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Abstract
Methylation is an important epigenetic regulation of methylation genes that plays a crucial role in regulating biological 
processes. While traditional methods for detecting methylation in biological experiments are constantly improving, the 
development of artificial intelligence has led to the emergence of deep learning and machine learning methods as a new trend. 
However, traditional machine learning-based methods rely heavily on manual feature extraction, and most deep learning 
methods for studying methylation extract fewer features due to their simple network structures. To address this, we propose 
a bottomneck network based on an attention mechanism and use new methods to ensure that the deep network can learn 
more effective features while minimizing overfitting. This approach enables the model to learn more features from nucleo-
tide sequences and make better predictions of methylation. The model uses three coding methods to encode the original 
DNA sequence and then applies feature fusion based on attention mechanisms to obtain the best fusion method. Our results 
demonstrate that MLACNN outperforms previous methods and achieves more satisfactory performance.

Keywords  Genome wide methylation detection · Attention CNN · Hybrid neural network

Introduction

Epigenetic modification is a essential modification which 
can reversible and heritable regulate gene function without 
nuclear DNA sequence change. At present, the known epige-
netic phenomena mainly include DNA methylation, genomic 
imprinting, maternal effects, gene silencing, nucleolar domi-
nance, dormant transposon activation and RNA editing 
(Jones 2012; Robertson 2005; Suzuki and Bird 2008; Nye 
et al. 2020; Cheng et al. 2018). DNA methylation tradition-
ally refers to 5mC, but some new DNA methylation modi-
fications have been found recently, such as 6mA, 4mc (Ma 
et al. 2014; O’Brown and Greer 2016; Yu et al. 2015). DNA 

methylation at the cytosine (5mC) 5 position in the genome 
is a major and common epigenetic event to various cellular 
processes among all types of DNA methylation.

Predicting the methylation level of methylation sites is 
an important area of research in epigenetics. With the rapid 
development of sequencing technology, various methods 
have been developed to detect DNA methylation levels. The 
gold standard for genome-wide methylation determination is 
WGBS (Habibi 2013) (whole-genome bisulfite sequencing), 
which delivers high accuracy and repeatability while cover-
ing the methylation status of every C base in the genome. 
ScWGBS (Huang 2019) (single-cell whole-genome bisulfite 
sequencing) is a WGBS method designed for analyzing the 
methylation state of every cytosine in a single cell with high 
accuracy. However, because of its high cost, researchers have 
developed cheaper alternative detection methods. Although 
RRBS (Wang et al. 2013) (reduced representation bisulfite 
sequencing) significantly reduces the amount of sequencing 
needed and enables comparative genome analysis of mul-
tiple samples, it introduces new limitations: limited diges-
tion sites and inefficient digestion efficiency that reduce the 
amount of sequencing information obtained. MeDIP (Jacinto 
et al. 2008) (methylated DNA immunoprecipitation sequenc-
ing), which detects genome-wide methylation with less 
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sequence data, has lower accuracy than WGBS and may pro-
duce erroneous results due to the use of specifically bound 
antibodies (Petterson et al. 2014). RRHP (reduced repre-
sentation of 5-hydroxymethylcytosine profile) can detect 
5hmc in the genome, but only in specific enzyme digestion 
sites. In comparison, oxBS-Seq (Booth et al. 2012) (oxida-
tive bisulfite sequencing) can distinguish between 5mC and 
5hmc, although it requires special reagents that increase the 
cost and time of methylation analysis. The choice of detec-
tion technology ultimately depends on research goals and 
available resources.

Compared to physical and chemical experiments for 
detecting methylation sites, machine learning and deep 
learning methods are undoubtedly simpler, more conveni-
ent, and cost-effective. Whether predicting methylation 
sites using machine learning or deep learning methods, they 
mainly use one or more of the following coding methods: 
k-mer, one-hot, ANF (accumulated nucleotide frequency), 
CKSNAP (composition of k-space nuclear acid pairs), DNC 
(dinucleotide composition), ENAC (enhanced nucleic acid 
composition), NAC (nucleic acid composition), RCKmer 
(reverse composition KMER), TNC (trinucleotide compo-
sition), EIIPs (electron-ion interaction pseudopotentials) 
of trinucleotides, NCP (nucleotide chemical property), and 
PseDNC (pseudo dinucleotide composition). Currently, 
machine learning methods are primarily combined with 
SVM (support vector machine) (Basith et al. 2019; Chen 
et al. 2015a, b, c, 2017a, b, 2019; Feng et al. 2019; Xiang 
et al. 2016; Xing et al. 2017; Akbar and Hayat 2018), Markov 
model (Pian et al. 2021; Yang et al. 2020), KNN (k-nearest-
neighbor) (Jia et al. 2016), RF (random forest) (Zhou et al. 
2016; Manavalan et al. 2019) and XGBoosting(extreme 
gradient boosting) (Qiang et al. 2018; Liu and Chen 2020) 
to predict methylation sites through one or more coding 
methods mentioned above. RF and XGBoosting algorithms 
are mainly used to predict by integrating several weak clas-
sifiers such as SVM, Markov model and KNN. Traditional 
machine learning methods depend heavily on manual feature 
selection based on prior knowledge, and feature selection is 
crucial to the classification results. However, deep learning 
obviates the need for complicated manual feature selection 
and can automatically learn and classify complex methyla-
tion features through a series of network layers, thus simpli-
fying the process and improving its accuracy.

Tang et al. (2020). proposed the INTERACT model, 
which utilizes a combination of convolutional neural net-
works and the Transformer model to predict the impact of 
genetic variation on DNA methylation levels at CpG sites in 
the human brain. This approach overcomes the challenges 
associated with identifying causal genetic variations that 
drive DNA methylation levels due to extensive linkage dis-
equilibrium in the genome. PretiMeth (Zhou et al. 2022) is 
a novel method for constructing precise prediction models 

for DNA methylation at single CpG loci. The study demon-
strates that the method accurately predicts DNA methyla-
tion levels and identifies several CpG loci and genes that 
are differentially methylated between tumor and normal 
samples, highlighting its potential for biological validation 
and expanding methylation array data. Angermueller et al. 
(2017) proposed DeepCpG. The method of feature fusion 
based on RNN and CNN is used to predict the two feature 
extraction methods for the input methylation data through 
simple feature splicing. RNN extracts the temporal features 
of methylation data, and CNN extracts the local sequence 
features of methylation. The network used is relatively sim-
ple, so the extracted features are relatively limited. Nazari 
et al. proposed iN6 Metal (5 steps) (Nazari et al. 2019), 
which extracts k-mer features of sequences and puts them 
into word2vec for feature selection, and finally uses CNN 
to classify features and predict. MRCNN (Tian et al. 2019) 
encodes the DNA sequence using one dot encoding method, 
and obtains 400 through a 1 * 4 one-dimensional convolu-
tion × The vector of 1 is folded to form 20 × 20 matrix, 
and then get the output after three layers of convolution. 
The network used is also relatively simple, and the features 
extracted are relatively limited. Moreover, simple folding of 
data may destroy the original structure of data.

Most of the previous deep learning methods for predict-
ing methylation (Ma et al. 2020; Fu et al. 2021; Abbas et al. 
2020; Rehman et al. 2021; Xu et al. 2021; Zhang et al. 2015; 
Zeng and Gifford 2017; Alam et al. 2020; Liu et al. 2021) 
used neural networks with insufficient depth or processed 
neural network inputs based on prior knowledge, result-
ing in limited effective features being extracted. Here, we 
propose MLACNN for predicting DNA methylation at site 
resolution. MLACNN encodes methylated sequences in 
three coding methods: one-hot, NCP and EIIP-vector cod-
ing. The encoded sequences are input into three RNN neu-
ral networks with attention mechanism and feature fusion 
based on attention mechanism is performed to obtain the 
predicted results of methylation. In our 20 experiments, the 
system has a median validation accuracy of 97.9% and an 
independent test accuracy of 94.8%. It is a relatively robust 
methylation prediction system with good prediction perfor-
mance for both negative and positive samples. MLACNN is 
provided as an open-source tool available at https://​github.​
com/​jrebai/​MLACNN.

Methods

data preprocessing

We used WGBS DNA methylation data: The original data 
were obtained from GEO (Gene Expression Omnibus data-
base, https://​www.​ncbi.​nlm.​nih.​gov/​geo). The database 
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downloaded the m5C methylation data with the accession 
number of gsm432685 (whole-genome shotgun bisulfite 
sequencing of the H1 cell line) and the mapped GRCh37 
(genome reference consor Tim human reference 37) data.

The methylation sites and methylation prediction values 
are reserved for the methylation data downloaded from GEO; 
and then, the processed data are mapped with GRCh37 to 
obtain sequence methylation data of up and down 400 bp 
around the methylation sites. Sequence methylation data 
were encoded by one-hot, NCP and EIIP-vector as inputs to 
the neural network. Wherein the one-hot coding sequence 
methylation data is encoded as:

The NCP coding method is based on the chemical properties 
of the four bases. By judging whether the four bases contain 
cyclic structures, functional groups and hydrogen bonds, the 
obtained DNA sequences are coded as follows:

The EIIP-vector coding method is based on the chemical 
properties of four bases. By judging the four bases, the 
energy of delocalized electrons in nucleotides, the four bases 
A, T, C and G are coded as follows:

Attention and bottleneck

Mnih et al. (2014) proposed a method that can extract infor-
mation from a picture or a video, select a series of regions 
or locations through the supervisor, and only process the 
selected regions in a high-resolution way. Since then, 
attention mechanism has attracted extensive attention and 
research. Bahdanau et al. (2014) introduced attention mech-
anism into natural language processing for the first time. 
They performed translation and alignment simultaneously 
in machine translation tasks. Their model is superior to tra-
ditional encoder and decoder methods in English French 
translation tasks. Vaswani et al. (2017) proposed an atten-
tion mechanism transformer that is still widely studied until 

(1)S = (s1, s2,… , sn), si ∈

⎧⎪⎨⎪⎩

A ∶ (1, 0, 0, 0)T

T ∶ (0, 1, 0, 0)T

C ∶ (0, 0, 1, 0)T

G ∶ (0, 0, 0, 1)T

, i ∈ [1, n]

(2)S = (s1, s2,… , sn), si ∈

⎧⎪⎨⎪⎩

A ∶ (1, 1, 1)T

T ∶ (0, 0, 1)T

C ∶ (0, 1, 0)T

G ∶ (1, 0, 0)T

, i ∈ [1, n]

(3)

S = (s1, s2,… , sn), si ∈

⎧⎪⎨⎪⎩

A ∶ (15.27, 0, 0, 0)T

T ∶ (0, 31.61, 0, 0)T

C ;(0, 0,−77.48, 0)T

G ∶ (0, 0, 0, 30.59)T

, i ∈ [1, n]

now. Its input is word embedding with location information. 
Through the encoder and decoder based on multihead self-
attention, the correlation between words is extracted and 
sentence translation is made. Later, a series of soft atten-
tion mechanisms were put forward: spatial attention (Zhu 
et al. 2019), SENet (Sequence and Exception Net) (Hu et al. 
2018), ECA-Net (Wang et al. 2020), etc. The soft attention 
mechanism automatically assigned larger features to impor-
tant features by dynamically learning different weights of 
channels or spaces to obtain better classification results. We 
use soft attention to train our neural network by applying 
different attention to channels and spaces.

In order to overcome the side effects of group convolu-
tion, Zhang et al. (2018) proposed a new channel shuffling 
operation to help information interact between characteristic 
channels and found that it can improve the prediction perfor-
mance and obtain faster processing speed. As an important 
improvement of neural network, residual network (He et al. 
2016) firstly applies the idea of jump connection to neu-
ral network, and based on jump connection, it can greatly 
reduce the problems caused by gradient disappearance and 
over fitting. He trained the neural network to more than 
100 layers for the first time, and the obvious experimental 
results in his paper showed that if the structural design of 
the neural network is not good, then the performance of the 
shallow neural network is far worse than that of the shal-
low neural network. I think this may also be the reason why 
other researches on methylation only use one or two layers of 
neural networks. Therefore, we creatively introduce residual 
structure design to our neural network to predict methyla-
tion sites. As far as we know, the deeper the neural network 
is, the more features can be extracted. The building block 
and bottomline proposed in his paper can obviously achieve 
fewer parameters with fewer parameters (that is, smaller 
models) and obtain better prediction results.

Model

Most existing deep learning-based methods for predicting 
methylation sites suffer from two main shortcomings: shal-
low network layers that fail to extract enough high-dimen-
sional features, resulting in underutilization of methyla-
tion data; and simple feature splicing or ensemble learning 
methods used when multiple coding methods or network 
architectures are employed to jointly predict methylation 
sites, leading to insufficient utilization of extracted features. 
To address these issues, we propose a model based on fea-
ture fusion and attentioned deep CNN. Our model consists 
of three processes: Encoder, Feature Extraction, and Fea-
ture Fusion, as shown in Fig. 1. The Encoder encodes the 
acquired methylation data to become the input of the neural 
network, the Feature Extraction extracts high-level abstract 
features of methylation, and the Feature Fusion fuses the 
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learned high-dimensional features to obtain the prediction 
results through full connection network interaction. Com-
pared to traditional neural network methods for predicting 
methylation sites, we use the shuffle channel method to dis-
rupt the channels and enable each channel of a large-scale 
neural network to communicate more information and learn 
better features. We also employ ECA attention and Spatial 
attention methods to make the neural network training more 
successful and the learned features more focused on key 
information. For the fusion of multiple features, we use a 
special feature fusion method based on the attention mecha-
nism. The features extracted from each network are first pro-
cessed by ECA attention before feature fusion; and then, the 
fused features are SAM processed to make the fused features 
more focused on key information.

The MLA-BCS (multi-latitude attention bottle with 
channel shuffle) is the primary feature extraction compo-
nent in our model, as we avoid using a simple stacked 
convolution layer to extract methylation sequence features 
due to the risk of gradient disappearance, overfitting, and 
ineffective feature extraction. By carefully stacking MLA-
BCS modules, we can avoid the gradient disappearance 
phenomenon and ensure that the accuracy and other indi-
cators of each training are relatively stable. The MLA-
BCS first passes the input features through an ECA block 
and SAM to focus on channel and spatial features that are 
more conducive to identifying methylation sites. It then 

passes through BCS with convolution residual edges of 
D × 1 , BCS of D × D , and BCS of two D × 1 , where D 
is the dimension of feature coding. Although BCS with 
convoluted edges can learn better features, it is more 
prone to overfitting than residual edges without convolu-
tion. Therefore, we use two convolutions without residual 
edges, and the purpose of using two-dimensional convolu-
tion is to enable interaction between features not only in 
the line direction. Our neural network uses four MLA-BCS 
to extract high-level convolution features, but the normal 
BCS module for convolution extraction of low-level fea-
tures is also crucial: we first use a 5 × 1 convolution ker-
nel, then three 5 × 1 to extract low-level features. For the 
feature fusion layer, we do not directly add or splice the 
extracted high-level features. Instead, we first focus on the 
channels of each feature through ECA block, then focus 
on the merged features, and then use the SAM module to 
make the fused features focus on the features after fusion. 
The SAM attention mechanism employs two convolutional 
layers, one for channel attention and the other for spatial 
attention, to learn spatial attention. During the learning 
process, a sigmoid function is used to limit the output 
range from 0 to 1, ensuring that the output is an effective 
attention weight. Unlike previous feature fusion methods, 
the SAM attention mechanism uses an attention mecha-
nism for feature fusion. By learning different weights 
for different features, it assigns higher attention to more 

Fig. 1   Abstract modular structure of MLACNN: The original data enter three similar feature extraction modules through three coding methods 
to obtain abstract features; and then, features are fused based on attention mechanism in feature fusion module to obtain prediction results
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important features. Finally, we obtain the final prediction 
result by connecting the features after fusion through the 
full connection layer of 128 hidden neurons and then con-
necting with the output layer. Our model is also easy to 
disassemble and combine, as adding a new coding method 
for feature fusion only requires retraining a feature extrac-
tion and using the abstract features extracted by the feature 
fusion layer and other trained modules for fusion.

Specifically, we begin with a single strand of DNA 
with a length of L and use one-dot coding, NCP coding, 
and EIIP vector coding to form an L × D matrix, where D 
is the dimension of a single base. Our model employs the 
RMSprop optimizer to adjust the learning rate of each batch 
with a learning rate of 0.0001 and a batch size of 128. The 
cross-entropy function serves as the loss function of the neu-
ral network. To prevent overfitting, we use a combination 
of L1 and L2 regular functions to correct the weight and 
variance of the filter. Additionally, we employ early stop-
ping to prevent overfitting in the epoch dimension. To fur-
ther prevent overfitting, we utilize the max pooling method, 
which not only speeds up the fitting of neural networks but 
also prevents the network from being too deep and having 
too many parameters. For each pooling layer, we use a max 
pooling of 2 × 1.

where Y is the output of the current receptive field and Xi,j is 
the current receptive field value

To prevent overfitting, we also added BN layer (Ioffe 
and Szegedy 2015) (batch normalization) after each conv2d 
convolution layer. The BN layer forcibly pulls the distribu-
tion of the input value of any neuron of the neural network 
of each layer back to the standard normal distribution with 
the mean value of 0 and the variance of 1 through certain 
normalization means, so that the activation input value falls 
in the area where the nonlinear function is sensitive to the 
input. In this way, the small change of the input will lead 
to the large change of the loss function, which means that 
the gradient will become larger and the problem of gradient 
disappearance will be avoided. And the larger the gradient 
means that the learning convergence speed is faster, which 
can greatly speed up the training speed. We also used Drop-
out (Srivastava et al. 2014) technology to randomly discard 
some neurons in the network to prevent overfitting.

We use the ReLu function (corrected linear activation 
function) for all activation functions except the final predic-
tion result. For each output Y, the input X action function is 
as follows:

(4)Y = max
{
x1 x2

}

(5)Y = ReLu(x) =

{
x , x > 0

0 , else

The activation function for the predicted value is sigmoid, 
which can ensure that the predicted value is between 0 and 1:

The basic operation for convolution is Y = Conv(X):

where W is the weight matrix of the convolution kernel, X 
is the input matrix of the current convolution kernel, and b 
is the offset of the convolution function

We will use the formula to represent the module in 
Fig. 2b as follows:

We use Binary Cross Electron as our loss function:

Performance evaluation

In order to quantify the performance of MLACNN and 
compare it with other methods, we used six common per-
formance evaluation indicators: sensitivity (SN), specificity 
(SP), precision, accuracy (ACC), Matthew correlation coef-
ficient (MCC), and AUC(area under the curve, refers to the 
area under the ROC curve).

(6)Y = sigmoid(x) =
1

1 + e−x

(7)Yp,q = Conv(X) =
wc∑
i=1

D∑
j=1

Wq,i,jXp+i,j + b

(8)Y = fusion(A,B,C) = W ∙ SAM

⎛⎜⎜⎝

ECA(A)

ECA(B)

ECA(C)

⎞⎟⎟⎠
+ d

(9)
Hp(q) =7 −

1

N

N∑
i=1

yi ∙ log(p(yi)) + (1 − yi)

∙ log(1 − p(yi))

(10)Sn =
TP

TP + FN

(11)Sp =
TN

TN + FP

(12)Precision =
TP

TP + FP

(13)ACC =
TP + TN

TP + FP + TN + FN

(14)

MCC =
TP × TN + FP × FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
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where TP, FP, TN, and FN represent the number of true 
positives, false positives, true negatives, and false negatives, 
respectively (Figs. 4, 5).

s

Results and discussion

Samples with a methylation � value greater than 0.5 were 
set as positive samples, and samples with a methylation � 
value less than or equal to 0.5 were set as negative samples. 
We first train and verify the same training set and test set 
for our model using one-hot coding method, NCP coding 
method and EIIP vector, and then train and verify the feature 
layer formed by the two coding methods based on the fea-
ture fusion model of attention mechanism, then obtain four 
models. The confusion matrix predicted by the four models 
is shown in Fig. 3. For the overall performance of the four 
models, compared with the other three coding models, their 
SP has been significantly improved, which can show that 
our fusion model has relatively good recognition ability for 
negative samples and is easier to avoid false positives. The 
confusion matrix predicted by the four models is shown in 
Fig. 3. It can be seen that better recognition effect can be 
obtained after feature fusion, which can reach 0.97 true posi-
tive and 0.93 true negative.

We compared our model with DeepCpG, DeepCpG RNN 
module and MRCNN. We tested the sensitivity (SN), speci-
ficity (SP), precision, accuracy (ACC), Matthews correlation 
coefficient (MCC) and AUC to compare the advantages and 

disadvantages of these three models. Among them, Deep-
CpG mainly uses one-hot coding and location information 
to input data into CNN and RNN models, and then performs 
simple feature fusion on the two coding methods to obtain 
results. The network structure used is relatively simple, so 
the extracted features are relatively limited. MRCNN uses 
a method similar to DeepCpG to one-hot code DNA data 
to obtain a 400 × 4 matrix. After one-dimensional convolu-
tion, a 400 × 1 vector is obtained, and then folded to form 
a 20 × 20 matrix. After three-layer convolution and a full 
connected layer, the output is obtained. The network struc-
ture used is relatively simple, and the extracted features are 
relatively limited. Moreover, simple folding of the data may 
damage the original structure of the data. Our model mainly 
uses one-hot, NCP and EIIP-vector coding methods to 
extract more high-level features through deeper convolution 
layer with attention mechanism, and then perform feature 
fusion based on attention mechanism to effectively predict 
methylation status. Comparing MLACNN with MRCNN, 
DeepCpG and DeepCpG CNN through six indicators, we 
can see that our model has significantly improved in various 
indicators. The median values of SN, SP, precision, ACC, 
MCC and AUC are 0.964253, 0.93088502, 0.92837567, 
0.947527445, 0.89562882 and 0.948907645, respectively.

We also evaluated the performance of MLACNN on dif-
ferent tissues and cell types. Specifically, we compared and 
predicted the performance of four tissue methylation lev-
els, namely human liver tissue, human skin tissue, human 
pancreatic islet cells, and human lung tissue. The results 
are presented in Fig. 6, revealing that the ACC and AUC 

Fig. 2   a Specific architecture of CNN attention block of MLACNN feature extraction module b specific architecture of feature fusion module
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of MLACNN on human liver tissue are 0.904 and 0.958, 
respectively, while the worst performing human skin tis-
sue still achieves an ACC and AUC of 0.859 and 0.889, 
respectively. Despite being based on human stem cell 
training, MRCNN demonstrates excellent performance on 
methylation data from other tissues, thus highlighting its 
effectiveness as a universal predictive tool for whole-genome 
methylation.

To explore the extraction and abstraction of DNA 
sequence information by CNN and attention mechanism, we 
conducted t-SNE (t-distributed stochastic neighbor embed-
ding) and PCA (principal components analysis) operations 
on the raw sequence without any processing, the output after 
feature fusion, and the output after feature fusion and full 
connection to understand their action states. We observed 
that the raw data without any processing were highly mixed 
and challenging to cluster, whether it was t-SNE or PCA 
clustering. After feature fusion, the data after t-SNE cluster-
ing were mostly clustered together, but more clusters were 
formed after clustering, and the data after PCA clustering 

were clearly divided into two categories. The cluster output 
after full connection showed a clear cluster diagram through 
t-SNE and PCA clustering, with only a few misclassified 
samples. Therefore, our MLACNN network can effectively 
extract and abstract the high-level features of the original 
methylation data to better classify the methylation data.

Challenges and future work

Although the MLACNN model performs reasonably well 
in predicting methylation sites, there is still significant 
room for improvement. With ample computing power, we 
can adopt strategies such as automatic parameter search or 
automatic kernel search to enhance the proposed network 
architecture, for example, using Efficientnet (Tan and Le 
2019) and NASNet (Qin and Wang 2019). Additionally, 
we can leverage the parallel feature extraction strategy of 
multi-convolution, similar to GoogleNet (Van der Maaten 
and Hinton 2008), to learn more features at each layer of 

Fig. 3   Confusion matrix of proposed model. Among them, a–c are 
the confusion matrices that use one pot encoding, NCP encoding, and 
EIIP-vector data processing methods to stack and use our MLA-BCS 

module to predict test set data. d For fusion, the features extracted 
in a–c are fused and the confusion matrix displayed on the test set is 
retrained
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the neural network. If we plan to deploy our model on 
mobile devices, such as mobile phones, we may need to 
compress the network parameters. We can use techniques 
such as separable convolution to reduce the parameters of 
our convolution kernel and minimize the model size.

Conclusion

In this paper, we propose a multi-latitude attention con-
volutional neural network for accurately predicting the 
methylation sites of m5C. Our approach uses an atten-
tion-based feature fusion method to fuse and predict the 

Fig. 4   Boxplot of six indicators on MLACNN, MRCNN, DeepCpG and DeepCpG CNN: a Sn, b SP, c precision, d ACC, e MCC, f AUC​
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Fig. 5   a–c Represent the visualization results of t-SNE clustering for raw data, data processed by the first layer of MLACNN, and data processed 
by the last fully connected layer, respectively. On the other hand, d–f show the visualization results processed by PCA
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features extracted from the NCP network, one-hot network, 
and EIIP-vector network. Each network is a bottleneck 
with channel shuffle based on attention mechanism, and 
employs one-dimensional convolution and D-dimensional 
convolution for feature extraction while preventing overfit-
ting through max pooling, early stop, batch normalization, 
dropout, and L1 and L2 regularization. We compared the 

models obtained by experiments of NCP network, one-hot 
network and EIIP-vector network with the models after 
feature fusion to obtain the best fusion model. Addition-
ally, we performed t-SNE and PCA clustering analysis 
on the original methylation data, the methylation data 
after feature fusion, and the methylation data after full 

Fig. 6   Six indicators of liver, skin, pancreatic, and lung cells on MLACNN: a AUC, b ACC, c MCC, d Se, e Sn, and f precision
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connection to analyze the working principle of each layer 
of the neural network.
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