 
Ω∗ ≈ 2.5247 ). After the maximal value is reached, the curve 
decreases monotonically until a horizontal asymptote. This 
asymptote can be computed by using the asymptotic for-
mula of Remark 1. In this case Ω decreases asymptotically 
to the value 2.5 (i.e. the sum of carrying capacities: 1 + k ). 
In Fig. 7b we set r = 0.5 and k = 1.5 . These are conditions 
where the theory predicts that positive dispersal rate is det-
rimental to the total population. Indeed, the function Ω , in 
this case, is strictly decreasing until the asymptotic limit 
Ω = 2.25 . Notice that Ω∗ is achieved for some D < 0 . In 
Fig. 7c, we have selected r = 1.5 and k = k∗(1.5) , where k∗ is 
taken as in the statement of Corollary 4.5. As it can be seen 
in the plot, the theory predicts that the maximal value of Ω 
is achieved at the limit case and, therefore, the function Ω is 
strictly increasing for positive values of D. The asymptotic 
value Ω is, in this case, 2.25. This value can be predicted 
with both Theorem 4.4 and Remark 1. Finally, Fig. 7d illus-
trates a case in which the limit of Ω is below the sum of the 
carrying capacities. The values of the parameters are r = 1.5 
and k = 1.7 . The maximal total population is slightly larger 
( ≈ 2.72 ), and it is achieved for some positive D.

Conclusions

The investigation of metapopulation mathematical mod-
els is very extensive in the literature. Most of these stud-
ies have focused on small metapopulations considering few 
patches (Hastings 1993; Arditi et al. 2015, 2016; Sardanyés 
and Fontich 2010), or in multi-patch systems (Allen et al. 
1993). Discrete-time metapopulation models have focused 
on inspecting the role of dispersal in the stability of chaotic 
dynamics and its role in metapopulations’ persistence (Hast-
ings 1993; Allen et al. 1993). For instance, Allen and co-
workers showed that local chaotic dynamics involved lower 
extinction probabilities under both intrinsic and global noise 
(Allen et al. 1993). Additionally, two-patch time-continuous 
models have been extensively investigated. Arditi and col-
leagues used two coupled logistic systems to study the total 
population under arbitrarily large dispersal rates (Arditi et al. 
2015). Later on they explored the same system of coupled 
logistic models using the balanced dispersal model instead 
of linear diffusion (Arditi et al. 2016). Moreover, the explo-
ration of two-patch models with a generic growth function 
revealed certain conditions of optimality, indicating that 
the total population can surpass the sum of carrying capaci-
ties of each independent patch (Holt 1985). More recently, 
a similar system was explored for local populations grow-
ing hyperbolically instead of exponentially (Sardanyés and 
Fontich 2010).
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In this manuscript, we have revisited one of the simplest 
metapopulation models, the one in which a diagonal connec-
tivity matrix couples two logistic differential equations. The 
investigation of metapopulations with few patches allows 
developing analytical studies, providing clear information 
on dynamical phenomena such as equilibrium points and 
bifurcations that could be conserved in higher dimensions. 
Unlike the previous works on two-patch, time-continuous 
metapopulations, we have focused on global aspects of the 
system. Our work provides two novel main contributions to 
metapopulation theory.

The first contribution has to do with the robustness of 
the system to external perturbations. That is, the capacity of 
the system to recover from a situation in which one of the 
patches is close to extinction. It has been known for decades 
that, for all the values of the parameters, an empty patch will 
be eventually populated by individuals from the other patch. 
In this process, the populations of both patch tend to stabi-
lize at some coexistence equilibrium point. However, refer-
ences in literature do not take into account that the stability 

type of the global extinction equilibrium point (namely, the 
origin) can play a relevant role in the fragility of the metap-
opulation in terms of extinction. Concerning this point, we 
have identified two different scenarios: (i) When the origin is 
a source, the trajectories with initial conditions close to the 
axes (i.e. situations in which one of the patches is close to 
extinction) need some time to separate from them; (ii) when 
the origin is a saddle, there is a unique, locally attracting, 
heteroclinic connection between the origin and the coexist-
ence equilibrium that leads low initial condition to achieve 
a safe state in a short period of time. By including noise in 
the dynamics, we have shown that recovery is more prone 
when the origin is a saddle point. Notice that, at first sight, 
the origin being a source could seem a better situation to 
prevent from extinction under perturbations. To illustrate 
this fact we have run a simulation in which the system has 
stochastic losses of individuals in both patches.

The second contribution is related to a well-known 
counter-intuitive property of the system: Under suitable 
conditions, having positive dispersal rate, leads the total 

Fig. 7  Total population Ω with respect to diffusion with: a r = 1.5 , k = 1.5 , b r = 0.5 , k = 1.5 , c r = 1.5 , k = k∗(1.5) ≈ 1.227 , and d r = 1.5 , 
k = 1.7 . The colours of the plots match with the colours of the previous figure



94 Theory in Biosciences (2024) 143:79–95

population to stabilize overcoming the sum of the carrying 
capacities of the patches. This phenomenon was established 
for the limit case under the k − r positiveness hypothesis 
(Freedman and Waltman 1977; Holt 1985; Arditi et  al. 
2015). That is, if we name r1 and k1 the growth rate and the 
carrying capacity of the first patch, and r2 , k2 the respec-
tive quantities related to the second patch, k − r positiveness 
means that k1 > k2 and r1k2 > r2k1 or k2 > k1 and r2k1 > r1k2 . 
On the other hand, a less restrictive hypothesis was identified 
in (Ruiz-Herrera and Torres 2018). If k1 > k2 and r1 > r2 (or 
k1 < k2 and r1 < r2 ) and D is small enough, the total popula-
tion exceeds also the sum of the carrying capacities.

In this work, we study analytically the problem for all the 
positive values of the dispersal rate. In particular, we derive 
a formula for the optimal dispersal rate and a bound (that is 
fulfilled for the optimal dispersal rate) to the total popula-
tion. To avoid cumbersome notation, we have used dimen-
sionless units, but we stress that the change of units can be 
pulled-back to recover our formulas for standard units. The 
bound to the total population reads as:

The main takeaway from the “Optimal dispersal rate” section 
is a unified framework in which both r-k positiveness and the 
less restrictive conditions appearing in Ruiz-Herrera (2018) 
and all positive values of the dispersal rate are included. In 
particular, there are regions in which the r-k positiveness is 
fulfilled but the maximal population is achieved for some 
finite value of D. We derive formulae that can be used to 
predict both the optimal dispersal rate, the maximal popula-
tion and the asymptotic behaviour of the function Ω.

The simplicity of the model studied in this work has 
allowed us to conduct an analytic description of global 
aspects of the system (namely, global dynamics and behav-
iour of the total population as a function of dispersal). We 
remark, however, that the phenomena investigated in this 
paper, e.g. that changes in local behaviour can impact on 
global dynamics, may appear in other complex systems. For 
instance, such results found in low-dimensional metapopula-
tion models may be found in higher dimensions.

Technical details

The programs corresponding to “Role of diffusion in meta-
population robustness to perturbations” and “Optimal dis-
persal rate” sections have been written in C from the scratch 
and are available upon request. Library LAPACK (Anderson 
et al. 1999) has been used for linear algebra and the Taylor 

Ω
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package (Jorba and Zou 2005)) has been used to perform the 
numerical integrations of system (7).
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