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Abstract
In this article, we study the dynamical properties of susceptible-vaccinated-infected-susceptible (SVIS) epidemic system

with saturated incidence rate and vaccination strategies. By constructing the suitable Lyapunov function, we examine the

existence and uniqueness of the stochastic system. With the help of Khas’minskii theory, we set up a critical value R�
s with

respect to the basic reproduction number R� of the deterministic system. A unique ergodic stationary distribution is

investigated under the condition of R�
s [ 1. In the epidemiological study, the ergodic stationary distribution represents that

the disease will persist for long-term behavior. We focus for developing the general three-dimensional Fokker–Planck

equation using appropriate solving theories. Around the quasi-endemic equilibrium, the probability density function of the

stochastic system is analyzed which is the main theme of our study. Under R�
s [ 1, both the existence of ergodic stationary

distribution and density function can elicit all the dynamical behavior of the disease persistence. The condition of disease

extinction of the system is derived. For supporting theoretical study, we discuss the numerical results and the sensitivities

of the biological parameters. Results and conclusions are highlighted.

Keywords Stochastic SVIS epidemic model � Ergodic stationary distribution � Fokker–Planck equation � Density function

analysis � Extinction

Introduction

Recently, global social economics and human health are

greatly affected by the infectious disease. The awareness

has been increased for preventing and to control the world-

wide spreading of COVID-19. Mathematical model is one

of the most important tools to describe the behavior of the

epidemic in epidemiology. Kermack and Mckendric (1927)

investigated a susceptible-infected-susceptible (SIS) model

and discussed its dynamical properties. The transmissions

of various epidemics (Liu et al. 2008; Li et al. 2017, 2001;

Jerubet and Kimathi 2019; Hove-Musekwa and Nyabadza

2009; Iwami et al. 2007; Cai and Wu 2009; Vincenzo and

Gabriella 1978; Carter et al. 2020; Mahato et al. 2021; Das

et al. 2021) were developed with realistic ordinary differ-

ential equation. (Kuniya and Wang 2018) established a

susceptible-infected-recovered (SIR) epidemic model.

They studied the existence of the global stability of dis-

ease-free equilibrium for basic reproduction number R0\1

and investigated the uniform persistence of the system

under R0 [ 1: (Naik et al. 2020a) formulated a SIR epi-

demic model with Crowley–Martin incidence rate and

Holling type–II treatment. With the help of La-Salle

invariance principle and the Lyapunov function, they

examined the existence and stability of both equilibrium

points. A nonlinear fractional infectious disease model in
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HIV transmission was discussed by Naik et al. (2020b).

A SIRS epidemic model with mixed vaccination strategies

was established by Gao et al. (2011). They added the

seasonal variability on infection in their study. A SVIR

(Susceptible-Vaccinated-Infected-Recovered) epidemic

model was studied by Liu et al. (2008). They discussed the

vaccine strategies for controlling the disease. Xing and Li

(2021) established a SVIR epidemic model with relapse

and investigated the persistence of the epidemic. Lee and

Lao (2018) described an epidemic model with bilinear

incidence rate and investigated the transmission dynamics

of the disease.

Environmental variations (Liu et al. 2018; Cai and Kang

2015) may perturb the travel of population, design of

control strategies. Many researchers formulated the

stochastic differential equation for epidemic and analyzed

their dynamical behavior. A stochastic SIS epidemic model

with vaccination was studied by Zhao and Jiang (2014).

The theory of extinction and persist in mean of the epi-

demic was investigated in their work. In Caraballo et al.

(2020), Carballo et al. formulated a stochastic SIRS epi-

demic model and discussed the condition of stationary

distribution. The existence of ergodic stationary distribu-

tion and the probability density function of the SVIS epi-

demic model were studied by Zhou et al. (2020). Zhou

et al. (2021) solved the general three-dimensional Fokker–

Planck equation. The existence of stationary distribution

and ergodicity of the system has been discussed. They have

studied the impact of random noises on the disease

extinction.

Concentration in the vaccination on infected individuals

and random oscillation, the main theme of our study is to

improve SIVS epidemic model in stochastic nature with

vaccination strategies. The disease which will be persistent

depends on the corresponding basic reproduction number

of the system. There is no positive equilibrium exists in the

stochastic system for the environmental fluctuation. So, the

stochastic permanence of the epidemic can be greatly

affected by the existence of a stationary distribution and the

properties of ergodicity. For controlling the outbreak of

epidemic, we must need for statistical data of the disease in

our real life. For difficulties to solve the higher-order

Fokker–Planck equations, we have analyzed the probability

density function. In this work, some studies of probability

density function of stationary distribution are discussed.

For this, we focus for three points.

(i) Comprise stochastic threshold R�
S with respect to

the basic reproduction number R�:
(ii) Look into the persistence of the disease of

stochastic SVIS system under the condition of

R�
S [ 1:

(iii) Discuss the numerical simulation and the sensi-

tivities of the ecological parameters of the system

get a clear view of our study.

This work is represented as follows: Sect. ‘‘Model cal-

ibration and dynamical behavior:’’ presents model formu-

lation and necessary notation for the model.

Sect. ‘‘Persistence and extinction of the system’’ introduces

the persistence and the extinction of the stochastic system.

The ergodic stationary distribution under R�
S [ 1 is inves-

tigated in the subsection of 3. Sect. ‘‘Numerical results:’’

shows some numerical results and Sect. ‘‘Sensitivities of

the parameters:’’ represents the sensitivities of the param-

eters. Finally, results are discussed and conclusions are

drawn in Sect. ‘‘Discussion of results.’’

Model calibration and dynamical behavior

In this section, the deterministic and stochastic SVIS epi-

demic models are developed after considering some

suitable conditions.

Deterministic SVIS epidemic system

Suppose, NðtÞ is the total investigated population. This

population is divided into susceptible S tð Þ; vaccinated V tð Þ;
infected IðtÞ populations at any instant t: In this study, the

susceptible individuals obey the rule of logistic growth

model which is the growth process of species in natural

way (Jiang et al. 2007; Arino et al. 2006; Xu et al. 2015).

We formulate a deterministic SVIS epidemic system (Zhou

et al. 2020, 2021) with saturated incidence and vaccination

strategies, which is given as

dS tð Þ
dt

¼ pS tð Þ 1 � S tð Þ
q

� �
� kS tð ÞI tð Þ

1 þ k1I tð Þ � wS tð Þ � a1S tð Þ

þ b2I tð Þ þ b1V tð Þ

dV tð Þ
dt

¼ a1S tð Þ � b1 þ wð ÞV tð Þ

dI tð Þ
dt

¼ kS tð ÞI tð Þ
1 þ k1I tð Þ � wþ a2 þ b2ð ÞI tð Þ ð1Þ

where p; q; k; k1;w; a1; b2; b1 and a2 are all positive con-

stants. The parameter p is the intrinsic growth rate of

susceptible individuals, and q depicts the carrying capacity

of S tð Þ: The term
kS tð ÞI tð Þ
1þk1I tð Þ is more sensitive than the bilinear

incidence rate in epidemiological study (Zhu et al. 2020;

Xu et al. 2016; Batabyal and Batabyal 2021; Chong et al.

2014). Here, k denotes the disease transmission rate

between susceptible and infected individuals, and k1 is the

half-saturation constant. The parameters w and a1 represent

the natural mortality rate of all individuals and vaccination
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rate of susceptible individuals, respectively. The disease-

related death rate of the infected individuals is represented

by a2. The immunity loss coefficient of the vaccinated

individuals and the recovery rate of the infected individuals

are depicted by the parameters b1 and b2, respectively.

Ecological description of the parameters and its units are

shown in Appendix 1.

The disease-free equilibrium point of the system is given

by

E# ¼ S#;V#; I#
� �

¼ q

p

p� w� a1ð Þ b1 þ wð Þ þ b1a1

b1 þ w

� �
;

�

a1

ðb1 þ wÞ
q

p

p� w� a1ð Þ b1 þ wð Þ þ b1a1

b1 þ w

� �
; 0

	
:

Now, we compute the basic reproduction number

(Driessche and Watmough 2002) of the deterministic

system.

R� ¼ kq p�w�a1ð Þ b1þwð Þþb1a1f g
pðb1þwÞ wþa2þb2ð Þ (see Appendix 2). Actually,

the basic reproduction number R� can be defined as the

number of new infections started from infective individuals

at disease-free equilibrium. R�\1 indicates infected pop-

ulation creates less than one new infected population at

time of its infective situation and the disease becomes

extinct. In other way, R� [ 1 represents that each infected

populations create more than one new infection, and then,

the infection can spread over the population.

For the endemic equilibrium point of the system (1), we

obtain.

E@ ¼ S@;V@; I@
� �

and S@ ¼ ðb1þwÞV@

a1
, I@ ¼ 1

wþa2

ðb1þwÞ
a1

p 1 � k1

q


 �
� wþ a1ð Þ

n o
þ b1

h i
V@. where V@ is the

root of the following equation

E1 V@
� �2þE2V

@ þ E3 ¼ 0 and E1 ¼ wþa2þb2ð Þp
a1 wþa2ð Þq ,

E2 ¼ k
aðb1þwÞ �

p wþa2þb2ð Þ
a1 wþa2ð Þ b1þwð Þ,

E3 ¼ wþ a2 þ b2

ðb1 þ wÞ2
:

Stochastic SVIS epidemic system

In real life, the dynamical properties of the maximum

epidemiological model are greatly influenced by random

perturbation in the environments. With the help of relevant

study (Cai and Kang 2015; Zhao and Jiang 2014; Khan and

Khan 2018; Zhang 2017; Caraballo et al. 2020; Wang and

Jiang 2019; Wang and Wang 2018; Liu et al. 2019a; Zhou

et al. 2020), we consider the stochastic perturbations are

directly proportional to S tð Þ;V tð Þ, I tð Þ. Stochastic pertur-

bations are influenced by multiplicative noises. These

multiplicative noises are considered for describing the non-

equilibrium systems to better understand the fluctuations

which are not self-originating. So, the corresponding

stochastic SVIS epidemic system with vaccination strate-

gies is formulated by

dS tð Þ ¼ pS tð Þ 1 � S tð Þ
q

� �
� kS tð ÞI tð Þ

1 þ k1I tð Þ � wS tð Þ
�

�a1S tð Þ þ b2I tð Þ þ b1V tð Þ�dt þ s1SdG1 tð Þ

dV tð Þ ¼ a1S tð Þ � b1 þ wð ÞV tð Þ½ �dt þ s2VdG2 tð Þ

dI tð Þ ¼ kS tð ÞI tð Þ
1 þ k1I tð Þ � wþ a2 þ b2ð ÞI tð Þ

� 	
dt þ s3IdG3 tð Þ

ð2Þ

Here, Gi tð Þ i ¼ 1; 2; 3ð Þ are the independent standard

Brownian motions and si i ¼ 1; 2; 3ð Þ are their intensities.

Existence and uniqueness

Now, we have investigated the existence and uniqueness of

the solutions.

Theorem 1 The solutions S tð Þ;V tð Þ; I tð Þf g 2 Rþ
3 of the

stochastic system (2) are unique and exist in the region Rþ
3

for the initial values S 0ð Þ; I 0ð Þ;V 0ð Þf g 2 Rþ
3 :

Proof The coefficients of the system (2) are locally Lip-

schitz continuous as reported by of Mao et al. (Mao 1997).

S tð Þ;V tð Þ; I tð Þf g 2 Rþ
3 ; t 2 0; r0ð Þ is the solution of the

system (2) for the initial values S 0ð Þ; I 0ð Þ;V 0ð Þf g 2 Rþ
3 . r0

depicts the explosion time. For proving the global solution,

we must prove r0 ¼ 1 a.s. The stopping time is satisfied

the following conditions.

rn ¼ inff0\t\r0 : min S tð Þ;V tð Þ; I tð Þf g� 1
d or max

S tð Þ;V tð Þ; I tð Þf g� dg.where, S 0ð Þ; I 0ð Þ;V 0ð Þf g 2 1
d0
; d0

h i
and d� d0:

We also assume the set inf{U} = 1, when n ! 1 then

rn is increasing. Thus, we get r1 ¼ lim
n!1

rn: If we show

that r1 ¼ 1 almost surely, then r0 ¼ 1 almost surely.

This implies that S tð Þ;V tð Þ; I tð Þf g 2 Rþ
3 almost surely for

t� 0: When r1\1, then there exist two positive con-

stants M and e such that P r1 �Mf g[ e. Again, we define.

P rn �Mf g� e for any integer d1 � d0:

Let us assume a fundamental function cF :Rþ
3 ! R such

that bF S;V; Ið Þ ¼ S� InS� 1ð Þ þ V � InV � 1ð Þþ
I � 1 � InIð Þ: As w[ 0, then w� 1 � Inwð Þ� 0. Thus

bF S;V; Ið Þ is non-negative C2 function.

Using It ô’s formula, we obtain
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d bF S;V; Ið Þ ¼ L bF S;V ; Ið Þdt þ s1 S� 1ð ÞdG1 tð Þ
þ s2 V � 1ð ÞdG2 tð Þ þ s3 I � 1ð ÞdG3 tð Þ

where

LbF S;V ; Ið Þ

¼ 1 � 1

S

� �
pS 1 � S

q

� �
� kSI

1 þ k1I
� wS� a1Sþ b2I þ b1V

� 	

þ s2
1

2
þ 1 � 1

V

� �
a1S� b1 þ wð ÞV½ �

þ s2
2

2
þ 1 � 1

I

� �
kSI

1 þ k1I
� wþ a2 þ b2ð ÞI

� 	
þ s2

3

2

� pþ 3wþ a1 þ a2 þ b1 þ b2 þ
s2

1 þ s2
2 þ s2

3

2
� p 1 � S

q

� �

þ kI
1 þ k1I

� pþ 3wþ a1 þ a2 þ b1 þ b2 þ
s2

1 þ s2
2 þ s2

3

2
� Ĥ:

Therefore, we get. d bF S;V ; Ið Þ� Ĥdt þ
s1 S� 1ð ÞdG1 tð Þþ½ s2 V � 1ð ÞdG2 tð Þ þ s3 I � 1ð ÞdG3 tð Þ�.

We integrate both sides with respect to limit runs from 0

to rn ^ M and take expectation,

EF̂ S rn ^Mð Þ;V rn ^Mð Þ; I rn ^ Mð Þð Þ� ĤE rn ^ Mð Þ
þ F̂ S 0ð Þ;V 0ð Þ; I 0ð Þð Þ� ĤM þ F̂ S 0ð Þ;V 0ð Þ; I 0ð Þð Þ:

Let us consider Xm ¼ rn �Mf g. for m�m1., then

P Xmð Þ� e:.
For every g 2 Xm; such that S rn; gð Þ;V rn; gð Þ; I rn; gð Þ is

equal to 1
m or m:

So, F̂ S rm; gð Þ;V rm; gð Þ; I rm; gð Þð Þ is not less than either

m� 1 � lnm or 1
m � 1 þ lnm:

ĤM þ F̂ S 0ð Þ;V 0ð Þ; I 0ð Þð Þ� E½TXm
ðgÞF̂ S rm; gð Þ;V rm; gð Þ; I rm; gð Þð Þ�

� e m� 1 � lnmf g ^ 1

m
� 1 þ lnm

� �

Here, TXm
represents the indicator function of Xm:

Applying m ! 1 both sides, that gives a contradiction

1 ¼ ĤM þ F̂ S 0ð Þ;V 0ð Þ; I 0ð Þð Þ\1:

This gives us r1 ¼ 1 a.s. Hence, the proof is completed.

Persistence and extinction of the system

In this section, we have discussed the persistence and the

extinction of the system. For this purpose, we define that

the stochastic reproductive ratio of the system (2) is

R�
S ¼

kq a1b1þ b1þwð Þ p�w�a1ð Þf g

pþ
s2
1
2


 �
b1þwþ

s2
2
2


 �
wþa2þb2þ

s2
3
2


 �.

Stationary Distribution and ergodic property
of the Stochastic System

Since the stochastic system (2) has no endemic equilibrium

point, we examine the ergodic stationary distribution that

represents the persistence of the disease. Now, we study

some important lemma of the theory of Khas’minskii

(Khas’miniskii RZ 1980).

Let us assume a stochastic differential equation

dY tð Þ ¼ g yð Þdt þ
Xn
k¼1

hk yð ÞdGk tð Þ

where Y tð Þ is a homogeneous Markov process in d-di-

mensional Euclidean space cd: The diffusion matrix is

B Yð Þ ¼ bij yð Þ
� �

; and bij yð Þ ¼
Pn
l¼1

h
ið Þ
l yð Þh jð Þ

l yð Þ:

Lemma 1 Zhou et al. 2021; Khas’miniskii RZ 1980): The

Markov process Y tð Þ has a unique ergodic stationary dis-

tribution p :ð Þ for any bounded region R with boundary p
and.

(i) There is a non-negative integer N such that

Pd
i;j¼1

bij yð Þjijj �N kj j2, y 2 R; j 2 Rd:

(ii) There is a non-negative C2 function F Y tð Þð Þ such

that LF Y tð Þð Þ is negative for y 2 XRnR. Then, for

all y 2 Rd and integral function v :ð Þ with respect to

the measure v :ð Þ, it follows that

P lim
q!1

1
q r
q

0

vðy tð ÞÞ ¼ rv yð Þp dyð Þ
� �

¼ 1.

Theorem 2 The stochastic system (2) has ergodic property

and a unique stationary distribution p :ð Þ for the initial

value S 0ð Þ;V 0ð Þ; I 0ð Þf g 2 Rþ
3 and R�

S [ 1:

Proof In the previous theorem, we prove the unique

global positive solution for the initial values

S 0ð Þ;V 0ð Þ; I 0ð Þf g 2 Rþ
3 : For proving this theorem, we only

verify Lemma 1.

We choose a C2 function Z such that

Z S;V; Ið Þ ¼ N0 Sþ V þ I � b1lnS� b1b2lnV � b3lnIð Þ
� lnS� lnV þ Sþ V þ Ið Þ

where b1; b2; b3 all are positive constants and

N0 ¼ p 1�S
qð Þþ2wþb1þa1þ

s2
1
þs2

2
2

þ2

3p
ffiffiffiffi
R�
S

3
p

�1ð Þ 1�S
qð Þ [ 0:

From above expression, we have
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�3N0p 1 � S

q

� � ffiffiffiffiffi
R�
S

3
p

� 1
� �

þ p 1 � S

q

� �
þ 2wþ b1 þ a1

þ s2
1 þ s2

2

2
¼ �2

For simplification,

Z1 ¼ Sþ V þ I � b1lnS� b1b2lnV � b3lnIð Þ
Z2 ¼ �lnS� lnV; Z3 ¼ Sþ V þ I

Using It ô0 s formula to Z1 (see Appendix 3) we derive

LZ1 ¼ p 1 � S

q

� �
� w Sþ V þ Ið Þ � a2I

� b1 p 1 � S

q

� �
� kI

1 þ k1I
þ b2

I

S
þ b1

V

S
� wþ a1 þ

s2
1

2

� �� 	

� b1b2 a1

S

V
� b1 þ wþ s2

2

2

� �� 	

� b3

kS
1 þ k1I

� wþ a2 þ b2 þ
s2

3

2

� �� 	

� p 1 � S

q

� �
� wN þ b1p 1 � S

q

� �
þ b3kS

1 þ k1I

� 	

þ b1 wþ a1 þ
s2

1

2

� �
þ b3 wþ a2 þ b2 þ

s2
3

2

� �

� b1b2I

S
þ b1b2

V
a1S

� �
þ b1b2 b1 þ wþ s2

2

2

� �
þ b1kI

1 þ k1I

� p 1 � S

q

� �
� 3 kb1b3p 1 � S

q

� �� �1
3

�2ðb2
1b2b1wÞ1=2

þ b1 wþ a1 þ
s2

1

2

� �
þ b3 wþ a2 þ b2 þ

s2
3

2

� �
þ b1kI

1 þ k1I

where b1; b2; b3 represents

b2 wþ a1 þ
s2

1

2

� �
¼ ka1;

b1 wþ a2 þ b2 þ
s2

3

2
� ka1

wþ a1 þ s2
1

2

" #

¼ b3 wþ a2 þ b2 þ
s2

3

2

� �
¼ p 1 � S

q

� �

Above expressions imply the following values. b1 ¼
ka1

wþa2þ
s2
2
2


 �2 ; b2 ¼ p 1�S
qð Þ

wþa1þ
s2
1
2
� ka1

wþa1þ
s2
2
2

and b3 ¼ p 1�S
qð Þ

wþa2þb2þ
s2
3
2

Therefore,

LZ1 � 3p 1 � S

q

� �
� 3p 1 � S

q

� �
R�
S

� �1=3þ b1kI
1 þ k1I

ð3Þ

Next, we use It ô0s formula on Z2 and Z3. We obtain

LZ2 ¼ �p 1 � S

q

� �
þ wþ a1 þ

s2
1

2

� �
þ kI

1 þ k1I
� b1V

S
� b2I

S

� 	

� a1S

V
þ wþ a1 þ

s2
1

2

� �

� � p 1 � S

q

� �
� b1V

S
� b2I

S
þ 2wþ a1 þ

s2
1 þ s2

2

2
ð4Þ

LZ3 ¼ p 1 � S

q

� �
� w Sþ Ið Þ � wþ a2ð Þ� p 1 � S

q

� �

� wN � a1S

V

ð5Þ

Since Z S;V ; Ið Þ is continuous function,

lim
t!þ1

infZ S;V ; Ið Þ ¼ 1; S;V ; Ið Þ 2 R3
þnEl:

Now, we obtain.

Q S;V ; Ið Þ ¼ Z S;V; Ið Þ � Z0, where Z0 is minimum

value of Z1 and Q S;V ; Ið Þ 2 R3
þ.

Using (2, 3, 4, 5), we get

LQ� � 3N0p 1 � S

q

� �
R�
S

� �1
3�1

n o
þ p 1 � S

q

� �
� a1S

V

þ kI
1 þ k1I

þ p 1 � S

q

� �
þ 2wþ a1 þ

s2
1 þ s2

2

2

� �
� wN

¼ �2 þ b1N0 þ 1ð ÞkI
N

� p 1 � S

q

� �
� a1S

V
� wN ð6Þ

We define a compact subset El ¼
S;V; Ið Þ 2 R3

þ : S� l;V �


l2; I� l3; Sþ V þ I� 1
lg.

Here, l is a small positive constant which satisfy the

condition

�2 þ b1N0 þ 1ð Þk� min w; a1; pð Þ
l

� � 1 ð7Þ

�2 þ b1N0 þ 1ð Þkl� � 1 ð8Þ

Using the following subsets of R3
þnEl

Ec
1;l ¼ S;V ; Ið Þ 2 R3

þ : S\l
 �

;Ec
2;l

¼ S;V ; Ið Þ 2 R3
þ : V\l2; S� l

 �
Ec

3;l ¼ f S;V ; Ið Þ 2 R3
þ : I\l3;V � l2g; Ec

4;l ¼ f S;V; Ið Þ

2 R3
þ : Sþ V þ I[

1

l
g

Therefore, LQ� � 1; where

S;V; Ið Þ 2 Ei;l i ¼ 1; 2; 3; 4ð Þ.

(i) When S;V ; Ið Þ 2 E1;l then we get from (6) & (7)
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LQ� � 2 þ b1N0 þ 1ð Þk� a1S

V
� � 2

þ b1N0 þ 1ð Þk� p 1 � S

q

� �
� � 1

(ii) When S;V ; Ið Þ 2 E2;l then we get from (6) & (7)

LQ� � 2 þ b1N0 þ 1ð Þk� min w; a1; pð Þ
l

� � 1

(iii) When S;V ; Ið Þ 2 E3;l then we get from (6) & (7)

LQ� � 2 þ b1N0 þ 1ð Þ kI
V

� � 2

þ b1N0 þ 1ð Þkl� � 1

(iv) When S;V ; Ið Þ 2 E4;l then we get from (6) & (8)

LQ� � 2 þ b1N0 þ 1ð Þk� wN � � 2

þ b1N0 þ 1ð Þk� min w; a1; pð Þ
l

� � 1

So, LQ� � 1, for all

S;V; Ið Þ 2 R3
þnEl ¼ E1;l [ E2;l [ E3;l [ E4;l.

Therefore, the condition (i) of Lemma 1 holds. The

corresponding diffusion matrix is given by.

L ¼
s2

1S
2 0 0

0 s2
2V

2 0

0 0 s2
3I

2

0
@

1
A.

Here, s2
1S

2 [ 0; s2
2V

2 [ 0; s2
3I

2 [ 0, so L is positive

definite matrix. Then, the condition (ii) of Lemma 1 also

holds. Therefore, the global positive solution S tð Þ;V tð Þ; I tð Þð Þ
of the system (2) satisfies a unique ergodic stationary

distribution p �ð Þ. This completes the proof of Theorem (2).

Density function analysis

In this portion, we have to obtain the probability density

function of the stochastic model (2). For this purpose, we

apply logarithmic transformation and equilibrium offset

transformation.

Let us assume that g1 ¼ lnS; g2 ¼ lnV; g3 ¼ lnI: Using

It ô s formula in the system (2), we derive

dg1 ¼ p 1 � eg1

q

� �
� keg3

1 þ k1eg3
� wþ a1 þ

s2
1

2

� �
þ b2

eg3

eg1

dg2 ¼ a1

eg1

eg2
� b1 þ wþ s2

2

2

� �

dg3 ¼ keg1

1 þ k1eg3
� wþ a2 þ b2 þ

s2
3

2

� �
ð9Þ

For considering random effect, we have a critical value

Rc
0 ¼

kq a1b1 þ b1 þ wþ s2
2

2


 �
p� w� a1 � s2

3

2


 �n o

p b1 þ wþ s2
2

2


 �
wþ a2 þ b2 þ

s2
3

2


 �

If Rc
0 [ 1; the equation.f xð Þ ¼ E1V

2 þ E2V þ E3 has

unique positive root V�
þ. where E1 ¼ wþa2þb2ð Þp

a2 wþa2ð Þq [ 0;E2 ¼
k

a1 b1þwð Þ �
p wþa2þb2ð Þ

a1 b1þwð Þ wþa2ð Þ [ 0;E3 ¼ wþa2þb2ð Þ
b1þwð Þ2 [ 0

Clearly, S�þ;V
�
þ; I

�
þ

� �
¼ eg

�
1 ; eg

�
2 ; eg

�
3

� �
are same with the

endemic equilibrium point E@ ¼ S@;V@; I@
� �

of the sys-

tem (2).

Now, we choose h1; h2; h3ð Þ ¼ g1 � g�1; g2 � g�2;
�

g3 �
g�3Þ such that g�1 ¼ lnS�þ; g

�
2 ¼ lnV�

þ; g
�
3 ¼ lnI�þ: The system

(9) can be represented as linear form,

dg1 ¼ �b11h1 � b12h2 � b13h3ð Þdt þ s1dG1 tð Þ
dg2 ¼ b21h1 � b21h2ð Þdt þ s2dG2 tð Þ
dg3 ¼ b31h1 � b32h2ð Þdt þ s3dG3 tð Þ ð10Þ

where b11 ¼ p
q e

g�
1 ,

b12 ¼ ke
g�

3

1þk1e
g�

3

� �2 ; b13 ¼ wþ a1; b21 ¼ b1 þ w, b31 ¼ ke
g�

1

1þk1e
g�

3
,

b32 ¼ wþ a2 þ b2: It is obvious that b11 [ 0,

b12 [ 0; b13 [ 0; b21 [ 0; b31 [ 0, b32 [ 0.

Theorem 3 When RC
0 [ 1; then there exists a local normal

density function T h1; h2; h3ð Þ at the quasi-stationary state

S�þ;V
�
þ; I

�
þ

� �
with the initial value h1 0ð Þ; h2 0ð Þ; h3 0ð Þð Þ

which satisfy the following condition.

T h1; h2; h3ð Þ ¼ 2pð Þ�
3
2 qj j�

1
2e�

1
2
h1;h2;h3ð Þq�1 h1;h2;h3ð ÞT

where q can be written as following way, and q is a pos-

itive definite matrix. If K 6¼ V�
þ, then

q ¼ r2
1 N1L1ð Þ�1q0 N1L1ð Þ�1

h iT
þr2

2 N2L2ð Þ�1q0 N2L2ð Þ�1
h i

þ

r2
3 N3Q3L3ð Þ�1q0 N3Q3L3ð Þ�1

h iT

If K ¼ V�
þ, then

q ¼ r2
1 N1L1ð Þ�1q0 N1L1ð Þ�1

h iT
þr2

2 N2L2ð Þ�1q0 N2L2ð Þ�1
h i

þ r2
3u N3uQ3L3ð Þ�1n0 N3uQ3L3½ Þ�1�T

where K ¼
wþ

s2
2
2


 �
k1� wþ

s2
1
2


 �
k1

wþ
s2
1
2
þk1�w�

s2
2
2

; u ¼ b21 b11�b21ð Þ
b13

;

r1 ¼ �b21b31s1, r2 ¼ �b13b32s2; r3 ¼ �b21 b11 � b22ð Þs3,

r3u ¼ �b13s3,
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q0 ¼

B2

2 B1B2 � B3ð Þ 0 � 1

2 B1B2 � B3ð Þ

0
1

2 B1B2 � B3ð Þ 0

� 1

2 B1B2 � B3ð Þ 0
B1

2B3 B1B2 � B3ð Þ

0
BBBBBBB@

1
CCCCCCCA
;

n0 ¼

1

2d1

0 0

0
1

2d1d2

0

0 0 0

0
BBBB@

1
CCCCA

B1 ¼ b11 þ b21 þ b32, B2 ¼ b21 b11 � b12 þ b32ð Þ þ b11b13½
b32 þ b32ð Þ�, B3 ¼ b21b32ðb11� b12 � b32Þ,d1 ¼
b11 þ b21; d2 ¼ b21 b11 � b12 � b32ð Þ

N3 ¼
�b32u � b11 þ b21ð Þu b2

21

0 u �b21

0 0 1

0
@

1
A; N3u

¼
�b13 �b11 0

0 u 0

0 0 1

0
@

1
A; Q3 ¼

1 0 0

0 1 0

0 � b21

b31

1

0
B@

1
CA

L1 ¼
0 0 0

1 0 0

0 1 0

0
@

1
A; L3 ¼

0 0 0

1 0 0

0 1 0

0
@

1
A; N1

¼
�b21b31 b21 b22 þ b31ð Þ b2

21 þ b21b32

0 �b23 �b21

0 0 1

0
@

1
A

N2 ¼
�b13b32 b13 b11 þ b32ð Þ b2

11 þ b13b31

0 �b13 �b11

0 0 1

0
@

1
A

Lemma 2 (Zhou et al. 2020, 2021) Let us consider the

equation H2
0 þ B0q0 þ q0B

T
0 ¼ 0, with H0 ¼ diag 1; 0; 0ð Þ,

B0 ¼
�B1 �B2 �B3

1 0 0

0 1 0

0
@

1
A: If B1 [ 0;B2 [ 0 and

B1B2 � B3 [ 0 then matrix q0 have all positive eigen

values. Here, B0 is the standard R1 matrix and B1;B2;B3

are the coefficients of the characteristic polynomial x3 þ
B1x

2 þ B2xþ B3 of B0:

Lemma 3 (Zhou et al. 2020, 2021) Let us consider the

equation H2
0 þ C0n0 þ n0C

T
0 ¼ 0. Here, H0 ¼ diag 1; 0; 0ð Þ,

C0 ¼
�d1 �d2 �d3

1 0 0

0 0 d33

0
@

1
A

If d1 [ 0 and d2 [ 0 then n0 is semi-positive. Here,

d1 � d33; d2 � d1d33 and �d2d33 are the coefficient of the

polynomial x3 þ d1 � d33ð Þx2 þ ðd2 � d1d33Þxþ�d2d33 of

C0: Here, C0 represents standard R2 matrix.

Proof of Theorem From the system of equation of (10), we

construct.

X ¼ h1; h2; h3ð ÞT , Y ¼ diag s1; s2; s3ð Þ: The system

becomes.dX ¼ BXdt þ YdB tð Þ where

B ¼
�b11 0 �b13

0 �b22 �b23

b31 b32 �b33

0
@

1
A:

The Fokker–Plank equation is given by

�
X3

j¼1

s2
j

2

o2

oh2
j

T þ o

oh1

�b11h1 � b13h3ð ÞT½ �

þ o

oh2

�b21h2 � b23h3ð ÞT½ �

þ o

oh3

ðb31h1 þ b32h2 � b32h3½ ÞT�
¼ 0: ð11Þ

The above three dimension Fokker–Plank equation

approximates the density function T Xð Þ ¼ T h1; h2; h3ð Þ
with help of (Roozen 1989) research work.

Eq. (11) can be approximated with the help of Gaussian

distribution

T Xð Þ ¼ cexp � 1

2
X � X�ð Þh X � X�ð ÞT

� �
ð12Þ

Here, X ¼ 0; 0; 0ð Þ and the real symmetric matrix h
satisfies the equation.

hY2hþ BThþ hB ¼ 0: If all the eigenvalues of h are

positive and h�1 ¼ q, we obtain

Y2 þ Bqþ qBT ¼ 0 ð13Þ

Equation (13) is equivalent to the equation

Y2
j þ Bqj þ qjB

T ¼ 0; j ¼ 1; 2; 3ð Þ

where Y1 ¼ diag s1; 0; 0ð Þ, Y2 ¼ diag 0; s2; 0ð Þ, Y3 ¼ diag

0; 0; s3ð Þ
qj ¼ q1 þ q2 þ q3

Y2
j ¼ Y2

1 þ Y2
2 þ Y2

3 :
Now, we choose a polynomial of B such that

wB xð Þ ¼ x3 þ b1x
2 þ b2xþ b3

where b1 ¼ b11 þ b21 þ b32 [ 0,

b2 ¼ b11 b21 þ b32ð Þ þ b21b32 þ b12b32 þ b13b31 [ 0,

b3 ¼ b21b32 b11 � b12 � b13ð Þ[ 0:

Applying the theory of matrix similar transformation

wB xð Þ is similarly invariant.

For solving Eq. (13), we have followed some steps.

For step 1 We choose the algebraic equation
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Y2
1 þ Bq1 þ q1B

T ¼ 0 ð14Þ

where Y1 ¼ diag s1; 0; 0ð Þ

Let, B1 ¼ J1BJ
T
1 ; J1 ¼

1 0 0

0 0 1

0 1 0

0
@

1
A then,

B1 ¼
�b11 �b13 0

b31 �b32 0

0 �b21 �b21

0
@

1
A:

C1 ¼ N1B1N
�1
1 ; where

N1 ¼
�b21b31 b21 b21 þ b33ð Þ b2

21 þ b21b32

0 �b21 �b32

0 0 1

0
@

1
A:

With the help of uniqueness of standard R1 matrix of B,

we derive.

B ¼
�b1 �b2 �b3

1 0 0

0 1 0

0
@

1
A.

Then, we obtain b1b2 � b3 ¼ b21 þ b32ð Þ b11 b21þð½
b32Þ þ b21b32� þ b11 þ b32ð Þb13b31�[ 0.

From Eq. (14), it can be seen that

ðN1J1ÞY2
1 ðN1J1ÞT þ ðN1J1ÞBðN1J1Þ�1ðN1J1Þq1ðN1J1ÞT

þ ðN1J1Þq1ðN1J1ÞT ðN1J1½ ÞBðN1J1Þ�1�T
¼ 0:

This gives Y2
0 þ C1q0 þ q0C

T
1 ¼ 0. where q0 ¼

ðN1J1Þq1ðN1J1ÞT
r2

1

, r1 ¼ �b32b31s1 and q0 ¼

b2

2 b1b2 � b3ð Þ 0 � 1

2 b1b2 � b3ð Þ
0

1

2 b1b2 � b3ð Þ 0

� 1

2 b1b2 � b3ð Þ 0
b1

2b3 b1b2 � b3ð Þ

0
BBBBBB@

1
CCCCCCA

.

Hence, q1 ¼ r2
1ðN1J1Þ�1q0 ðN1J1Þ�1

h iT
has positive

eigen value, i.e., positive definite.

For step 2

Let us consider the equation be Y2
2 þ Bq2 þ q2B

T ¼ 0

ð15Þ

where Y2 ¼ diag 0; s2; 0ð Þ, B2 ¼ J2BJ
�1
2

� �
and

J2 ¼
0 1 0

0 0 1

1 0 0

0
@

1
A.

Thus, the matrix B2 can be represented into the

following form.

B2 ¼
�b21 �b32 0

b32 �b32 b31

0 �b13 �b11

0
@

1
A.

Again, C2 ¼ N2B2N
�1
2 and

N2 ¼
�b13b32 b13 b11 þ b32ð Þ b2

11 þ b13b31

0 �b13 �b11

0 0 1

0
@

1
A.

Here, C2 is standard R1 matrix and C2 ¼ C1.

Equation (15) is transformed into the following form

N2J2ð ÞY2
2 N2J2ð ÞTþ N2J2ð ÞBðN2J2Þ�1ðN2J2Þq2ðN2J2ÞT

þ ðN2J2Þq2ðN2J2ÞT N2J2ð ÞBðN2J2Þ�1

 �T

¼ 0

This gives us Y2
0 þ C2q0 þ q0C

T
2 ¼ 0:

All the eigen values of the matrix q0 are positive and

q2 ¼ r2
2ðN2J2Þ�1q0½ðN2J2Þ�1�T is positive definite.

For step 3 Consider the equation

Y2
3 þ Bq3 þ q3B

T ¼ 0 ð16Þ

where Y3 ¼ diag 0; 0; s3ð Þ, B3 ¼ J3BJ
T
3 and

J3 ¼
0 0 1

1 0 0

0 1 0

0
@

1
A.

Therefore, we obtain Y3 ¼
�b32 b31 b32

�b31 �b11 0

�b21 0 �b21

0
@

1
A.

Using the transformation C3 ¼ N3B3N
�1
3 , where

N3 ¼
1 0 0

0 1 0

0 � b21

b13

1

0
B@

1
CA, We derive

C3 ¼
�b32

b13 þ b11 þ b21b32

b13

b32

�b13 �b11 0

0
b21 b11 � b21ð Þ

b13

�b21

0
BBB@

1
CCCA.

Case-1 When U ¼ b21 b11�b21ð Þ
b13

6¼ 0 and K 6¼ 0, from step

(1) and step (2),we obtain D3 ¼ N3C3N
�1
3 ;N3 ¼

�b13U � b11 þ b21ð ÞU b2
21

0 U �b21

0 0 1

0
@

1
A.

Transforming Eq. (15), it can be seen that.

Y2
0 þ D3q0 þ q0D

T
3 ¼ 0,where q0 ¼ ðN3D3J3Þq3ðN3D3J3ÞT

r2
3

and r3 ¼ �b21 b11 � b21ð Þs3:

Therefore, the matrix q3 has positive eigenvalues.

Case-2: If U ¼ b21 b11�b21ð Þ
b13

¼ 0, K ¼ 0 and

D3U ¼ N3UC3N
�1
3U , then the transformation matrix is given

by N3U ¼
�b13 �b11 0

0 1 0

0 0 1

0
@

1
A.
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The matrix D3U is represented by

�C1 �C2 �C3

1 0 0

0 0 �b11

0
@

1
A:

With the help of similarity invariant of the characteristic

polynomial of B is

UB xð Þ ¼ x3 þ b1x
2 þ b2xþ b3 ¼ UD3U

xð Þ
¼ x3 þ C1 þ b11ð Þx2 þ C2 þ C1b11ð Þxþ C2b11:

Above expression gives us,

C1 ¼ b1 � b11 ¼ b21 þ b32 [ 0

C2 ¼ b2 � C1b11 ¼ b21b32 þ b21b12 þ b13b31 [ 0:

Transforming Eq. (16), we get

Y2
0 þ D3UW0 þW0D

T
3U ¼ 0

where W0 ¼ ðN3UD3J3Þq3ðN3UD3J3ÞT
r2

3u

, N3U ¼ �b13s3.

Hence, W0 is semi-positive definite and

W0 ¼

1

2C1

0 0

0
1

2C1C2

0

0 0 0

0
BBB@

1
CCCA.

Therefore, q3 ¼ r2
3UðN3UD3J3Þ�1W0 ðN3UD3J3Þ�1


 �T

.

Now, q ¼ q1 þ q2 þ q3 becomes real symmetric matrix,

and hence, Eq. (13) represents the positive definite matrix.

The proof is completed.

Remark Theorem 3 shows that there is local and exact

probability density function around the quasi-stationary

state S�þ;V
�
þ; I

�
þ

� �
if Rc

0 [ 1, we easily obtain Rc
0\R�

S: In

addition R�
S ¼ Rc

0 ¼ R� while si ¼ 0 i ¼ 1; 2; 3ð Þ. This

means that the disease persistence is critically affected by

the random fluctuation of the susceptible and infected

individuals.

Extinction of the stochastic system

In this section, we discuss the suitable condition for the

extinction of the system (2).

Theorem 4 Let, the solutions S tð Þ;V tð Þ; I tð Þð Þ of the

system (2) with initial values S 0ð Þ;V 0ð Þ; I 0ð Þð Þ 2 R3
þ; the

epidemic will be eradicated for the long run if R�
0 ¼

k

wþa2þb2þ
s2
3
2

\1 and lim
t!1

sup
lnI tð Þ

t � wþ a2 þ b2 þ
s2

3

2


 �

R�
0 � 1

� �
\0 a.s.

Proof Applying It ô’s formula in InI tð Þ, we obtain

d lnI tð Þ ¼ kS tð Þ
1 þ k1I tð Þ � wþ a2 þ b2 þ

s2
3

2

� �� 	
dt

þ s3dG3 tð Þ ð17Þ

By integrating both sides and limiting runs from 0 to t1,

we can get

lnI tð Þ
t

� lnI 0ð Þ
t

þ 1

t
r
t1

0

kS nð Þ
1 þ k1I nð Þ � wþ a2 þ b2 þ

s2
3

2

� �� 	
dn

þ
r
t1
0 s3dG3 tð Þ

t

� lnI 0ð Þ
t

þ 1

t
k� wþ a2 þ b2 þ

s2
3

2

� �� 	
dnþ

r
t1
0 s3dG3 tð Þ

t

¼ lnI 0ð Þ
t

þ wþ a2 þ b2 þ
s2

3

2

� �
R�

0 � 1
� �

þ
r
t1
0 s3dG3 tð Þ

t

ð18Þ

With the help of Strong law of large number (Lipster

1980), we derive

lim
t!1

r
t1
0 s3dG3 tð Þ

t
¼ 0 a:s: ð19Þ

Using (19) and applying the superior limit of t ! 1, we

get R�
0 �R�

S.

Hence, the proof is completed.

Numerical results

In this section, applying the higher-order method improved

by Milstein (Higham 2001) we have the following dis-

cretization equation of the system (2)

Sxþ1 ¼ Sx þ pSx 1 � Sx

q

� �
� kSxIx

1 þ k1Ix
� wSx

�

�a1S
x þ b2I

x þ b1V
x�Dt þ s2

1

2
Sx g2

1x � 1
� �

Dt þ s1S
x

ffiffiffiffiffi
Dt

p
g1x
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Vxþ1 ¼ Vx þ a1S
x � b1 þ wð ÞVx½ �Dt

þ s2
2

2
Vx g2

2x � 1
� �

Dt þ s2V
x

ffiffiffiffiffi
Dt

p
g2x

Ixþ1 ¼ Ix þ kSxIx

1 þ k1Ix
� wþ a2 þ b2ð ÞIx

� 	
Dt

þ s2
3

2
Ix g2

3x � 1
� �

Dt þ s3I
x

ffiffiffiffiffi
Dt

p
g3x ð20Þ

where Dt[ 0 represents the time increment, and the

independent Gaussian random variables are indicated by

the variables g1x; g2x and g3x. Here, all the random vari-

ables follow the distribution N 0; 1ð Þ for x ¼ 1; 2; . . .; n:

Result 1 We choose the environmental noise intensities

s1; s2; s3ð Þ ¼ 0:08; 0:02; 0:01ð Þ and the other parameters

are p; q; k; k1;w; a1; a2; b1; b2ð Þ ¼
2; 50; 0:9; 0:65; 0:02; 0:9; 0:03; 0:2; 0:05ð Þ. We can obtain.

Fig. 1 Population trajectories in the system of (i) Deterministic system (ii) Stochastic system under the noise intensities

s1 ¼ 0:08; s2 ¼ 0:02; s3 ¼ 0:01:

Fig. 2 Extinction of the

compartment of I tð Þ under the

noise s1 ¼ 0:08; s2 ¼ 0:02; s3 ¼
0:01 and the other parameters

p; q; k; k1;w; a1; a2;b1;b2ð Þ ¼
2; 50; 0:00009; 0:65; 0:02; 0:9;ð

0:03; 0:2; 0:05Þ
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R� ¼ kq p�w�a1ð Þ b1þwð Þþb1a1f g
pðb1þwÞ wþa2þb2ð Þ [ 1 and R�

S ¼
kq a1b1þ b1þwð Þ p�w�a1ð Þf g

pþ
s2
1
2


 �
b1þwþ

s2
2
2


 �
wþa2þb2þ

s2
3
2


 � [ 1:

If R� [ 1 and R�
S [ 1 satisfies then Theorem 2 repre-

sents unique ergodic stationary distribution p :ð Þ: From

Theorem 3, we have a unique log-normal density function

around the quasi-endemic equilibrium E@:

Result 2 We choose the environmental noise intensities

s1; s2; s3ð Þ ¼ 0:08; 0:02; 0:01ð Þ and the other parameters

are.

p; q; k; k1;w; a1; a2; b1; b2ð Þ ¼ 2; 50; 0:00009; 0:65;ð
0:02; 0:9; 0:03; 0:2; 0:05Þ. We derive.

R�
0 ¼ k

wþa2þb2þ
s2
3
2

¼ 0:00899\1 and lim
t!1

sup
lnI tð Þ

t �

wþ a2 þ b2 þ
s2

3

2


 �
R�

0 � 1
� �

¼ �0:0995\0. It follows

Fig. 3 Profile of the compartment S tð Þ;V tð Þ; I tð Þ in deterministic

system and stochastic system with intensities s1 ¼ 0:08; s2 ¼ 0:02,

s3 ¼ 0:01 and other parameters are p; q; k; k1;w; a1; a2;b1;b2ð Þ ¼
2; 50; 0:9; 0:65; 0:02; 0:9; 0:03; 0:2; 0:05ð Þ:
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that Theorem 4 is verified and the epidemic will be

eradicated for long run (Fig. 1). Figure 2 depicts the

extinction of the system (2) for the long-term behavior.

Figure 3 depicts the impact of random noises

si i ¼ 1; 2; 3ð Þ on all compartment of S tð Þ;V tð Þ; I tð Þ and

Fig. 4 and Fig. 5 represent the effect of the noise intensities

of s1; s2; s3 on the compartment of V tð Þ; I tð Þ. The

stochastic perturbations are.

(i) s1 ¼ 0:08; s2 ¼ 0:02; s3 ¼ 0:01 ii)s1 ¼ 0:008;

s2 ¼ 0:02; s3 ¼ 0:01

(iii) s1 ¼ 0:08; s2 ¼ 0:002; s3 ¼ 0:01 iv) s1 ¼ 0:08;

s2 ¼ 0:02; s3 ¼ 0:001, respectively.

For all the above cases, Fig. 3 and Fig. 4 represent the

existence of a stationary distribution. The stationary dis-

tribution has an ergodicity property. But we mainly con-

centrate on the compartment of V tð Þ and I tð Þ: When the

perturbation intensities of vaccinated population or the

infected population (s2 or s3) increase, then the disease

infection will be controlled.

Fig. 4 Effect of the noise intensities s1; s2; s3 on the compartment of V tð Þ
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Sensitivities of the parameters

In this section, we have discussed the sensitivities of the

biological parameters which influence greatly for all

compartment. We consider that the epidemiological

parameters are p; q; k; k1;w; a1; a2; b1; b2ð Þ ¼ 2; 50;ð
0:9; 0:65; 0:02; 0:9; 0:03; 0:2; 0:05Þ and the random noises

are s1 ¼ 0:08; s2 ¼ 0:02, and s3 ¼ 0:01. For the corre-

sponding carrying capacity of the susceptible individuals

q ¼ 50; q ¼ 75; q ¼ 95, the solutions S tð Þ;V tð Þ and I tð Þ of

the system (2) are presented in Fig. 6. Vaccinated popu-

lation increases as carrying capacity increases. That

implies disease infection can be controlled.

Figure 7 depicts the effect of all compartment for the

different values of disease transmission rate. For the

stochastic perturbation s1; s2; s3ð Þ ¼ 0:08; 0:02; 0:01ð Þ, the

ecological parameters p; q; k1;w; a1; a2; b1; b2ð Þ ¼ 2; 50;ð
0:65; 0:02; 0:9; 0:03; 0:2; 0:05Þ and the disease transmission

rate k ¼ 0:9; 0:09; 0:009 the corresponding population

intensities of susceptible, vaccinated and infected are pre-

sented in Fig. 7. The infection will decrease as the disease

transmission rate increases.

Choose the epidemiological parameter p; q; k;w;ð
a1; a2; b1; b2Þ ¼ 2; 50; 0:9; 0:02; 0:9; 0:03; 0:2; 0:05ð Þ and

the random noises s1; s2; s3ð Þ ¼ 0:08; 0:02; 0:01ð Þ. Con-

sider the saturation constant k1 ¼ 0:65; 0:85; 1:05, the

Fig. 5 Effect of the noise intensities s1; s2; s3 on the compartment of I tð Þ
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corresponding population number of susceptible, vacci-

nated and infected individuals is represented in Fig. 8. The

saturation rate is inversely proportional to infected indi-

viduals, i.e., the saturation increases, and then, the epi-

demic infection decreases.

Discussion of results

In this study, to the best of our knowledge, we establish the

extinction of disease and disease persistence of the SVIS

epidemic model, which adds the existence of ergodic sta-

tionary distribution and analysis of probability density

function. The main study will be delivered in the following

ways.

• With the linear random fluctuation (Cai and Kang 2015;

Zhao and Jiang 2014; Khan and Khan 2018; Zhang

2017; Caraballo et al. 2020; Wang and Jiang 2019;

Wang and Wang 2018; Liu et al. 2019a; Zhou et al.

2020, 2021; Qi and Jiang 2020; Li et al. 2010), we

emphasize on SVIS epidemic model in stochastic nature

with saturated incidence and vaccination strategies.

With the help of Lyapunov functions, we derive the

stochastic critical value R�
S. Under R�

S [ 1, a unique

ergodic stationary distribution is obtained of the system

(2) by the Khas’minskii theory. As the same expression

Fig. 6 Effect of all the compartment S tð Þ;V tð Þ; I tð Þð Þ for the parameter q
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of R�
S and basic reproduction number R�, the dynamical

properties of susceptible, vaccinated, infected individ-

uals determine the stochastic positive equilibrium state.

In the present study, s1; s2; s3 are their corresponding

random fluctuations. By using numerical results and

sensitivities of parameters, we discuss some important

measure to control the infectious disease.

• We cannot determine the clear view of statistical nature

of disease persistence from the existence of ergodic

stationary distribution. With the help Zhou et al. (Zhou

et al. 2020), some algebraic equations are improved by

the three-dimensional probability density function. The

existence of stationary distribution with ergodic prop-

erties can obtain the corresponding persistence in the

studies (Ma et al. 2015; Liu et al. 2019b). We obtain the

expression of log-normal three-dimensional density

function T h1; h2; h3ð Þ: Using the algebraic equation

Y2 þ Bqþ qBT ¼ 0, we solve the covariance matrix q:
It is more difficult to obtain q. Then, some standard

matrices R1;R2;R3 are taken. We can investigate the

matrix q is positive definite and the diffusion matrix W0

is semi-positive definite.

For our future scope, we should add another population

for recovered and analyze the disease persistence and the

existence of ergodic stationary distribution. By considering

the important effect of telegraph noises (Zhang et al. 2016)

into the system and regime switching can be studied. It is

expected that this task can be solved in later research work.

Fig. 7 Impact of all the compartment for the parameter k
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Appendix 1

Ecological description of the parameters and its units.

Parameters Description Unit

p Intrinsic growth rate day-1

q Carrying capacity of the susceptible

individuals

Human/

area

k Disease transmission rate between

susceptible and infected individuals

day-1

k1 Saturation constant Cell/ml

w Natural death rate day-1

a1 Vaccination rate of susceptible population day-1

a2 Death rate due to disease day-1

b1 Immunity loss coefficient of vaccinated

individuals

day-1

Parameters Description Unit

b2 Recovery rate of infected individuals day-1

Appendix 2

The basic reproduction number R� can be computed by

using the concept of next-generation matrix method

(Driessche and Watmough 2002).

Let Z ¼ I;V ; Sð ÞT , the deterministic system (1) can be

written as

dZ

dt
¼ T1 zð Þ � T2 zð Þ

where T1 zð Þ ¼
kSI

1 þ k1I
0

0

0
B@

1
CA; T2 zð Þ ¼

Fig. 8 Impact of all the compartment for the parameter k1
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wþ a2 þ b2ð ÞI
�a1Sþ b1 þ wð ÞV

kSI
1 þ k1I

þ wSþ a1S� b2I � b1V � pS 1 � S

q

� �
0
BB@

1
CCA

Jacobian matrix of T1 zð Þ & T2 zð Þ at the disease-free

equilibrium E# ¼ S#;V#; I#
� �

¼
q
p

p�w�a1ð Þ b1þwð Þþb1a1

b1þw

n o
; a1

ðb1þwÞ
q
p

p�w�a1ð Þ b1þwð Þþb1a1

b1þw

n o
; 0

h i

JðT1 zð ÞÞ ¼ F 0

0 0

� �
and JðT2 zð ÞÞ ¼ V1 0

J3 J4

� �
.where

F ¼ kS#, V1 ¼ wþ a2 þ b2 0

0 b1 þ w

� �
,

J3 ¼ kS# � b2;�b1

� �
,

J4 ¼ �a1;wþ a1 � pþ 2pS#

q

� �T

The basic reproduction number R�ð Þ of the deterministic

system is defined by the spectral radius of the matrix

F:V�1
1

� �
¼ kS#

wþa2þb2ð Þ ¼ k
wþa2þb2ð Þ

q
p

p�w�a1ð Þ b1þwð Þþb1a1

b1þw

n o
:

Appendix 3

Let us assume that X;H; Htf gt� 0;P
 �

be the complete

probability space with filtration Htf gt� 0 satisfying the

usual conditions (i.e., it is increasing and right continuous

when H0 contains all P null sets). For detailed study, the

researcher is referred to Mao (Mao 1997). To explain the

dynamical behavior of the stochastic system (2), some

useful notations are defined in that space. Let us assume

that Rn denotes the Euclidean space with n dimension. We

represent

Rm
þ ¼ f y1; . . .::; ymð Þjyt [ 0; 1� t�mg;

Pm;3 ¼ 1

m
;m

� �
� 1

m
;m

� �
� 1

m
;m

� �

and let Bt and B�1 be the transpose matrix and inverse

matrix of B, respectively.

Now, we choose the m -dimensional stochastic differ-

ential equation.dY tð Þ ¼ g Y tð Þ; tð Þdt þ hð Y tð Þ; tð ÞdG tð Þ for

t� t0 and it satisfies the initial data Y 0ð Þ ¼ Y0 2 Rm: The

function G tð Þ represents a m -dimensional standard

Brownian motion defined in that space. The differential

operator L is defined by

L ¼ o

ot
þ
Xm
i¼1

gi Y tð Þ; tð Þ o

oYi

þ 1

2

Xm
i;j¼1

½hT Y tð Þ; tð Þh Y tð Þ; tð Þ�ij
o2

oYioYj
:

Here, the operator L is considered on a function V 2
C2:1 Rm � t0;1½ Þ; 0;1½ Þð Þ: Then, we have

LV Y; tð Þ ¼ Vt Y tð Þ; tð Þ þ VY Y tð Þ; tð Þg Y tð Þ; tð Þ

þ 1

2
trace½hT Y tð Þ; tð ÞVYY Y tð Þ; tð Þh Y tð Þ; tð Þ�;

where Vt ¼ oV
ot ; VY ¼ oV

oy1
; :::; oV

oym


 �
and VYY ¼ o2V

oyioyj


 �
m�m

:

If Y tð Þ 2 Rm; we get

dV Y tð Þ; tð Þ ¼ LV Y tð Þ; tð Þdt þ VY Y tð Þ; tð Þh Y tð Þ; tð ÞdG tð Þ:
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