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Abstract
In this paper a Feynman-type path integral control approach is used for a recursive formulation of a health objective function 
subject to a fatigue dynamics, a forward-looking stochastic multi-risk susceptible–infective–recovered (SIR) model with risk-
group’s Bayesian opinion dynamics toward vaccination against COVID-19. My main interest lies in solving a minimization 
of a policy-maker’s social cost which depends on some deterministic weight. I obtain an optimal lock-down intensity from a 
Wick-rotated Schrödinger-type equation which is analogous to a Hamiltonian–Jacobi–Bellman (HJB) equation. My formula-
tion is based on path integral control and dynamic programming tools facilitates the analysis and permits the application of 
algorithm to obtain numerical solution for pandemic control model.

Keywords Pandemic control · Multi-risk SIR model · Bayesian opinion network · Feynman-type path integrals · Stochastic 
differential equations
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Introduction

In current days we see “locking downs” of economies as a 
strategy to reduce the spread of COVID-19 which already 
has claimed more than 999,790 lives in the United States and 
more than 6 millions across the globe. Multiple countries 
have started this strategy to all the sectors of their economies 
except some essential service sectors such as healthcare and 
public safety. Different states in the United States locked 
down during different time periods based on their infection 
rates and extremely contagious transmission phase. Re-
opening has been prompted by slowing down the infection 
rate and wanes public activities (Caulkins et al. 2021). One 
negative impact of a lengthy lock down of an economy may 
be a reluctance of people to come outside their homes for 
socioeconomic activities. A possible reason for this reluc-
tance is that the people are too afraid to communicate in-
person thinking about themselves getting infected by this 
virus. As a result, a store may face a reduction of customers 

and have to reduce the number of employees. If the store 
does not have enough inventory, it may have to eventually 
shut down. If a business is shut down, it can hard for it to 
reopen since it does not receive sufficient government finan-
cial support (Caulkins et al. 2021). This might be one reason 
why the Centers for Disease Control and Prevention (CDC) 
recommends a person infected with the omicron virus should 
isolate themselves for 5 days.

Condition for shut-down is determined when a healthcare 
cost function is minimized subject to a stochastic multi-risk 
susceptible–infectious–recovered (SIR) model (Kermack 
and McKendrick 1927). Almost all mathematical models 
of transmission of infectious disease models come from the 
SIR model. This is a main reason to use this model. There 
is much research regarding dynamic behavior of different 
epidemic models have been done (Beretta and Takeuchi 
1995; Ma et al. 2004; Xiao and Ruan 2007; Rao 2014). The 
deterministic part of this stochastic SIR model consists of a 
saturated transmission rate which depends on the location 
of that person. If that person works in a urban area, then 
they might have more people interaction with more people 
than a person who lives in a rural area, which leads to a 
higher chance of getting infected. A diffusion aspect of the 
SIR model is needed when a person living in the rural area 
visits a city and interacts with others due to some arbitrary 
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needs and gets in touch with others. On the other hand, poor 
air quality causes respiratory illness, affects adversely to 
cardiovascular health and deteriorates life expectancy (Del-
fino et al. 2005; Albrecht et al. 2021). In a similar manner a 
random environmental factor such as sudden change in the 
air quality due to volcanic eruptions, storms, wildfires and 
floods can affect the air quality drastically and lead to a more 
vulnerable atmosphere. Preexisting health conditions like 
obesity, diabetes, hypertension, weak immune system and 
higher age place a person toward higher risk of COVID-19 
infection (Richardson et al. 2020; Albrecht et al. 2021).

Substantial recent research on the COVID-19 pandemic 
has adopted a control point of view, and lock-down meas-
ures as well as their medical, societal, and economic impacts 
are discussed in Anderson et al. (2020), Bayraktar et al. 
(2021), Charpentier et al. (2020), Ferguson et al. (2020), 
Hatchimonji et al. (2020), Hubert et al. (2022), Kantner and 
Koprucki (2020), Piguillem and Shi (2020), and Wilder-
Smith et al. (2020). The previous papers assume the gov-
ernment act as a central planner, in the sense that it can 
impose on the population to control the epidemic in a way 
that is beneficial to the population as a whole (Hubert et al. 
2022). However, though it is reasonable to assume that some 
people, by being afraid of getting sick, would reduce interac-
tions with others, it would be a stretch to consider that all 
individuals will follow the government mandates regarding 
COVID-19 (Hubert et al. 2022). These individualistic points 
of view have been studied by Reluga (2010), Reluga (2013), 
as well as by Li et al. (2017) and Elie et al. (2020). In this 
way game theory has been introduced in the pandemic mod-
els. After the incidence of COVID-19 several risk factors 
and comorbidities such as obesity, preexisting health condi-
tions like diabetes or hypertension, and advanced age have 
been found as the primal cause of spreading the pandemic 
(Albrecht et al. 2021; Richardson et al. 2020; Yang et al. 
2020). An increase in environmental factors such as air pol-
lution, temperature, and humidity has contributed to increas-
ing the spread of COVID-19 in China (Jiang et al. 2020; Zhu 
et al. 2020). The effect of PM2.5 remains largely unexplored 
as the pandemic continues to spread (Albrecht et al. 2021). 
Events like raging wildfires in the western United States 
have increased the concentration of PM2.5 in the air (O’Dell 
et al. 2019). Albrecht et al. (2021) study whether this PM2.5 
in the air has any impact of spreading COVID-19.

In this paper a Feynman-type path integral approach is 
used for a recursive formulation of a health objective func-
tion with a stochastic fatigue dynamics, forward-looking 
stochastic multi-risk SIR model and a Bayesian opinion 
network of a risk-group toward vaccination against COVID-
19. The main interest of the paper is in solving a minimiza-
tion problem H� which depends on a deterministic weight � 
(Marcet and Marimon 2019). A Wick-rotated Schrödinger 
type equation (i.e., a Fokker–Plank diffusion equation) is 

obtained which is an analogous to a HJB equation (Yeung 
and Petrosjan 2006) and a saddle-point functional equation 
(Marcet and Marimon 2019). My formulation is based on 
path integral control and dynamic programming tools facili-
tates the analysis and permits the application of algorithm 
to obtain numerical solution for this stochastic pandemic 
control model. Furthermore, H� , with given initial condi-
tions, is labeled as a continuation problem as its solution 
coincides with the solution from period s onward (Marcet 
and Marimon 2019). A terminal condition of the policy mak-
er’s objective function makes it as a Lagrangian problem 
(Intriligator 2002).

Feynman path integral is a quantization method which 
uses the quantum Lagrangian function, while

Schrödinger’s quantization uses the Hamiltonian function 
(Fujiwara 2017). As this path integral approach provides a dif-
ferent view point from Schrödinger’s quantization, it is very 
useful tool not only in quantum physics but also in engineer-
ing, biophysics, economics and finance (Kappen 2005; Ander-
son et al. 2011; Yang et al. 2014a; Fujiwara 2017). These two 
methods are believed to be equivalent but, this equivalence 
has not fully proved mathematically as the mathematical dif-
ficulties lie in the fact that the Feynman path integral is not an 
integral by means of a countably additive measure (Johnson 
and Lapidus 2000; Fujiwara 2017). As the complexity and 
memory requirements of grid-based partial differential equa-
tion (PDE) solvers increase exponentially as the dimension of 
the system increases, this method becomes impractical in the 
case with high dimensions (Yang et al. 2014a). As an alterna-
tive one can use a Monte Carlo scheme and this is the main 
idea of path integral control (Kappen 2005; Theodorou et al. 
2010; Theodorou 2011; Morzfeld 2015). This path integral 
control solves a class a stochastic control problems with a 
Monte Carlo method for a HJB equation and this approach 
avoids the need of a global grid of the domain of HJB equation 
(Yang et al. 2014a). If the objective function is quadratic and 
the differential equations are linear, then solution is given in 
terms of a number of Riccati equations which can be solved 
efficiently (Kappen 2007a; Pramanik and Polansky 2020a; Pra-
manik 2021a; Pramanik and Polansky 2021a). Although incor-
porate randomness with its HJB equation is straight forward 
but difficulties come due to dimensionality when a numerical 
solution is calculated for both of deterministic or stochastic 
HJB (Kappen 2007a). General stochastic control problem is 
intractable to solve computationally as it requires an exponen-
tial amount of memory and computational time because, the 
state space needs to be discretized and hence, becomes expo-
nentially large in the number of dimensions (Theodorou et al. 
2010; Theodorou 2011; Yang et al. 2014a). Therefore, in order 
to calculate the expected values it is necessary to visit all states 
which leads to the summations of exponentially large sums 
(Kappen 2007a; Yang et al. 2014a; Pramanik 2021a).
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Acemoglu et al. (2020) suggest more restrictive poli-
cies about social interaction with people with advanced 
age reduce the COVID-19 infection for the rest of the 
population. In Acemoglu et al. (2020) the population is 
divided into three age groups: young (22–44), middle-
aged (45–65), and advanced-aged ( 65+ ) where the only 
differences in interactions between these groups come 
from different lock-down policies. Then, they applied a 
deterministic multi-risk SIR model in each group and 
suggested that using a uniform lock-down policy for the 
policymakers targeting stricter lock-down policy to more 
advanced aged population, the fatality rate due to COVID-
19 would be just above 1% (where uniform policy leads to 
a 1.8% fatality rate). Targeted policy reduces the economic 
damage from 24.3 to 12.8% of yearly gross domestic prod-
uct (GDP) (Acemoglu et al. 2020). In addition, targeted 
policies such as changing in norms and laws segregating 
the young population from the older are imposed, fatali-
ties and economic damages because of COVID-19 can be 
substantially low (Acemoglu et al. 2020). At the stages of 
the pandemic, most of the (non-pharmaceutical) interven-
tions are classified into two groups such as testing and 
identification of infected individuals, and social distanc-
ing measures to reduce the transmission probabilities 
(Freiberger et al. 2022). Moreover, these groups of meas-
ures target certain subgroups of a networked population. 
To study such issues, Freiberger et al. (2022) propose an 
extension of the SIR model with additional compartments 
for quarantine and different courses of the disease across 
several network nodes. Freiberger et al. (2022) develop 
an optimal allocation and implement a numerical exam-
ple of three symmetric regions that are prone to an asym-
metric progression of the pandemic. Richard et al. (2021) 
observe that individuals with different ages spread the 
infection differently in a pandemic setting. Furthermore, 
the spread of infection also depends on the number of days 
they have been infected for. In the absence of pharmaceuti-
cal interventions, non-pharmaceutical interventions such 
as physical or social distancing are important factors to 
mitigate the pandemic (Richard et al. 2021). Richard et al. 
(2021) develop a methodology to determine the optimal 
age-stratified control strategy to implement as a function 
of the time. Their model is based on a double continu-
ous structure in terms of host age and time since infec-
tion. By implementing an optimal control theory to this 
model, Richard et al. (2021) identify a minimized solution 
of deaths and costs associated with the implementation of 
the control strategy itself. Bonnans and Gianatti (2020) 
propose a pandemic model where the population is par-
titioned according to constant ages during the pandemic. 
They consider the infection age of the infected population 
to allow a better simulation of the infection propagation 
dependent on infection age. Furthermore, Bonnans and 

Gianatti (2020) investigate about how to estimate the coef-
ficients from data available in the future and introduce a 
confinement variable as control.

The solutions to the optimal “locking down” problem are 
very complicated in the sense that if an economy imposes a 
stricter policy for a long time, it would be able to reduce the 
infection rate to a low level. If a short lock-down is applied 
then, the policy makers are softening the infection rate of 
COVID-19 from touching down the peak (Caulkins et al. 
2021; Pramanik 2022a, b). Another assumption is that infor-
mation regarding spreading of COVID-19 transmission is 
incomplete and imperfect. As a result, one might have multi-
ple non-unique Skiba points or multiple solutions. Rigorous 
studies about Skiba points have been done in Skiba (1978); 
Grass (2012) and Sethi (2019). Aspri et al. (2021) take into 
account a SEIRD model with population divided into sus-
ceptibles, exposed but asymptotic, infected, recovered and 
deceased, and they obtain multiple lock-downs as well as 
Skiba points. Caulkins et al. (2020) suggest if the number 
of infected people required an intensive care exceeds the 
death rate of these patients increases relative to similar peo-
ple who are able to receive appropriate care. A significant 
research on Skiba points can be found in Aspri et al. (2021), 
Caulkins et al. (2020, 2022), and Rowthorn and Maciejowski 
(2020). Rowthorn and Maciejowski (2020) consider a simple 
cost-benefit analysis based on an optimal control theory and 
incorporating the SIR model of disease propagation. They 
compute an optimal path for government intervention under 
a variety of conditions such as a cap on the permitted level 
of infection to avoid overload of the health system, and the 
introduction of a test and trace system. Although there is 
a growing literature on COVID-19 and its socioeconomic 
impacts related to extended lock-down time, length of lock-
down and the appropriate time to lock down have not been 
extensively studied (Caulkins et al. 2021). Furthermore, I am 
using a new Feynman-type path integral approach which has 
an advantage over traditional Hamiltonian–Jacobi–Bellman 
(HJB) approach as the complexity and memory requirements 
of grid-based partial differential equation increases exponen-
tially with the dimension of the system (Yang et al. 2014b; 
Pramanik 2020, 2021a).

One can transform a class of nonlinear HJB equations 
into linear equations by performing a logarithmic transfor-
mation. This transformation stems back to the early days of 
quantum mechanics which was first used by Schrödinger to 
relate HJB equation to the Schrödinger equation (Kappen 
2007b). Because of this linear feature, backward integration 
of HJB equation over time can be replaced by computing 
expectation values under a forward diffusion process which 
requires a stochastic integration over trajectories that can 
be described by a path integral (Kappen 2007b; Pramanik 
and Polansky 2019; Pramanik 2021b). Furthermore, in more 
generalized case like Merton–Garman–Hamiltonian system, 
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getting a solution through Pontryagin’s maximum princi-
ple is impossible and Feynman path integral method gives 
a solution (Baaquie 1997; Pramanik and Polansky 2020b, 
2021b; Pramanik 2021a). Previous works using Feynman 
path integral method has been done in motor control theory 
by Kappen (2005), Theodorou et al. (2010) and Theodorou 
(2011). Applications of Feynman path integral in finance 
have been discussed rigorously in Baaquie (2007). A key 
assumption to get HJB is that the feasible set of action is 
constrained by a set of state and control variables only which 
does not satisfy many economic problems with forward-
looking constraints, where the future actions are also in the 
feasible set of actions (Marcet and Marimon 2019). In the 
presence of a Forward-looking constraints, optimal plan 
does not satisfy Pontryagin’s maximum principle (Yeung 
and Petrosjan 2006) and the standard form of the solution 
ceases to exist because, the choice of an action carries an 
implicit promise about a future action (Marcet and Marimon 
2019). The absence of a standard recursive (Ljungqvist and 
Sargent 2012) formulation complicates the dynamic control 
problem with high dimensions and fails to give a numeri-
cal solution of the system (Yang et al. 2014b; Marcet and 
Marimon 2019).

Another important context regarding COVID-19 infec-
tion is the rate of spread of COVID-19 in a community. The 
question of immunity and susceptibility is critical to the sta-
tistical analysis of infectious disease like COVID-19. Under 
the assumption that everybody in a community is susceptible 
to this pandemic one may be led to think that it is mildly 
infectious (Becker 2017). On the other hand, if everyone 
who had previously acquired immunity, is able to escape 
infection during this pandemic, one should conclude that 
it is highly infectious. Furthermore, the immunity status of 
individuals assessed by the tests on blood, saliva or excreta 
tests, is another determinant about the intensity of the spread 
of this pandemic (Becker 2017). Therefore, I am using net-
work graph analysis to determine the spread of the infection. 
Based on the grouping, I classify the social network directed 
graph and determine the adjacency matrix without existence 
of a loop. Furthermore, an undirected network graph leads 
to a symmetric adjacency matrix (Pramanik 2016; Hua et al. 
2019; Polansky and Pramanik 2021). The diagonal terms 
of this matrix are zero, and the off-diagonal terms have dif-
ferent values based on their weight in relation to the other 
persons in a community. For example, I give higher value 
to parents, spouses and siblings of a person compared to a 
person in distant relationship because if our person of inter-
est gets infected by COVID-19, their parents, spouses and 
siblings are the ones who would be in risk to get infected by 
the pandemic.

Public opinion on taking the vaccine is an important 
factor in determining the spread of COVID-19. When the 
policymakers in the United States have decided to mandate 

vaccination in all the public sector employees, many peo-
ple have gone for a protest and significant number of gov-
ernment employees take leave from their duties which has 
affected negatively toward those sectors such as New York 
Fire and Chicago Police Departments. Reasons for these 
negative opinions of people and employees include the 
belief that a government mandate for vaccination is against 
the civil right, and religious beliefs, respectively. As social 
networks are the results of individual opinions, consensus 
from social networks regarding COVID-19 vaccine man-
dates plays an important role in understanding the spread 
of infection. Although there is research on social networks 
(Jackson 2010; Goyal 2012; Sheng 2020), there is limited 
work on the role of personal opinions in vaccine mandates 
in influencing the spread of the disease. Sheng (2020) for-
malizes network as simultaneous-move game, where social 
links based on decisions are based on utility externalities 
from indirect friends and proposes a computationally feasi-
ble partial identification approach for large social networks. 
The statistical analysis of network formation goes dates back 
to the seminal work by Erdös and Rényi (1959) where a 
random graph is based on independent links with a fixed 
probability (Sheng 2020). Beyond Erdös–Rényi model, 
many methods have been designed to simulate graphs with 
characteristics like degree distributions, small world, and 
Markov type properties (Polansky and Pramanik 2021; Pra-
manik 2021c).

First part of Sect. 2 discusses about different types of 
COVID-19 spread and defines lock-down intensity. Sec-
tion 2.1 describes different stochastic dynamics models and 
their properties, Sect. 2.2 discusses about Bayesian opin-
ion dynamics of a risk-group toward vaccination against 
COVID-19, and Sect. 2.3 discusses the objective function of 
a policy maker. Theorem 1 in Sect. 3 is the main result of the 
paper. A closed form solution of lock-down intensity is cal-
culated at the end of Sect. 3. Section 4 discusses a numerical 
study of the theoretical model, and finally, Sect. 5 contains 
concluding remarks and directions for future research.

Formulation of a pandemic model

In this section, I provide the construction of a stochastic SIR 
model, fatigue dynamics, infection rate dynamics, opinion 
dynamics against COVID-19 vaccination with a dynamic 
social cost as the objective function. Furthermore, I discuss 
how the stochastic programming method can be used to for-
mulate a recursive formulation of a large class of pandemic 
control models with forward-looking stochastic dynamics.

Acemoglu et al. (2020) consider three age groups young 
(22–44 years), middle-aged (45–65 years) and advanced-
aged (65+ years). One can construct K total number age-
groups based on a group’s vulnerability to COVID-19. I 
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assume equal group sizes for simplicity. For finite and con-
tinuous time s ∈ [0, t] define a group vulnerable to COVID-
19 is k such that, k = 1, 2,… ,K with Nk be the initial pop-
ulation of an economy. Furthermore, I determine K large 
enough to ensure every agent in an age-group has homog-
enous behavior. At time s, the age-group (I will use the term 
risk-group instead of age-group because each group is vul-
nerable to COVID-19 at certain extent) k is subdivided into 
those susceptible ( Sk ), those infected ( Ik ), those recovered 
( Rk ) and those deceased ( Dk),

Individuals in risk-group k move from susceptible to 
infected, then either recover or pass away as well as groups 
also interact among themselves.

In Fig. 1 one can see how the state of an individual moves 
in a risk group. Furthermore, the virus spreads exponen-
tially in a risk group as well as across the groups. There-
fore, the COVID-19 transmission follows a dynamic Bara-
basi–Albert model where each new node is connected with 
existing nodes with a probability proportional to the number 
of links that the existing nodes already have (Barabási and 
Albert 1999).

In Fig. 2, I construct two realizations of random COVID-
19 spread where the probability of each node depends on a 
person’s immunity level.

As lockdown and social distancing reduce interaction 
among people, I will treat “lockdown” as a policy. Let for 
risk-group k, Lb

k
(s) is the total number of people willing to 

work before the pandemic and La
k
(s, c) is the total number of 

people willing to work during pandemic which is a function 
of lockdown fatigue (due to COVID-19 deaths in kth risk-
group) is denoted by c(s). Suppose, d1, d2,∈ (0, 1)2 are the 
factors representing the proportions of Lb

k
(s) and La

k
(s, c), 

respectively, who are actually working. Define a new vari-
able ek(s) =

d2L
a
k
(s,c)

d1L
b
k
(s)

 as actual number of people working dur-
ing pandemic as a proportion of those who are supposed to 
work without the presence of COVID-19. At the very early 
stages as people have little knowledge about COVID 

Sk(s) + Ik(s) + Rk(s) + Dk(s) = Nk.

therefore, ek(s) > 1 . Furthermore, due to discoveries of vac-
cines and the incidence of the disease for more than a year, 
people’s opinion against vaccination might lead indifference 
in behavior toward going to work or not. Therefore, ek(s) ↓ 1 . 
In this case, policy makers come to place to restrict 

S

II D

N R

Fig. 1  The direction of the spread of an infection of a risk-group 
where N represents a person is infected and under non-ICU treatment 
while II indicates an individual is infected and is under ICU care

Fig. 2  Two realizations of COVID-19 spread according to Barabasi–
Albert model with 500 vertices
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employment such that ek(s) ∈ (0, 1) . Thus, under policy-
maker’s intervention ek(s) =

d0d2L
a
k
(s,c)

d1L
b
k
(s)

 where, d0 ∈ [0, 1] is 
the parameter which is predetermined by the policymakers 
to restrict employment during pandemic. On the other hand, 
if the policy makers think an emergence of a new variant of 
COVID-19 is random they fix d0 = 1 and let the economy 
move on its way. For finite, continuous time s ∈ [0, t] the 
ratio ek(0) = 1 and ek(t) ∈ [0, 1] is based on the condition of 
-allowed employment and I use it as the stochastic control 
variable.

Stochastic SIR model

Following Caulkins et al. (2021) I assume a state variable 
zk(s) capturing a “lockdown fatigue” through a stochastic 
accumulation dynamics determined by COVID-19 related 
unemployment rate for risk-group k is [1 − ek(s)] . The sto-
chastic fatigue dynamics is given by

where �0 indicates the rate of fatigue accumulation, �1 is the 
rate of exponential decay,

denotes the probability that a link of the new node connects 
to Barabasi–Albert node ki depends on the degree �ki at 
time s (Barabási and Albert 1999), �k

0
 is the diffusion coef-

ficient, z∗
k
 is equilibrium value of zk and Bk

0
 is a 1-dimensional 

Brownian motion. Under the absence of diffusion compo-
nent and under extreme lockdown (i.e., ek(s) = 0 ) this state 
variable takes its maximum value Zmax = �0∕

[
�1p(�ki , s)

]
.

A s s u m p t i o n  1  F o r  t > 0  ,  l e t 
�̂�(s, ek, p, zk) ∶ [0, t] × [0, 1]2 ×ℝ → ℝ and �k

0
(zk) ∶ ℝ → ℝ 

be some measurable function and, for some positive constant 
K1 , zk ∈ ℝ we have linear growth as

such that, there exists another positive, finite, constant K2 
and for a different lockdown fatigue state variable z̃k such 
that the Lipschitz condition,

z̃k ∈ ℝ is satisfied and

(1)
dzk(s) =[�0{1 − ek(s)} − �1zk(s)p(�ki , s)]ds

+ �k
0
[zk(s) − z∗

k
]dBk

0
(s),

p(�ki , s) =
�
�ki(s)

�⎡⎢⎢⎣

J−1�
kj=1

�kj (s)

⎤⎥⎥⎦

|�̂�(s, ek, p, zk)| + |𝜎k
0
(zk)| ≤ K1(1 + |z|),

|�̂�(s, ek, p, zk) − �̂�(s, ek, p, z̃k)| + |𝜎k
0
(zk) − 𝜎k

0
(z̃k)|

≤ K2 |zk − z̃k|,

Remark 1 The Lipschitz condition Assumption 1 guarantees 
that the stochastic fatigue dynamics represented by Eq. (1) 
has a unique solution by Picard–Lindelöf theorem. For the 
other stochastic differential equations in this paper I also 
assume similar assumptions hold such that they also have a 
unique solution. The beauty of this simplistic assumption is 
its powerful intuitive meaning: given a “lockdown fatigue” 
of risk-group k defined as zk(s) , the government implements 
all the abatement measures which make medical sense, 
comes up with a unique “lockdown intensity”.

Assumption 2 Assume (Ω,F,ℙ) is the stochastic basis 
where the filtration {Fs}0≤s≤t supports a 1-dimensional 
Brownian motion Bk

0
(s) = {Bk

0
(s)}0≤s≤t . � 0 is the collection of 

all ℝ-values progressively measurable process on [0, t] ×ℝ 
and the subspaces are

and,

where Ω is the Borel �-algebra and ℙ is the probability 
measure (Carmona 2016). Furthermore, the 1-dimensional 
Brownian motion corresponding to lockdown fatigue for 
risk-group k is defined as

Remark 2 The first part of Assumption 2 defines two sub-
spaces � 2 and �2 . The first subspace � 2 says that all expected 
values of the squared integrals of zk(s) are finite, and if there 
is another random variable Yk(s) then the supremum of abso-
lute squared values are also finite. Since Yk(s) is arbitrary I 
assume it is the upper bound of zk(s) . Along with the prob-
ability space (Ω,F,ℙ) this guarantees the integral form of 
Eq. (1) is a strict contraction in the Hilbert space. Bk

0
 in 

Assumption 2 defines a subspace where absolute value of 
zk(s) is finite with probability measure ℙ almost surely. Com-
bining the above two assumptions make sure that Eq. (1) 
not only have a finite a finite unique solution but also the 
solution exists in the Hilbert space.

Lemma 1 Suppose the initial lockdown fatigue of kth risk 
group zk(0) ∈ L

2 is independent of Brownian motion Bk
0
(s) 

and the drift and the diffusion coefficients �̂�(s, ek, p, zk) and 
�k
0
(zk), respectively, follow Assumptions 1 and 2. Then, the 

lockdown fatigue dynamics in Eq. (1) is in space of the real 

|�̂�(s, ek, p, zk)|2 + |𝜎k
0
(zk)|2 ≤ K2

2
(1 + |z̃k|2).

�
2 ∶=

{
zk ∈ �

0; �∫
t

0

|zk(s)|2ds < ∞

}

�
2 ∶=

{
Yk ∈ �

0; � sup
0≤s≤t

|Yk(s)|2 < ∞

}
,

Bk
0
∶=

{
zk ∈ 𝔽

0; sup
0≤s≤t

|zk(s)| < ∞; ℙ − a.s.

}
.
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valued process with filtration {Fs}0≤s≤t and this space is 
denoted by � 2 . Furthermore, for some constant c0 > 0 , con-
tinuous time s ∈ [0, t] and Lipschitz constants �̂� and �k

0
 , the 

solution satisfies,

Remark 1 Assumptions 1 and 2 along with Lemma 1 imply 
that the “lockdown fatigue” dynamics has a strong unique 
solution in the Hilbert space and the solution has an upper 
bound expressed by Eq. (2).

Proof See in “Appendix”.  ◻

The foundation of pandemic model of our paper is stochas-
tic susceptibility–infection–recovery (SIR) structure. Follow-
ing Acemoglu et al. (2020), new infections are proportional 
to the number are proportional to the number of susceptible 
(S) and infected people (I) of the initial population or �SI . 
Furthermore, I assume that this infection rate � is subject to a 
random shocks (Lesniewski 2020), therefore,

where 𝜃 > 1 to make the function �k(ek, zk) a convex function 
of ek (i.e., 𝜕𝛽k∕𝜕ek > 0 and 𝜕2𝛽k∕𝜕e2

k
> 0 ), 𝛽k

1
, 𝛽k

2
> 0 such 

that 𝜕𝛽∕𝜕zk > 0 , �1 is the minimum level of infection risk 
produced if only the essential activities are open, � ∈ (0, 1) 
is the parameter which determines the degree of effective-
ness of fatigue to spread infection, M is fine particulate 
matter (PM2.5 > 12 μg/m3 ) which is an air pollutant and 
have significant contribution to degrade a person’s health, 
�k
1
(ek(s), zk(s)) is a known diffusion coefficient infection 

dynamics and dBk
1
(s) is one dimensional standard Brown-

ian motion of �(ek, zk) . Therefore, in lack of the presence of 
lockdowns and isolations, the new infection rate of group 
k is

where �kl are parameters which control infection rate 
between two infection groups k and l and, � ∈ [1, 2] allows 
to control the returns of the scale matching (Acemoglu et al. 
2020). For steady state values S∗

k
 , I∗

k
 and R∗

k
 (Rao 2014), the 

risk-group k has the SIR state dynamics as

(2)� sup
0≤s≤t

|zk(s)|2 ≤ c0(1 + �|zk(0)|2) exp (c0t).

(3)

d�k(s) =

[
�k
1
+ �k

2
M

{
ek(s)

� +
�0[zk(s)]

�

�1p(�ki , s)

(
1 − ek(s)

�
)}]

ds

+ �k
1
(ek(s), zk(s))MdBk

1
(s),

Sk

∑
l �

kl(s)Il(s)�∑
l �

l(s)
�
Sl(s) + Il(s) + Rl(s)

��2−� ,

where � is birth rate, 1∕[1 + rI(s)] is a measure of inhibition 
effect from behavioral change of a susceptible individual 
in group k, � is the natural death rate, � is the rate at which 
recovered person loses immunity and returns to the suscep-
tible class and � is the natural recovery rate of the infected 
individuals in risk-group k. �k

2
 , �k

3
 and �k

4
 are assumed to be 

real constants and are defined as the intensity of stochastic 
environment and, Bk

2
(s) , Bk

3
(s) and Bk

4
(s) are standard one-

dimensional Brownian motions (Rao 2014). It is important 
to note that in the dynamic systems (4) is a very general case 
of SIR model.

For a complete probability space (Ω,F,ℙ) with filtra-
tion starting from {Fs}0≤s≤t , satisfying Assumptions 1 and 
2. Let

where the norm |Zk(s)| =
√

z2
k
(s) + S2

k
(s) + I2

k
(s) + R2

k
(s) . 

Suppose, C2,1(ℝ4 × (0,∞),ℝ+) be a family of all nonnega-
tive functions �(s,Zk) defined on ℝ4 × (0,∞) so that they 
are continuously twicely differentiable in Zk and once in s. 
Consider a differential operator D associated with 4-dimen-
sional stochastic differential equation for risk-group k

such that

where

and,

(4)

dSk(s) =

{
�Nk(s) − �k(ek(s), zk(s))

Sk(s)Ik(s)[
1 + rIk(s)

]
+ �Nk(s)

− �Sk(s)

+ �Rk(s)

}
ds + �k

2

[
Sk(s) − S∗

k

]
dBk

2
(s),

dIk(s) =

{
�k(ek(s), zk(s))

Sk(s)Ik(s)[
1 + rIk(s)

]
+ �Nk(s)

− (� + �)Ik(s)

}
ds

+ �k
3

[
Ik(s) − I∗

k

]
dBk

3
(s),

dRk(s) =
{
�Ik(s) − [� + �]ek(s)Rk(s)

}
ds + �k

4

[
Rk(s) − R∗

k

]
dBk

4
(s),

Zk(s) =
[
zk(s), Sk(s), Ik(s),Rk(S)

] ≜ [h1(s), h2(s), h3(s), h4(s)],

(5)dZk(s) = �k(s,Zk)ds + �k(s,Zk)dB(s),

D =
�

�s
+

4∑
j=1

�kj
(s,Zk)

�

�Zkj

+
1

2

4∑
j=1

4∑
j�=1

[[
�
T
k
(s,Zk)�k(s,Zk)

]
jj�

�2

�ZkjZkj�

]
,

�k =

⎡
⎢⎢⎢⎢⎣

�0(1 − ek) − �1zkp(�ki )

�Nk − �k(ek, zk)
SkIk

(1+rIk)+�Nk

− �Sk + �Rk

�k(ek, zk)
SkIk

[1+rIk]+�Nk

− (� + �)Ik

�Ik − (� + �)ekRk

⎤⎥⎥⎥⎥⎦
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Now let D acts on function � ∈ C2,1(ℝ4 × (0,∞);ℝ+) , such 
that

where T represents a transposition of a matrix.

Proposition 1 For any given set of initial values of risk-
group k, {zk(0), Sk(0), Ik(0),Rk(0)} ∈ ℝ

4 with Assumptions 1 
and 2 there exists a unique solution {zk(s), Sk(s), Ik(s),Rk(s)} 
on s ∈ [0, t] and will remain in ℝ4 under incomplete and 
perfect information, where Bk = Bk

0
= Bk

2
= Bk

3
= Bk

4
.

Proof See in “Appendix”.  ◻

For theoretical purpose I rewrite theses equations as

Furthermore, it is assumed to be the System (6) follows 
Assumptions 1 and 2.

Opinion dynamics of a risk‑group k 
toward vaccination against COVID‑19

This section will discuss about the spread of kth risk-group’s 
opinion toward vaccination against COVID-19 in the soci-
ety. In the previous section I assume each risk-group is 
constructed such a way that each agent in that group has 
homogeneous opinions. Heterogeneous opinions need to 
be addressed by a multi-layer social-network which would 
be an interesting topic for future research and currently 
is beyond the scope of this paper. As there are Nk agents 
in each of the K risk-groups therefore, total population is 
KNk = N < ∞ . I assume that all risk-groups are connected 
to each other via an exogenous, directed network represented 
by graph G ⊆ N × N  which also represents how one risk-
group spreads its beliefs about vaccination against COVID-
19 to other risk-groups. For example, If risk-group k gives 
its opinion to risk-group l, then I write k → l or (k, l) ∈ G . 
Furthermore, if risk-group l gets different opinion about 
COVID-19 vaccination from risk-group k more often then, 
k and l are group-neighbors Nk(G) (Board and Meyer-ter 

�k =

⎡⎢⎢⎢⎣

�k
0
(zk − z∗

k
) 0 0 0

0 �k
2
(Sk − S∗

k
) 0 0

0 0 �k
3
(Ik − I∗

k
) 0

0 0 0 �k
4
(Rk − R∗

k
)

⎤⎥⎥⎥⎦
.

D�(s,Zk) =
�

�s
�(s,Zk) +

�

�Zk

�(s,Zk)

+
1

2
trace

{
�
T
k
(s,Zk)

[
�2

�ZT
k
�Zk

�(s,Zk)

]
�k(s,Zk)

}
,

(6)

dSk(s) =�1(s, ek, zk, Sk, Ik,Rk)ds + �k
5
(Sk)dB

k
2
,

dIk(s) =�2(s, ek, zk, Sk, Ik)ds + �k
6
(Ik)dB

k
3
,

dRk(s) =�3(s, ek, Ik,Rk)ds + �k
7
(Rk)dB

k
4
.

Vehn 2021). As COVID-19 is known less than 2 years to 
us, people have incomplete information about this pandemic 
and this leads to an incomplete information about the social 
network under COVID-19. This information is captured by 
finite signals �k ∈ Xk and a joint prior distributions over 
networks and signal profiles �(G,�k) (Board and Meyer-ter 
Vehn 2021). Now a random network G = (N,X, �) . Consider 
following four cases:

• Deterministic social network G . Following Board and 
Meyer-ter Vehn (2021) signal spaces about the opinion 
of COVID-19 are assumed to be degenerate, |Xk| = 1 , and 
the prior � assigns probability 1 to G . Although complete 
information eases the situation, this is rare in current 
COVID-19 situation. As this pandemic is new, even pol-
icy makers do not have complete information. For exam-
ple, at the middle of 2021 policymakers (such as Centers 
for Disease Control and Prevention (CDC)) announced 
that fully vaccinated people are completely safe against 
this pandemic. Now because of Omicron variant above 
350,000 people are infected daily by January 2022. As a 
result, people lose trust on policy-makers and make their 
opinions based on their beliefs and faiths. This makes the 
learning dynamics about COVID-19 extremely compli-
cated. This motivates to study random opinion network 
about pandemic with incomplete information.

• Directed opinion network with finite types � ∈ Γ where, 
for an individual risk-group k, first I independently draw 
a finite type � ∈ Γ assuming any distribution with full 
support. After choosing kth risk-group’s opinion types � 
against COVID-19 vaccination that risk-group randomly 
stubs each type � ′ . Then, during communication, type � ′ 
randomly stubs to type � ′ individual risk-groups. Now the 
individual risk-group knows total number of outlinks of 
each type in the sense that, what are their group-neigh-
bor’s stand toward COVID-19 vaccination. The outlink 
at time s is denoted as a vector d = (s, d� � )� � ∈ ℕ

� � which 
is also realization of more generalized random vector 
D� = (s,D� ,� � )� � with expectation at time s is �s[D� ,� � ] 
where D = (s,D� ,� � )� ,� � is a time dependent or dynamic 
degree distribution.

• Indirected opinion spread network with binary links and 
triangles. Following Board and Meyer-ter Vehn (2021) 
kth individual risk-group’s spreading their opinions about 
vaccination against COVID-19 might have d̂ binary stubs 
and d̃ pairs of triangles.

  From Fig. 3 it is clear that d̂ and d̃ are the subset of 
the above graph. For example, if we consider individual 
risk-group 1, then from the first panel it has d̂ = 3 and in 
the second panel the same risk-group has two triangular 
stubs. We further assume, every individual risk-group 
knows their total number of binary and triangular stabs. 
In the world of COVID opinion spreading, if one indi-
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vidual risk-group shares their opinions to another risk-
group very close to it then, the network connection might 
be triangular. On the other hand if individual risk-group 
k spreads its opinion to some stranger (i.e., another risk-
group far from risk-group k’s opinions), it would be one 
time binary information transition.

• Microscopic interaction among risk-groups. A kinetic 
model for opinion spread toward vaccination against 
COVID-19 (Cordier et al. 2005; Toscani et al. 2006). 

Let �k denotes opinion of individual risk-group k and 
it varies continuously between −1 and 1. Here −1 rep-
resents an individual risk-group k’s extremely nega-
tive opinion for getting vaccinated against COVID-
19, whereas 1 stands for completely opposite extreme 
opinion for COVID-19 vaccination. Following Toscani 
et al. (2006) I assume that directed and indirected inter-
actions cannot destroy the bounds, which corresponds 
to imply that extreme opinions cannot be crossed.

Fig. 3  Two networks of 
individual risk-group k such as 
binary and triangular stubs at 
time s ∈ [0, t]

1

2
3

4

5
6

7

8 9

10

11 12

13

14

15

16

17

18

(a) Binary stub where D=1 for individual risk-groups {2,3,5,6,9,11,12,13,14,15,16,17,18}, D=3 for individual
risk-group 1, D=4 for individual risk-groups {7,8,10} and D=6 for individual risk-group 4.
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3

4

5

6

7

8

9

(b) Here every individual risk-group has D-triangular stubs.



116 Theory in Biosciences (2023) 142:107–142

1 3

At the beginning of the interaction risk-group k seeks 
to learn about the severity of COVID-19 with its own 
belief vk ∈ {L,H,�k} = {0, 1, [−1, 1]} , where L stands 
for low severity of the disease and H stands for high 
severity. At s = 0 and for a fixed belief against getting 
vaccinated, all the risk-groups share a common prior 
Pr(vk = H|�k) = p0 ∈ (0, 1) , independent of network G and 
signals Xk . As the pandemic spreads, individual risk-group 
k develops the need of information about the disease and 
start interacting at time sk ∼ U[0, 1] (the uniform distribution 
where sk is time-quantile during the presence of the pan-
demic). Based on the handling of the pandemic of the group-
neighbors risk-group k updates its probabilities of beliefs 
about pandemic to Pr(�∗

k
) = p∗

k
 , such that Pr(�∗

k
= −1) = 0 

and Pr(�∗
k
= 1) = 1 . In order to get information, risk-group 

k incurs some cost ck ∼ F[c, c̄] , where F is the distribution 
function with bounded density function f. risk-group k only 
gets exposure to the pandemic iff vk = {L,�k} . If individual 
risk-group k does care about the severity of the disease, it 
interacts with other risk-groups frequently and transmits 
COVID-19. Interaction times sk and the cost of disease 
information ck are private information, independent within 
individual risk-groups in Sk, Ik and Rk.

If individual risk-group k finds vk = {L,�k} and does not 
mind to interact with other risk-groups, its utility becomes 1. If 
risk-group k finds vk = {H,�k} then, it is reluctant to interact 
with other risk-groups. In this case there are two possibilities, 
if unknowingly risk-group k gets infected by the virus, its util-
ity becomes 0 and furthermore, if individual risk-group k gets 
infected knowingly, its utility goes down to −U . Finally, if risk-
group k sees its group-neighbor gets infected by the virus but 
asymptotic, its posterior is pk = 1 and does not mind to inter-
act. If risk-group k gets infected by COVID-19 unknowingly, 
the posterior becomes pk ≤ p0 . Assume U ≥ p0∕(1 − p0) , 
which leads to an adoption to the pandemic is a dominated 
strategy. Furthermore, if (pk − ck) ≥ 0 , then individual risk-
group k does not mind to interact with other risk-groups 
which might lead to get transmitted with the disease. On the 
other hand, if (pk − ck) < 0 , then individual risk-group k finds 
vk − {H,�k} and tries to isolate from other risk-groups.

Example 1 Without loss of generality assume two independ-
ent risk-groups k and l who are interacted by a directed graph 
such that k → l . Before interaction, risk-group k and l have 
believes about COVID-19 vaccination as �k and �l , respec-
tively, where (�k,�l) ∈ [−1, 1]2 = I2 . Denote Prs(L|�k) 
as the probability of individual risk-group k’s willingness 
to contact with other risk-groups at time s when it expects 
the severity of pandemic is less or L. Risk-group k starts 
its communication at uniform time s ∈ [0, t] . As it is not 
rational for risk-group k to interact with other risk-groups 
when vk is H, it is sufficient to keep track of the interac-
tion probability conditional on vk = L . Furthermore, as 

risk-group k does not mind to interact as long as ck ≤ p0 
then �[Prs(L|�k)]∕�k = Pr(k is indifferent to interact |�k) = F(p0) , 
which is independent of time. Furthermore, the interaction 
of opinions among risk-groups k and l follow the stochastic 
dynamic systems represented by

where � ∈ (0, 1∕2) is the compromise propensity, the func-
tion Q(.) ∈ [0, 1] with �Q∕��k ≤ 0 represents the local rel-
evance of compromise (Toscani et al. 2006). It is important 
to know that, if ek(s) ↓ 0 then there is a huge unemployment 
in the economy which means the incidence of pandemic is 
very severe. Under this case a difference in opinion (�k − �l) 
does not affect the dynamic system and every risk-group needs 
to follow the policymakers’ protocols. On the other hand, if 
ek(s) ↓ 1 then, opinion difference takes a major role to explain 
the above stochastic opinion dynamical systems. Finally �k

8
(s) 

and �i
9
(s) are the opinion diffusion coefficients with Bk

5
(s) and 

Bl
6
(s) as their corresponding Brownian motions.
As risk-group k interacted first, as a second mover indi-

vidual risk-group l learns about the effect of pandemic from 
risk-group k. Furthermore, if risk-group l notices that, risk-
group k does not mind interacting with other risk-groups, then 
k thinks the disease is not fatal and is not reluctant to interact 
with others and, vice versa. Therefore, individual risk-group l’s 
posterior probability that COVID-19 is not severe is

Individual risk-group l does not mind to interact with other 
risk-groups if cl ≤ p

[
Prs(L|�k(s))

]
 . As Prs(L|�k(s)) changes 

based on the infection rate of the community, individual risk-
group l’s optimistic approach to do social contact continues 
but the pessimistic approach kicks in only if Prs(L|�k(s)) 
is starting to decrease. Therefore, individual risk-group l’s 
tolerance rate is

By denoting Prs(L|�k(s)) = Wk(s) and considering the sto-
chastic opinion dynamics I define a stochastic differential 
equation

d�k(s) =
{
�k(s) − �ek(s)Q(|�k(s)|)

[
�k(s) − �l(s)

]}
ds

+ �k
8
ek(s)

[
�k(s) − �l(s)

]
dBk

5
(s),

d�l(s) =
{
�l(s) − �el(s)Q(|�l(s)|)

[
�l(s) − �k(s)

]}
ds

+ �l
9
el(s)

[
�l(s) − �k(s)

]
dBl

6
(s),

p
[
Prs(L|�k(s))

]
=

{
1 −

[
Prs(L|�k(s))

]}
p0[

1 − Prs(L|�k(s))
]
p0 + (1 − p0)

.

𝜕[Prs(L|𝜔l)]

𝜕l

= 1 − Pr(l is reluctant to interact |𝜔k)

= 1 − Pr(k is reluctant to interact |𝜔k)

× Pr(l is indifferent to interact|k is reluctant to interact,𝜔k)

= 1 −
[
1 − Prs(L|𝜔k(s))

][
1 − F

(
p
[
Prs(L|𝜔k(s))

])]

=∶ Φ̂
[
Prs(L|𝜔k(s))

]
.
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Without loss of generality Eq. (7) becomes,

all the symbols have their usual meanings.

Let G = (N,X, �) be a random network with signal pro-
file �(G,�k) . Like in the example above I assume individual 
risk-group l does not mind interacting socially with prob-
ability Prs(L|�l) = Wl(s) . As risk-group l does not have any 
prior knowledge about COVID-19 transmission network, its 
decision strictly depends on the actions of other risk-groups’ 
willingness to do so in the community G with signals � . Let 
Wl,G,�,�l,�l

(s) be a social interaction function for risk-group l 
subject to (G,�l,�l) after expectation over other risk-groups’ 
time of social interaction is sk with cost ck . After taking expec-
tation on (G,�−l,�−l) , consider

be risk-group l’s interim social interaction function such that 
its signal is �l and its own opinions �l . Risk-groups under 
Bayesian social network are willing to do social interaction 
if their group-neighbors are not reluctant to interact with 
others. Suppose, at least one of individual risk-group l’s 
neighbor has the interim social interaction function

such that cl ≤ pl . To get a proper expression of Wl,G,�−l,�−l
(s) 

assume individual risk-group l first observes whether their 
group-neighbors are engaged in social interactions. If they 
interact then risk-group l gets the information that the pan-
demic is not severe and makes pl = 1 . On the other hand, 
if risk-group l finds out their neighbors are keeping social 
distancing then risk-group l will try to get more information 
if their opinions against the COVID-19 vaccination are very 
strong such that cl ≤ c̄l,𝜒l,𝜔l

∶= pl , where c̄l,𝜒l,𝜔l
 is some arbi-

trary cut-off cost depending on �l . If individual risk-group l 
finds out that the transmission of the pandemic is very high, 
it will put pl = 0 . Therefore,

(7)

dWk(s) = �4

[
�k(s) − �ek(s)Q(|�k(s)|)

[
�k(s) − �l(s)

]]
ds

+ �k
10
[ek(s)

[
�k(s) − �l(s)

]
dBk

7
(s)].

(8)dWk(s) = �4(s, ek,�k,�l)ds + �k
10
(s, ek,�k,�l)dB

k
7
(s),

Wl,�−l,�−l
(s) ∶=

∑
G,�−l,�−l

�(s,G,�−l,�−l|�l,�l)Wl,G,�−l,�−l
(s)

W �
l,�−l,�−l

(s) ∶=
∑

G,�−l,�−l

�(s,G,�−l,�−l|�l,�l)W
�
l,G,�−l,�−l

(s),

(9)

dWl,�−l,�−l
(s)

dl

= 1 −
{
(1 −Wl,G,�−l,�−l

(s))(1 − F(p(Wl,�−l,�−l
(s))))

}

=∶ �
{
1 − F(p(Wl,�−l,�−l

(s)))
}
.

Lemma 2 For individual risk-groups k and l, the pair of 
social interaction functions 

(
Wk,�−k ,�−k

(s),Wl,�−l,�−l
(s)

)
 on 

space F = (s,G,N,X, �, I) with conditional probabilities 
Prs(H|�k) = 1 and Prs(H|�l) = 1 in a same community. Then 
under non-intersecting graph G , different opinions and for a 
function h ∈ F we have total social interaction variation as

where the infimum is taken over all finite resolutions of F 
into pairs of non-intersecting subgraphs Gi with I > 1.

Proof See in “Appendix”. Lemma 2 implies that if social 
interaction function has bigger network (i.e., G ), then

will be small and vice versa. Therefore, if individual risk-
group l observes higher proportion of its neighbors are doing 
social interactions, they will do so. Furthermore, norm of 
social interaction is always less than unity. Therefore, the 
most extreme opinions against COVID-19 vaccination do 
not exist in this model.  ◻

Suppose, � = {�k}k∈K represents the states of individual 
risk-group k, where �k ∈ {q̄, q̂, q̃} . If q̄ = � then risk-group 
k does not enter the COVID-19 network. If �k = q̂ then risk-
group k has entered the network but reluctant to do social 
interactions and finally, if �k = q̃ , then risk-group k is in the 
network and is not maintaining social distance. Under the 
last case, Prs(L|�k) ≈ 1 . Let ΩE = {0, 1}E be the relevant 
finite sample space, containing configurations that allocate 
zeros and ones to the edge of G , where E = edge of finite 
pandemic network G (Grimmett 1995). Consider � ∈ ΩE the 
following condition holds,

The random cluster measure on COVID-19 social network 
G with signal � and state profile � is a probability measure 
at time s ∈ [0, t]

|||
|||
(
Wk,𝜒−k𝜔−k

(s) −Wl,𝜒−l,𝜔−l
(s)

)|||
|||

= sup
{|||

(
Wk,𝜒−k ,𝜔−k

(s, h) −Wl,𝜒−l,𝜔−l
(s, h)

)|||
}

=1 − sup

ĥ∈
(
Wk,𝜒−k ,𝜔−k

(s),Wl,𝜒−l ,𝜔−l
(s)

) ĥ(F)

=1 − inf

I∑
i=1

(
Wk,𝜒−k ,𝜔−k

(s,Gi) ∧Wl,𝜒−l,𝜔−l
(s,Gi)

)
,

|||
|||
(
Wk,�−k�−k

(s) −Wl,�−l,�−l
(s)

)|||
|||

�(E) =

{
1, if edge E is open

0, otherwise.

�G,�,�(s, �) =
1

ΥG,�,�

{∏
E∈�

��(E)(1 − �)1−�(E)

}
��(�),
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where �(�) is the total number of open components of � , � is 
the space of all edges of the graph G and, ΥG,�,� is a normal-
izing factor (or, partition function ) such that,

A partial ordering under ΩE  given by � ≤ �′ iff 
�(E) ≤ ��, ∀E ∈ � . A function ℧ ∶ ΩE → � is called 
increasing if ℧(�) ≤ ℧(��), ∀ � ≤ �� . A is an increasing 
event if its simple function 1A is increasing. Furthermore, 
if � be a probability measure and Wk,�−k�−k

(s) be a random 
response function then, �

[
Wk,�−k�−k

(s)
]
 is the conditional 

expectation of Wk,�−k�−k
(s) under � (Grimmett 1995). In pan-

demic social network if ℧ and Wk,�−k�−k
(s) are increasing on 

the sample space ΩE , then

Above inequality is called as Fortuin–Kasteleyn–Ginibre 
(FKG) inequality (Grimmett 1995) of pandemic social net-
work. Let ℤ� be a �-dimensional hyperbolic Lattice such that 
risk-groups (i.e., vertices) y1 and y2 both are in it. For E ⊆ � , 
Fk

E
 is the �-field such that F = Fk

E
 (Grimmett 1995). Λ ⊆ ℤ

𝛾 
is a box such that,

where [y�
1
, y

�

2
] is defined as [y�

1
, y

�

2
] ∩ ℤ . The reason behind 

choosing a finite box Λ inside ℤ� is under the presence of 
COVID-19 risk-groups are not able to move across regions. 
Furthermore, moving around the globe is much harder 
because different countries have different restriction meas-
ures, which leads risk-groups to stay at home. As after cer-
tain point of time the COVID-19 infections go down, risk-
groups would do social interactions locally. On the other 
hand, if a COVID-19 restriction stays too long, risk-groups 
would reluctant to stay at home. In this paper I am ruling 
out this scenario. The box Λ generates a sub-social network 
of lattice � with risk-group k with Sk, Ik and Rk combined as 
set Λ with the set of network connections �Λ . Define the �
-field at time s outside the network of Λ as FΛ = F

�⧵�Λ
 and 

F = ∩ΛFΛ as outside �-field.

Definition 1 A probability distribution � on G = (N,X, �) 
with filtration F  is called a random opinion cluster toward 
COVID-19 for three states � and signal profiles � if

We denote this set as ℝ�,�.

ΥG,�,� =
∑
�∈ΩE

{∏
E∈�

��(E)(1 − �)1−�(E)

}
��(�).

�G,�,�[℧,Wk,�−k�−k
(s)] ≥ �G,�,�(℧) × �G,�,�[Wk,�−k�−k

(s)].

Λ =

Γ∏
�=1

[y
�

1
, y

�

2
],

�(A|FΛ) = �Λ,�,�(A), � − a.s., for every A ∈ F and boxes Λ.

Definition 2 A probability distribution � on G = (N,X, �) 
with filtration F  is called a limit random opinion cluster 
toward COVID-19 for three states � and signal profiles � 
if ∃ � ∈ Ω and an increasing sequence of opinion boxes 
{Λn}n≥1 such that

where Λn → ℤ
� as n → ∞ (Grimmett 1995).

Furthermore, if the structure of network in a box Λ is same 
(i.e., �k

Λ,�,�
= �l

Λ,�,�
 ), then for risk-groups k and l in the soci-

ety are in ℝ�,� and following Grimmett (1995) |ℝ�,�| = 1.

Proposition 2 Let for any random network G with the signal 
profile � and for � = �3 = {q̄, q̂, q̃} and social interactions of 
risk-group k as Wk,�−k ,�k

 exists and definitions 1 and 2 holds. 
Then there exists a unique random opinion distribution.

Proof See in “Appendix”. Proposition 2 guarantees that if 
risk-group k has imperfect and complete information then 
under �3 the random network has a unique solution.  ◻

Objective function

So far I have discussed about the stochastic dynamic systems 
of fatigue ( zk ), infection rate ( �k ), multi-risk SIR ( Sk, Ik and 
Rk ) and opinion of risk-group k ( �k ) with its probability 
conditioned on less severity as Wk . This section will discuss 
about the objective of the policy makers subject to the sto-
chastic dynamics discussed above.

Let Hk(s) be the total number individuals of risk-group k 
who need emergency care at time s. Hence, Hk(s) = ȟIk(s) , 
where ȟ ∈ (0, 1) is some given proportionality constant 
available at time s (Acemoglu et al. 2020). Therefore, total 
number of people in K risk-groups who need emergency care 
is H(s) =

∑K

k=1
Hk(s) . Following Acemoglu et al. (2020) I 

assume that probability of death such that the person was 
under emergency care as �k(s) = �k[H(s)] , for some given 
function �k . In this analysis a cost of death or value of life is 
included as �̆�k (Acemoglu et al. 2020). By value of life I mean 
value of increasing the survival probabilities marginally due 
to COVID-19. In other words, one can think about the impact 
of death on a family in risk-group k in terms of monetary loss 
and emotional losses of that person’s family as well as risk-
group k. A policy maker considers this cost as non-pecuniary 
cost of death and is denoted by �̆�kȟ𝜛k(s)Ik(s) as ȟ𝜛k(s)Ik(s) 
is defined as the flow of death.

I assume that the detection of a person infected by COVID-
19 is imperfect as well as their isolation status. Without loss 

�
�

Λn,�,�
→ �, as n → ∞,



119Theory in Biosciences (2023) 142:107–142 

1 3

of generality assume �k be the constant probability that an 
infected person in risk-group k does not need an emergency 
care and based on that person’s F(p0)-value risk-group k would 
decide whether it will isolate that person or not. If F(p0) ↓ 1 
then individual in risk-group k will not be isolated with prob-
ability �kF(p0) or simply �k . On the other hand, if F(p0) ↓ 0 , 
individual in risk-group k will be isolated with probability 
�kF(p0) . Let 𝜏k be the probability where an individual in risk-
group k is detected and need an emergency care for recovery. 
Hence, F(p0) is not as powerful as the case for those who 
do not need ICU care. Therefore, I restrict the upper limit of 
F(p0) as F̂p < 1∕2 . This part is some extension of Acemoglu 
et al. (2020) where individual opinion of risk-group k was not 
considered. Therefore, the probability that a person is infected 
by COVID-19, detected and isolated in risk-group k is

In the presence of Omicron, a completely vaccinated and 
boosted person in risk-group k would have some probability 
𝜏k to get infected by COVID-19 again. Therefore, I assume 
that the probability of a recovered person not to get infected 
by COVID-19 for risk-group k is (1 − 𝜏k) . Due to imperfect 
testing assume a fraction �̆�k of recovered person in risk-group 
k with probability (1 − 𝜏k) are allowed to join the workforce 
freely. Remaining part of the recovered population is either 
not identified (Acemoglu et al. 2020) or because of the trau-
matic experience their F(p0) is very low and reluctant to join 
in the labor force. Therefore, the employment for somebody 
in kth risk-group at time s is given by

A policymaker has to control {ek(s)}k∈K for all s ∈ [0, t] 
where the dynamical system follows Eqs. (1), (4) and (7). 
Planner’s objective function is to minimize the expected 
present value of the social cost conditioned on the filtration 
�
0 as

ȟ𝜏kF̂p + (1 − ȟ)𝜏kF(p0).

(10)
Ek(s) =ek(s)

{
Sk(s) +

[
1 − ȟ𝜏kF̂p − (1 − ȟ)𝜏kF(p0)

]

Ik(s) + (1 − �̆�k)𝜏kRk(s)

}
+ �̆�k(1 − 𝜏k)Rk(s).

(11)

H𝜃 ∶ H
k
𝜃
(s, ek, zk, Sk, Ik,Rk,Wk)

= min
{ek ,zk ,Sk ,Ik ,Rk ,Wk}

�0

{
∫

t

0

[
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]

+�̆�kȟ𝜛k(s)Ik(s)

]
ds
||||�

0

}
,

where 𝜃k > 0 is some known penalization constant, � ∈ (0, 1) 
is time independent discount rate and �0 is the condi-
tional expectation at time 0 on the initial state variables 
zk(0), Sk(0), Ik(0),Rk(0) and Wk(0) with filtration � 0.

Assumption 3 Following set of assumptions regarding the 
objective function is considered:

• {Fs} takes the values from a set ℨ ⊂ ℝ
5K . {Fs}

t
s=0

 is an 
exogenous Markovian stochastic processes defined on the 
probability space (ℨ∞, 𝔽

0,ℙ).
• For all {ek(s), zk(s), Sk(s), Ik(s),Rk(s),Wk(s)} , there exists 

an optimal lock intensity {ek(s)}ts=0 , with initial condi-
tions zk(0), Sk(0), Ik(0),Rk(0) and Wk(0) , which satisfy the 
stochastic dynamics represented by Eqs.  (1), (4) and (7) 
for all continuous time s ∈ [0, t].

• T h e  f u n c t i o n 
exp{−𝜌s}

∑K

k=1
𝜃kzk(s)

�
Nk − Ek(s)

�
+ �̆�kȟ𝜛k(s)Ik(s) 

is  uniformly bounded,  continuous on both 
the state and control spaces and, for a given 
{ek(s), zk(s), Sk(s), Ik(s),Rk(s),Wk(s)} , they are � 0-meas-
urable.

• T h e  f u n c t i o n 
exp{−𝜌s}

∑K

k=1
𝜃kzk(s)

�
Nk − Ek(s)

�
+ �̆�kȟ𝜛k(s)Ik(s)  i s 

strictly convex with respect to the state and the control 
variables.

• For all {ek(s), zk(s), Sk(s), Ik(s),Rk(s),Wk(s)} , there exists a 
k-interior lock intensity {ẽk(s)}ts=0 , with initial conditions 
zk(0), Sk(0), Ik(0),Rk(0) and Wk(0) satisfy Eqs. (1), (4) and 
(7), such that 

 and, for k ≠ l

• In addition to the above argument, there exists an 𝜀 > 0 
such that for all {ek(s), zk(s), Sk(s), Ik(s),Rk(s),Wk(s)} , 

�0

{[
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]

+�̆�kȟ𝜛k(s)Ik(s)

]||||�
0

}
> 0,

�0

{[
exp{−𝜌s}

K∑
k=1

𝜃kz̃k(s)
[
Nk −

�Ek(s)
]

q+�̆�kȟ𝜛k(s)Ĩk(s)

]||||�
0

}
≥ 0.

�0

{[
exp{−𝜌s}

K∑
k=1

𝜃kz̃k(s)
[
Nk −

�Ek(s)
]

+�̆�kȟ𝜛k(s)Ĩk(s)

]||||�
0

}
≥ 𝜀.
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Definition 3 For individual risk-group k optimal state vari-
ables z∗

k
(s), S∗

k
(s), I∗

k
(s),R∗

k
(s) and, W∗

k
(s) and their continuous 

optimal lock intensity e∗
k
(s) constitute a stochastic dynamic 

equilibrium such that for all s ∈ [0, t] the conditional expec-
tation of the objective function is

with the dynamics explained in Eqs. (1), (4) and (7), where 
�
0
∗
 is the optimal filtration starting at time 0 such that, 

�
0
∗
⊂ �

0.

Definition 4 Suppose, zk, Sk, Ik,Rk and Wk are in a non-
homogeneous Fellerian semigroup on continuous time 
interval [0,  t] in ℝ6K . The infinitesimal generator ℌ of 
{zk, Sk, Ik,Rk,Wk} is defined by,

for {zk, Sk, Ik,Rk,Wk} ∈ ℝ
5K  where Hk

�
∶ ℝ

6K → ℝ is a 
C2
0
(ℝ6K) function, {zk, Sk, Ik,Rk,Wk} has a compact support, 

and at {z̄k, S̄k, Īk, R̄k, W̄k} the limit exists where �s represents 

�0

{
�

t

0

[
exp{−𝜌s}

K∑
k=1

𝜃kz
∗
k
(s)

[
Nk − E∗

k
(s)

]

+�̆�kȟ𝜛k(s)I
∗
k
(s)

]
ds
||||�

0
∗

}

≤ �0

{
�

t

0

[
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]

+�̆�kȟ𝜛k(s)Ik(s)

]
ds
||||�

0

}
,

ℌH
k
𝜃
(ek, zk, Sk, Ik,Rk,Wk)

= lim
s↓0

�s[H
k
𝜃
(ek, zk, Sk, Ik,Rk,Wk)] −H

k
𝜃
(ek, z̄k, S̄k, Īk, R̄k, W̄k)

s
,

individual risk-group k’s conditional expectation on states 
{zk, Sk, Ik,Rk,Wk} at continuous time s. Furthermore, if the 
above Fellerian semigroup is homogeneous over time, then 
ℌH

k
�
 is exactly equal to the Laplace operator.

As Hk
�
 is a � 0-measurable function depending on s, there 

is a possibility that this function might have very large 
values and may be unstable. In order to stabilize the state 
variables zk, Sk, Ik,Rk,Wk I take the natural logarithmic 
transformation and define a characteristic like operator as 
in Definition 5.

Definition 5 For a Fellerian semigroup {zk, Sk, Ik,Rk,Wk} 
and for a small time interval [s, s + �] with � ↓ 0 , define a 
characteristic-like operator where the process starts at s is 
defined as

for {zk, Sk, Ik,Rk,Wk} ∈ ℝ
5K  , where Hk

�
∶ ℝ

5K → ℝ is a 
C2
0
(ℝ5K) function, �s represents the conditional expectation 

of state variables {zk, Sk, Ik,Rk,Wk} at time s, for 𝜀 > 0 and 
a fixed Hk

�
 the sets of all open balls of the form B�

(
H

k
�

)
 

contained in B (set of all open balls) and as � ↓ 0 then 
log�s(�

2) → ∞.

Policy maker’s objective is to minimize the objective 
function expressed in Eq. (11) subject to the dynamic sys-
tem represented by Eqs. (1), (6) and (8). Following Pra-
manik (2020) the quantum Lagrangian of risk-group k can 
be expressed as

ℌ̂H
k

𝜃
(e

k
, z

k
, S

k
, I

k
,R

k
,W

k
)

= lim
𝜀↓0

log�
s
[𝜀2 Hk

𝜃
(e

k
, z

k
, S

k
, I

k
,R

k
,W

k
)] − log[𝜀2Hk

𝜃
(e

k
, z̄

k
, S̄

k
, Ī

k
, R̄

k
, W̄

k
)]

log�
s
(𝜀2)

,

(12)

Lk(s, 𝜌, 𝜃k, �̆�k, ȟ,𝜛k, ek, zk, Sk, Ik,Rk,Wk)

= �s

{
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]
+ �̆�kȟ𝜛k(s)Ik(s)

+ 𝜆1
[
Δzk(s) − [𝜅0{1 − ek(s)} − 𝜅1zk(s)p(𝜂ki , s)]ds − 𝜎k

0
[zk(s) − z∗

k
]dBk

0
(s)

]

+ 𝜆2
[
ΔSk(s) − 𝜇1(s, ek, zk, Sk, Ik,Rk)ds − 𝜎k

5
(Sk)dB

k
2

]
+ 𝜆3

[
ΔIk(s) − 𝜇2(s, ek, zk, Sk, Ik,Rk)ds − 𝜎k

6
(Ik)dB

k
2

]
+ 𝜆4

[
ΔRk(s) − 𝜇3(s, ek, zk, Sk, Ik,Rk)ds − 𝜎k

7
(Rk)dB

k
2

]

+ 𝜆5
[
ΔWk(s) − 𝜇4(s, ek, zk, Sk, Ik,Rk)ds + 𝜎k

10
(s, ek,𝜔k,𝜔l)dB

k
2

]}
,
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where 𝜆i > 0 for all i = {1, 2, 3, 4} are time independent 
quantum Lagrangian multipliers and Δ ’s represent small 
change of state variables in time interval (s, s + �) for all 
𝜀 > 0 and � ↘ 0 . As � ’s do not depend on time, they are 
considered as penalization constants. At time s risk-group 
k can predict based on all information available regarding 
state variables at that time, throughout interval [s, s + �] it 
has the same conditional expectation which ultimately gets 
rid of the integration.

Main results

In this section I am going to determine an optimal lock inten-
sity for risk-group k. By using Feynman-type path integral 
approach I find a Euclidean action function, define a transi-
tion wave function and finally, I derive a Fokker–Plank-type 
(i.e., Wick-rotated Schrödinger-type) equation of the system.

Proposition 3 Suppose, the domain of the quantum Lagran-
gian Lk is non-empty, convex and compact denoted as 
Ξ̃ such that �Ξ ⊂ ℝ

6K × G . As Lk ∶ Ξ̃ → Ξ̃ is continu-
ous, then for any given positive constants 𝜌, 𝜃k, 𝜉k, h̆ and 
�k , there exists a vector of state and control variables 
Z̄∗
k
= [e∗

k
, z∗

k
, S∗

k
, I∗

k
,R∗

k
,W∗

k
]T  in continuous time s ∈ [0, t] 

such that Lk has a fixed-point in Brouwer sense, where T 
denotes the transposition of a matrix.

Proof See in the “Appendix”.

Proposition 3 guarantees that the pandemic control prob-
lem at least one fixed point, which leads to the next Theo-
rem 1. Theorem 1 is the main result of this paper. It uses a 
Euclidean path integral approach based on a Feynman-type 
action function to get an optimal “lock-down” intensity. 
 ◻

Theorem 1 Suppose, for all k ∈ {1, 2,… ,K} a social plan-
ner’s objective is to minimize Hk

�
 subject to the stochastic 

dynamic system explained in Eqs. (1), (4) and (7) such that 
Assumptions (1)- (3) and Propositions 1-3 hold. For a C2

-function f̃k(s, ek, zk, Sk, Ik,Rk,Wk) and for all s ∈ [0, t] there 
exists a function gk(zk, Sk, Ik,Rk,Wk) ∈ C2([0, t] ×ℝ

5K) such 
that Ỹk = gk[zk, Sk, Ik,Rk,Wk] , with an Itô process Ỹk , and for 
a non-singular matrix

�k =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2 f̃k
𝜕z2

k

𝜕2 f̃k
𝜕zk𝜕Sk

𝜕2 f̃k
𝜕zk𝜕Ik

𝜕2 f̃k
𝜕zk𝜕Rk

𝜕2 f̃k
𝜕zk𝜕Wk

𝜕2 f̃k
𝜕Sk𝜕zk

𝜕2 f̃k
𝜕S2

k

𝜕2 f̃k
𝜕Sk𝜕Ik

𝜕2 f̃k
𝜕Sk𝜕Rk

𝜕2 f̃k
𝜕Sk𝜕Wk

𝜕2 f̃k
𝜕Ik𝜕zk

𝜕2 f̃k
𝜕Ik𝜕Sk

𝜕2 f̃k
𝜕I2

k

𝜕2 f̃k
𝜕Ik𝜕Rk

𝜕2 f̃k
𝜕Ik𝜕Wk

𝜕2 f̃k
𝜕Rk𝜕zk

𝜕2 f̃k
𝜕Rk𝜕Sk

𝜕2 f̃k
𝜕Rk𝜕Ik

𝜕2 f̃k
𝜕R2

k

𝜕2 f̃k
𝜕Rk𝜕Wk

𝜕2 f̃k
𝜕Wk𝜕zk

𝜕2 f̃k
𝜕Wk𝜕Sk

𝜕2 f̃k
𝜕Wk𝜕Ik

𝜕2 f̃k
𝜕Wk𝜕Rk

𝜕2 f̃k
𝜕W2

k

,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

optimal “lock-down” intensity e∗
k
 is the solution of the 

equation

where Ψk�
s

 is some transition wave function in {ℝ5K × G}.

Sketch of the idea of the proof: The detailed proof is  
given in “Appendix”. Here I would like to go through the main 
idea of the proof. I have used a Feynman-type path integral 
control approach to determine the optimal lock-down intensity. 
First, based on the quantum Lagrangian function expressed in 
Eq. (12), I define the Euclidean action function for risk-group 
k for continuous time interval [0, t]. Then, I define a Euclid-
ean action function for time interval [s, s + 𝜀] ⊂ [0, t] such 
that � = t∕n , where n is the total number of equal-lengthed 
time subintervals (i.e., [s, s + �] ) of the interval [0, t]. Further-
more, a transition wave function for time interval [s, s + �] , 
Ψk

s,s+�
(.) is defined on the Euclidean action function based on 

a Feynman path integral. Since, Brownian motion is continu-
ous but not differentiable with respect to time, I have replaced 
the systems of functional forms of the stochastic differential 
equations in (12) by an Itô process gk(.) . Here g is a function 
which is at least twice differentiable with respect to time s, and 
the state variables zk, Sk, Ik,Rk and Wk so that Itô lemma can 
be implemented on it. In this path integral control approach, 
appropriately choosing a g function is the central idea. The 
government determines the g function based on the histori-
cal performances of COVID-19 in an economy. As I assume 
the information of the pandemic environment is imperfect and 
incomplete, this method gives a different set optimal lock-
down intensities than HJB approach which are not unique 
globally. In other words, the individuals do not have complete 
information on the dynamics of the state variables, and the 
function g is a signal about the pandemic environment deter-
mined by the government. Since, in this paper I am interested 
in the forward-looking solution, at the beginning of each time 
interval [s, s + �] , the government have information at just time 
s, and make expectations on the future. As a result, the con-
ditional expectation �s becomes the objective function plus 
the g function at time s. Then implementing Itô lemma on g, 
first order Taylor series expansion on transition wave function, 
and shifted Gaussian integrals on all possible actions yield 
a Wick-rotated Schrödinger type equation. This Schrödinger 
type equation holds the information of the whole system of 
the pandemic environment. Finally, the solution for ek(s) of 
the first order condition of the Wick-rotated Schrödinger type 
equation with respect to the control variable determines the 
optimal lock-down intensity.

Theorem 1 gives the solution of an optimal “lock-down” 
intensity for a generalized stochastic pandemic system. Con-
sider a function

(13)
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such that

with �gk∕�s = zk + Sk + Ik + Rk +Wk , �gk∕�Xi = s − 1∕Xi , 
�2gk∕�X

2
i
= −1∕X2

i
 a n d  �2gk∕�Xi�Xj = 0  ,  fo r  a l l 

i ≠ j where Xi is ith state variable for all i = 1,… , 5 
and ln stands for natural logarithm. In other words, 
X1 = zk,X2 = Sk,X3 = Ik,X4 = Rk and X5 = Wk . Therefore,

gk(s, zk, Sk, Ik,Rk,Wk) ∈ C2([0, t] ×ℝ
5K)

gk(s, zk, Sk, Ik,Rk,Wk) = [szk − 1 − ln(zk)]

+ [sSk − 1 − ln(Sk)] + [sIk − 1 − ln(Ik)]

+ [sRk − 1 − ln(Rk)] + [sWk − 1 − ln(Wk)],

f̃k(s, ek, zk, Sk, Ik,Rk,Wk)

= exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − ekÃk

]
+ �̆�kȟ𝜛kIk

+ [szk − 1 − ln(zk)] + [sSk − 1 − ln(Sk)]

+ [sIk − 1 − ln(Ik)] + [sRk − 1 − ln(Rk)]

+ [sWk − 1 − ln(Wk)] + (zk + Sk + Ik + Rk +Wk) +

(
s −

1

zk

)

× [𝜅0(1 − ek) − 𝜅1zkp(𝜂ki , s)] +

(
s −

1

Sk

)

{
𝜂Nk − 𝛽k(ek, zk)

SkIk

1 + rIk + 𝜂Nk

− 𝜏Sk

+ 𝜁Rk

}
+

(
s −

1

Ik

){
𝛽k(ek, zk)

SkIk

1 + rIk + 𝜂Nk

− (𝜇 + 𝜏)Ik

}

+

(
s −

1

Rk

)

×
[
𝜇Ik − (𝜏 + 𝜁)ekRk

]
+

(
s −

1

Wk

)

{
𝜔k − �ekQ(|𝜔k|)

[
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−
1
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,

where

In order to satisfy Eq. (13) Either 𝜕f̃k
𝜕ek

= 0 or Ψk�
s

= 0 . As Ψk�
s

 
is a wave function, it cannot be zero. Therefore, 𝜕f̃k

𝜕ek
= 0 . 

After setting the diffusion coefficient of Eq. (3) to zero the 
optimal lock-down intensity is,

Ãk = Sk +
[
1 − ȟ𝜏kF̂p − (1 − ȟ)𝜏kF(p0)

]
Ik + (1 − �̆�k)𝜏kRk.

e∗ =

(
B̃

C̃

) 1

�−1

,

where

and,

�B = exp{−𝜌s}

K∑
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𝜃kzkÃ +

(
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1
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)
𝜅0 +

(
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)
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+
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)(
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> 0.
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The expression e∗ represents an optimal lock-down intensity. 
If all of the state variables attain their optimal values then, 
e∗ achieves a global lock-down intensity.

Now I am going to discuss about the impacts of differ-
ent variables on global lock-down intensity. Let at time 
s there exist K risk groups and e∗ be an optimal global 
lock-down intensity such that if its value is high, the 
employment of the economy is high, the infection rate 
is low and vice versa. Consider the propensity constant 
ȟ ∈ (0, 1) , constant probability that an infected person of 
risk-group k does not need an emergency care �k ∈ [0, 1] , 
Pr(k is indifferent to interact|𝜔k) = F(p0) < F̂ < 1∕2 , time-
independent discount rate � ∈ (0, 1) , known penalizing con-
stant 𝜃k > 0 , rate of fatigue accumulation k0 ∈ (0, 1) , con-
stant natural death rate � , opinion of individual risk group k 
as �k ∈ [−1, 1] , local relevance of compromise Q ∈ [0, 1] , 
compromise propensity � ∈ (0, 1∕2) , birth rate as � , param-
eter defines the degree of effectiveness of fatigue to spread 
infection � ∈ (0, 1) , fine particular matter M = 21 μg/m3 , and 
the parameter which makes �k(ek, zk) convex as 𝜃 > 1 . Fol-
lowing is the discussion of impact of different factors other 
than constants on optimal lock-down intensity.

Case I: If the fraction of recovered persons allowed to 
join the work force for the second time is very high (i.e., 
𝜏k ↓ 1 ), then after keeping other variables fixed,

As a result B̃ falls which leads to a fall in optimal lock-down 
intensity e∗ . The main reason is that, due to the higher value 
of 𝜏k the effect of 𝜏k is not captured. Hence, there exists 
a misinformation that all the people are recovered from 
the pandemic but actually people with probability 𝜏k are 
infected by COVID-19 after vaccinated and boosted. Now 
the COVID-19 infected population are in the labor force, 
which leads to more infection and more isolations. There-
fore, e∗ increases. On the other hand, if the fraction of recov-
ered person is very low (i.e., 𝜏k ↓ 0 ), then full effect of 𝜏k is 
observed and,

This means because of the misinformation the government 
sees nobody recovers from the pandemic. Therefore, Ãk will 
fall and,

Ãk → Sk +
[
1 − ȟ𝜏kF̂p − (1 − ȟ)𝜏kF(p0)

]
Ik.

Ãk → Sk +
[
1 − ȟ𝜏kF̂p − (1 − ȟ)𝜏kF(p0)

]
Ik + 𝜏kRk.

This leads to a fall in e∗ . Intuitively, a very low 𝜏k signals 
the government that, less number of recovered people are 
rejoining the workforce. Therefore, a high fraction of people 
either not confident to do social interaction on work place 
or get infected by the pandemic again. Government predicts 
that the recovery rate is low and imposes a stricter lock-down 
policy, and optimal lock-down intensity falls. If 𝜏k is very 
high, then people think that going back to the work force 
might not a good idea, resulting 𝜏k attains a very low value. 
The recovery rate Rk falls and infection rate Ik increases. 
This would lead to a rapid increase in C̃ . Eventually, optimal 
lock-down intensity falls.

Case II:  Let  at  t ime 0,  𝜔k < 𝜔l  .  Assume 
Pr0(L|�k(0)) = Wk(0) is very low (i.e., Wk(0) → 0 ). This 
implies the conditional probability of low infection such that 
risk group k has made an opinion is very low. Furthermore, 
for risk-groups k and l, suppose at time s, the opinions about 
the pandemic is same or �k = �l . Therefore,

If both the risk groups k and l have the same negative opin-
ions (i.e., �k = �l = −1 ), then B̃ decreases which eventually 
leads to a fall in e∗ . Intuitively, if both the risk groups have 
same negative opinions, then individuals do not feel to come 
out and go to the work force fearing that the infection rate is 
very high. This would further reduce the probability Wk(s) , 
B̃ , and eventually e∗ . On the other hand, if both the risk 
groups have positive but same opinion (i.e., �k = �l = 1 ), 
then Pr0(L|�k(0)) = Wk(0) is very high ( Wk(0) → 1 ) at the 
beginning and continues to take a high probabilistic value. 
Under the initial assumption of 𝜔k < 𝜔l leads to

Under positive opinion of �k = �l = 1 clearly increases B̃ , 
which leads to an increase in optimal lock-down intensity. 
Intuitively, positive opinions toward the virus makes peo-
ple less afraid of COVID-19, and more individuals would 
appear at the work place. Now suppose, the two risk groups 

�B → exp{−𝜌s}
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have extreme opinions in the sense that �k = −1 and �l = 1 . 
Irrespective of Wk(s) , value of B̃ falls, which eventually leads 
to a fall in e∗ . Intuitively, if the risk groups k and l have two 
extreme opinions toward the pandemic, then either of the 
groups has misinformation about the infection of the disease. 
Since by assumption, people are risk averse, misinforma-
tion from either side creates a risky work environment. As 
a result, less people are willing to go out and do the interac-
tion. This phenomenon would pull down the optimal lock-
down intensity.

Case III: The probability that a link of a new node con-
nects to Barabasi–Albert node ki defined as

If J takes a very large value then p(�ki , s) → 1 with the fatigue 
dynamics zk(s) has an upper bound �0∕[�1p(�ki , s)] . A higher 
value of p(�ki , s) leads to a reduction in �0(zk)�∕[�1p(�ki , s)] , 
which leads to an increase of C̃ , and a fall in optimal e∗ . 
Intuitively, a high value of J leads to a huge Barabasi–Albert 
network with higher probability that a link of a new node 
connects to another Barabasi–Albert network with exponen-
tially increasing number of nodes. As the network is very 
large, any information can spread very fast including mis-
information. In this network the infection of the pandemic 
spreads faster. As a result people are reluctant to go out to 
work even after a positive information about the disease 
spread. Since, people are risk-averse, they would wait at 
home longer and observe the severity of the disease before 
doing any social interaction.

Case IV: Finally, I will discuss about the effect of state 
variables in this system on the optimal lock-down intensity. 
First, an increase in susceptibility of risk group k leads to 
an increase in Ã , which leads to an increment in B̃ . The 
denominator part of e∗ can be written as

Hence, an increase in Sk leads to a reduction in C̃ . Combin-
ing the movements B̃ and C̃ I conclude that optimal lock-
down intensity would increase. Intuitively, if an economy 
has a huge portion of susceptible population compared to 
infected Ik , people are willing to do social interactions as 
they predict the spread of the infection of COVID-19 is 
less. Second, an increment of rate of infection Ik leads to 
an increase in Ã . C̃ has Ik on numerator and the denomina-
tor. Since r ∈ (0, 1) , the increment of Ik at the numerator is 
faster than its counterpart at the denominator. Therefore, 
C̃ would increase along an increase of Ik . Moreover, as [
1 − ȟ𝜏kF̂p − (1 − ȟ)𝜏kF(p0)

]
∈ (0, 1) , the increment of B̃ is 

p(�ki , s) =
�
�ki(s)

�⎡⎢⎢⎣

J−1�
kj=1

�kj (s)

⎤
⎥⎥⎦
.

C̃ = ��k
2
M

[
Ik − Sk

1 + rIk + �Nk

][
1 −

�0(zk)
�

�1p(�ki , s)

]
.

less than the increment of C̃ due to an increase in the infec-
tion rate, resulting a fall in e∗ . Intuitively, a higher infec-
tion rate in risk group k under Barabasi–Albert pandemic 
spread network leads to hinder in social interaction, result-
ing a significant decrease in optimal lock-down intensity. 
Third, an increase in recovery rate Rk increases Ã and B̃ . 
Since, there is no Rk component in C̃ , an increment in Rk 
would increase e∗ . Intuitively, a higher recovery rate boosts 
the positive opinion against the spread of the infection, 
resulting an increase in optimal lock-intensity. Fourth, an 
increase in fatigue zk has two different effects on B̃ and C̃ . 
In B̃ , increasing exp(−𝜌s)

∑K

k=1
𝜃kÃzk part dominates the 

decreasing part �0∕zk . Hence, B̃ is increasing. On the other 
hand, 1 − �0(zk)

�∕[�1p(�ki , s)] reduces as zk increases leads to 
a fall in C̃ . Combining the effects I conclude that an increase 
in zk leads to an increase in e∗ . Intuitively, because of the 
death of the loved ones one person feel fatigued. Although 
the person does not want to join the workforce, circum-
stances led them to join. Because, the loved one who passed 
away might be a bread earner of the family. These scenarios 
increase the optimal lock-down intensity. Finally, an increase 
in Prs(L|�k(s)) = Wk(s) ∈ [0, 1] leads to a fall in (s − 1∕Wk) 
and an increase in �k

8
∕(Wk)

2 . Since, I have assumed 𝜔k < 𝜔l , 
an increment in Wk leads to a fall in

and an increase in (1∕2)�k
8
(�k − �l)(Wk)

−2 . The relative 
effect depends on whichever of the above two terms are 
bigger. If

then B̃ and e∗ would fall and vice versa.

Numerical study

Values from Table  1 are used to perform a numerical 
study. Some of these values and initial state variables 
are obtained from Caulkins et al. (2021), Albrecht et al. 
(2021), and Rao (2014). Figure  4 represents 10 reali-
zations of the fatigue dynamics represented in Eq.  (1) 
with �0 = 0.2 . To plot these realizations I have assumed 
p(�ki , s) = 0.7 and ek(s) = 0.6 . A higher value of p(�ki , s) 
means a higher probability that a link of the new node 
connects to a Barabasi–Albert node ki , resulting a higher 
rate of spread of infection of the pandemic. On the other 
hand, assuming a higher ek(s) reflects a higher lock-down 
intensity. At the beginning of the incidence of COVID-
19 people have no idea about the severity of the disease. 

(
s −

1

Wk

){
�k − �Q(|�k|)
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�k − �l

]}
,

{
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Therefore, even at the presence of high infection rate, 
they think it is a regular flue and go to the work force 
and get infected. Since, at the beginning no vaccines were 
available, many people lost their lives resulting to lead 
a depression to their family members. This leads to an 
increase in trend in fatigue dynamics over the time. Fig-
ure 5 represents a static relationship between fatigue and 
lock-down intensity which is strictly negative in nature. 
If there is a fall in lock-down intensity, less people are in 
the work-force and many lives are lost due to COVID-19. 
Hence, their family members are depressed due to the lives 
have been lost resulting and increment in fatigue rate.

Figure 6 represents one realization of 100 iterations of 
the infection dynamics in Eq. (3). Here I assume � = 0.02 , 
adjusted M = 0.21 , and �1 = 0.025 . At initial infection 

rate of risk-group k, �k(0) = 0.4 , �k falls drastically and 
then increased to a somewhat stable infection rate around 
0.7. Intuitively, as at the beginning of the incidence of 
COVID-19 due to the imposition of strict social-distancing 
infection-rate falls to 0.3. This boosts the positive opinion 
of the people about the pandemic, and they are eager to 
come to their work places and do social interactions. As a 
result, the rate of infection rises and become stable around 
0.7. Figure 7 shows twenty of these type of realizations of 
�k(s) over time.

Figure 8 represents the stochastic SIR model in this 
environment. Instead of following Caulkins et al. (2021) 
to use 0.999 as Sk , 0.001 as Ik and 0.001 as Rk I have used 
0.5, 0.35 and 0.15 as S, I and R values for risk group k. The 
main reason is that, if I use the values given in Caulkins 

Table 1  Some parametric values are taken from Caulkins et al. (2021), Albrecht et al. (2021), and Rao (2014)

Parameter values and initial state variable values

Variable Value Description

ȟ 0.05 Propensity constant
�k 0.25 Constant probability that an infected person in risk-group k does not need an emergency care
𝜏k 0.01 After completely vaccinated and boosted the probability of a person in k of getting infected again
𝜏k 0.1 Constant probability that an infected person in risk-group k needs an emergency care
𝜏k 0.7 Fraction of recovered persons in k are allowed to join the workforce again
�k [−1, 1] Opinion of individual risk group k
F(p0) 0.35 Pr (k is indifferent to interact|�k)

� 0.001 Birth-rate
�k(0) 0.4 Initial infection rate
�k
1

0 Minimal level of infection of risk-group k

�k
2

0.2 Increment in the level of infection of risk-group k
�k 0.2 Known penalized constant of risk-group k
�0 0.25 Rate of fatigue accumulation
�1 0.03 Rate of exponential decay
p(�ki , s) 0.7 Probability that a link of the new node connects to Barabasi–Albert node ki
� 0.25 Compromise propensity
�̆�k 0.8 Cost of life or the value of death
�k(s) 0.7 Probability of death such that the person is under emergency care
e(0) 1 Initial lock-down intensity
� 0.2 Natural death-rate
� 0.3 Natural recovery rate
� 0.001 Rate by which recovered get susceptible again
� 0.5 Time-independent discount rate
� 4 Convexity coefficient of transmission function
M 21 Fine particulate matter
Q 0.5 Local relevance of compromise
zk(0) 0 Initial fatigue rate
Sk(0) 0.5 Initial fraction of susceptible population of risk-group k
Ik(0) 0.35 Initial fraction of infected population of risk-group k
Rk(0) 0.15 Initial fraction of recovered population of risk-group k
Wk(0) 0.6 Initial Pr0(L|�(0)) value for risk-group k
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et al. (2021), the dynamic comparison of these three state 
variables become impossible. Moreover, I also keep the 
infection rate at 0.6 to do this simulation study. Since, the 
proportion of susceptible persons in risk group k is much 
higher compared to the proportion of infected and recov-
ered people, I have assigned higher diffusion coefficient for 
sk dynamics (i.e., �2 = 0.6 ). In Fig. 8 all of Sk , Ik and Rk are 
decreasing where the rate of decrease of susceptibility is 
the lowest. In the model the rate of infection Ik is steadily 
declining. This implies, as a result of strict social distanc-
ing lower infection rate is achieved over time. On the other 

hand, at the initial stage the recovery rate of risk group k 
is increasing then, a steady fall is observed. Intuitively, 
because of the social distancing previously infected person 
recovered and join the work force. Since the infection rate 
of the pandemic is still high, newly recovered persons get 
infected again. Second time it is much harder for them to 
get recovered resulting a steady fall in the recovery rate 
over the time. Figure 9 shows 10 realizations of opinion 
dynamics under the assumption that the risk group l has 
perfectly positive attitude (i.e., �l = 1 ) toward COVID-
19. The diffusion coefficient of the opinion dynamics is 
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assumed to be 0.1 because of high volatile nature of the 
spread of information.

Almost all the realizations of the opinion dynamics in 
Fig. 9 are steadily falling to 0.3. This means over time, the 
probability that an individual believes that the impact of 
the disease is low such that �k is known is 0.3. Therefore, 
people from risk group k think the impact of COVID-19 is 
severe even though the people from risk group l think that 
the infection of the pandemic is low.

Figure 10 shows the movement of optimal lock-down 
intensity over time. Initially it started at a very high level 
of 0.7 and steadily increased to 1. Then it has experience a 
huge decline to 0.25 at time 0.1. After an experience of little 
increase, the optimal lock-down intensity has declined again. 
Since after time point 0.13 the optimal lock-down intensity 
has declined, the dynamic social cost has been increase dur-
ing the same as seen in Fig. 11. As from Fig. 11 it can be 
concluded that the social cost on an average steadily increas-
ing throughout the time interval in discussion.
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Discussion

This paper discuss about a stochastic optimization problem 
where a policy maker’s objective is to minimize a dynamic 
social cost H� subject to a lock-down fatigue dynamics, 
COVID-19 infection �k , a multi-risk SIR model and opin-
ion dynamics of risk-group k where lock-down intensity is 
used as my control variable. Under certain conditions I was 
able to find out a closed form solution of lock-down inten-
sity e∗ . First I have subdivided the entire population into K 
number of age-groups such that every person in a group has 
homogeneous opinion toward vaccination against COVID-
19. As each of these group are vulnerable to the pandemic, 
I renamed the age-group as risk-group which is consistent 
with the literature (Acemoglu et al. 2020). As heterogenous 
opinion of individuals in a risk-group k concerns with multi-
layer network, it would be a future research in this context.

A Feynman-type path integral approach has been used to 
determine a Fokker–Plank type of equation which reflects the 
entire pandemic scenario. Feynman path integral is a quanti-
zation method which uses the quantum Lagrangian function, 
while Schrödinger’s quantization uses the Hamiltonian func-
tion (Fujiwara 2017). As this path integral approach provides 
a different view point from Schrödinger’s quantization, it 
is very useful tool not only in quantum physics but also in 
engineering, biophysics, economics and finance (Kappen 
2005; Anderson et al. 2011; Yang et al. 2014a; Fujiwara 
2017). These two methods are believed to be equivalent, but 
this equivalence has not fully proved mathematically as the 
mathematical difficulties lie in the fact that the Feynman path 
integral is not an integral by means of a countably additive 
measure (Johnson and Lapidus 2000; Fujiwara 2017). As the 
complexity and memory requirements of grid-based partial 
differential equation (PDE) solvers increase exponentially as 
the dimension of the system increases, this method becomes 
impractical in the case with high dimensions (Yang et al. 
2014a). As an alternative one can use a Monte Carlo scheme 
and this is the main idea of path integral control (Kappen 
2005; Theodorou et al. 2010; Theodorou 2011; Morzfeld 
2015). This path integral control solves a class a stochas-
tic control problems with a Monte Carlo method for a HJB 
equation and this approach avoids the need of a global grid 
of the domain of HJB equation (Yang et al. 2014a). In future 
research I want to use this approach under 

√
8∕3 Liouville-

like quantum gravity surface (Pramanik 2021a).

Appendix

Proof of Lemma 1 For each optimal solution z∗
k
∈ �

2 of 
Eq. (1), define a squared integrable progressively measur-
able process X(z∗

k
) by

I will show that X(z∗
k
) ∈ �

2 . Furthermore, as z∗
k
 is a solution 

of Eq. (1) iff X(z∗
k
) = z∗

k
 , I will show that X is the strict con-

traction of the Hilbert space � 2 . Using the fact that

yields

Assumption 2 implies t�|zk(0)|2 < ∞ . It will be shown that 
the second and third terms of the right hand side of the ine-
quality (15) are also finite. Assumption 1 implies,

Doob’s maximal inequality and Lipschitz assumption (i.e., 
Assumption 1) imply,

As X maps � 2 into itself, I show that it is strict contraction. 
To do so I change Hilbert norm � 2 to an equivalent norm. 
Following Carmona (2016) for a > 0 define a norm on � 2 by

If zk(s) and yk(s) are generic elements of � 2 where 
zk(0) = yk(0) , then

(14)

X(z∗
k
)s = zk(0) + ∫

t

0

�̂�(s, ek, p, zk)ds + ∫
t

0

𝜎k
0
(zk)dB

k
0
(s).

|�̂�(s, ek, p, zk)|2 ≤ c0
[
1 + |zk|2 + |�̂�(s, ek, p, zk(0))|2|

]

(15)

||X(zk)||2 ≤ 4

[
t�|z0(k)|2 + ��

t

0

||||�
s

0

�̂�(s�, ek, p, zk)ds
�
||||
2

ds

+t� sup
0≤s≤t

||||�
s

0

𝜎k
0
(zk(s

�))dBk
0
(s�)

||||
2

ds

]
.

��
t

0

||||�
s

0

�̂�(s�, ek, p, zk)ds
�
||||
2

ds

≤ ��
t

0

s

(
�

s

0

|�̂�(s�, ek, p, zk)|2ds�
)
ds

≤ c0��
t

0

s

(
�

s

0

(1 + |�̂�(s�, ek, p, zk(0))|2 + |zk(s)|2)ds�
)
ds

≤ c0t
2

(
1 + ||�̂�(s�, ek, p, zk(0))||2 + � sup

0≤s≤t
|zk(s)|2

)
< ∞.

t� sup
0≤s≤t

||||�
s

0

𝜎k
0
(zk(s

�))dBk
0
(s�)

||||
2

ds ≤ 4t��
t

0

|𝜎k
0
(zk(s))|2ds

≤ 4c0��
t

0

(1 + |𝜎k
0
(zk(0))|2 + |zk(s)|2)ds

≤ 4c0t
2

(
1 + ||𝜎k

0
(zk(0))||2 + � sup

0≤s≤t
|zk(s)|2

)
< ∞.

||�||2
a
= �∫

t

0

exp(−as)|�s|sds.
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by Lipschitz’s properties of drift and diffusion coefficients. 
Hence,

Furthermore, if c0t is very large, X becomes a strict contrac-
tion. Finally, for s ∈ [0, t]

where the constant c0 depends on t, ||�̂�||2 and ||�k
0
||2 . Gron-

wall’s inequality implies,

  ◻

Proof of Proposition 1 As stochastic differential Eq. (1) and the 
SIR represented by the system (4) follow Assumption 1, there is 
a unique local solution on continuous time interval [0, ŝ) , where 
ŝ is defined as the explosion point (Rao 2014). Therefore, Itô 
formula makes sure that there is a positive unique local solution 
for the system represented by Eqs. (1) and (4). In order to show 

�|X(zk(s)) − X(yk(s))|2

≤ 2�
||||�

𝜏

0

[�̂�(s�, ek, p, zk(s
�)) − �̂�(s�, ek, p, yk(s

�))]ds
||||
2

+ 2�
||||�

𝜏

0

[𝜎k
0
(zk(s

�)) − 𝜎k
0
(yk(s

�))]dBk
0
(s�)

||||
2

≤ 2𝜏��
𝜏

0

|�̂�(s�, ek, p, zk(s�)) − �̂�(s�, ek, p, yk(s
�))|2ds�

+ 2��
𝜏

0

|𝜎k
0
(zk(s

�)) − 𝜎k
0
(yk(s

�))|2ds�

≤ c0(1 + 𝜏)�
𝜏

0

�|zk(s�) − yk(s
�)|2ds�,

||X(zk) − X(yk)||2a = �
t

0

exp(−as)�|X(zk(s) − X(yk(s)))|2ds

≤ c0t �
t

0

exp(−as)�
t

0

�|zk(s�) − yk(s
�)|2ds�ds

≤ c0t �
t

0

exp(−as)ds�
t

0

�|zk(s�) − yk(s
�)|2ds�

≤ c0t

a
||zk − yk||2a.

� sup
0≤s≤t

|zk(s)|2 = � sup
0≤s≤t

||||zk(0) + �
s�

0

�̂�(r, ek, p, zk(r))dr

+ �
s�

0

𝜎k
0
(zk(r))dB

k
0
(r)

||||
2

≤ 4

[
�|zk(0)|2 + s��

s

0

|�̂�(s�, ek, p, zk(s�))|2ds�

+4��
s

0

|𝜎k
0
(s�)|ds�

]

≤ c0

[
1 + �|zk(0)|2 + �

s

0

� sup
0≤r≤s�

|zk(r)|2dr
]
,

� sup
0≤s≤t

|zk(s)|2 ≤ c0(1 + �|zk(0)|2) exp (c0t).

global uniqueness one needs to show this local unique solution 
is indeed a global solution; in other words, ŝ = ∞ almost surely.

Suppose, m0 > 0 is sufficiently large for the initial val-
ues of the state variables zk(0) , Sk(0) , Ik(0) and Rk(0) in the 
interval [1∕m0,m0] . For all m ≥ m0 a sequence of stopping 
time is defined as

where it is assumed that the infimum of the empty set is infin-
ity. As the explosion time is non-decreasing in m therefore, 
ŝ∞ = limm↓∞ ŝm and ŝ∞ ≤ ŝm a.s. I will show ŝ∞ = ∞ a.s. 
Suppose that the condition ŝ∞ = ∞ a.s. does not hold. Then 
∃ a t > 0 and 𝜀 > 0 such that Pr[ŝ∞ ≤ t] > 𝜀 . Hence, there 
is an integer m1 ≥ m0 such that, Pr[ŝm ≤ t] ≥ 𝜀, ∀m ≥ m1.

Like before, define a nonnegative C3-function 
� ∶ ℝ

4K → ℝ by

Itô’s formula implies

ŝm = inf
{
s ∈ [0, ŝ] ∶ zk(s) ∉

(
1

m
,m

)
or zk(s) ∉

(
1

m
,m

)

or Sk(s) ∉
(
1

m
,m

)

or Ik(s) ∉
(
1

m
,m

)
or Rk(s) ∉

(
1

m
,m

)}
,

�(zk, Sk, Ik,Rk) = [zk − 1 − ln(zk)]

+ [Sk − 1 − ln(Sk)] + [Ik − 1 − ln(Ik)] + [Rk − 1 − ln(Rk)].

d�(zk, Sk, Ik,Rk) =

{(
1 −

1

zk

)[
�0(1 − ek) − �1zkp(�ki )

]

+

(
1 −

1

Sk

)

×

[
�Nk − �k(ek, zk)

SkIk

(1 + rIk) + �Nk

− �Sk + �Rk

]

+

(
1 −

1

Ik

)

×

[
�k(ek, zk)

SkIk[
1 + rIk

]
+ �Nk

− (� + �)Ik

]

+

(
1 −

1

Rk

)[
�Ik − (� + �)ekRk

]

+
(�k

0
)2

2

(
1 −

z∗
k

zk

)2

+
(�k

2
)2

2

(
1 −

S∗
k

Sk

)2

+
(�k

3
)2

2

(
1 −

I∗
k

Ik

)2

+
(�k

4
)2

2

(
1 −

R∗
k

Rk

)2
}

ds

+

{
�k
0

(
1 −

1

zk

)
(zk − z∗

k
) + �k

2

(
1 −

1

Sk

)
(Sk − S∗

k
)

+�k
3

(
1 −

1

Ik

)
(Ik − I∗

k
) + �k

4

(
1 −

1

Rk

)
(Rk − R∗

k
)

}
dBk,
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where I assume Bk = Bk
0
= Bk

2
= Bk

3
= Bk

4
 or the system has 

same Brownian motion. Therefore,

(16)

d�(zk, Sk, Ik,Rk) =
{
�Rk + �Nk + �(1 + Ik) + �(1 + Rk)

+ �0

(
1 +

ek

zk

)

+ �1p(�ki ) + Ik

(
�k(ek, zk)[

1 + rIk
]
+ �Nk

+
� + �

Sk

)

+ �k(ek, zk)
SkIk[

1 + rIk
]
+ �Nk

+
(�k

0
)2

2

(
1 −

z∗
k

zk

)2

+
(�k

2
)2

2

(
1 −

S∗
k

Sk

)2

+
(�k

3
)2

2

(
1 −

I∗
k

Ik

)2

+
(�k

4
)2

2

(
1 −

R∗
k

Rk

)2

−

[
(� + �)ekRk + 2(� + �)Ik + �1zkp(�ki ) +

�Ik
Rk

+
�Nk

Sk
+ �0

(
ek +

1

zk

)

+
Sk�(ek, zk)[

1 + rIk
]
+ �Nk

(1 + Ik)

]}
ds

+

{
�k
0

(
1 −

1

zk

)
(zk − z∗

k
) + �k

2

(
1 −

1

Sk

)
(Sk − S∗

k
)

+�k
3

(
1 −

1

Ik

)
(Ik − I∗

k
) + �k

4

(
1 −

1

Rk

)
(Rk − R∗

k
)

}
dBk

≤ {
�Rk + �Nk + �(1 + Ik) + �(1 + Rk) + �1p(�ki )

+ �0

(
1 +

ek

zk

)
+ Ik

(
�k(ek, zk)[

1 + rIk
]
+ �Nk

+
� + �

Sk

)

+ �k(ek, zk)
SkIk[

1 + rIk
]
+ �Nk

+
(�k

0
)2

2

(
1 −

z∗
k

zk

)2

+
(�k

2
)2

2

(
1 −

S∗
k

Sk

)2

+
(�k

3
)2

2

(
1 −

I∗
k

Ik

)2

+
(�k

4
)2

2

(
1 −

R∗
k

Rk

)2
}

ds

+

{
�k
0

(
1 −

1

zk

)
(zk − z∗

k
) + �k

2

(
1 −

1

Sk

)

×(Sk − S∗
k
) + �k

3

(
1 −

1

Ik

)
(Ik − I∗

k
) + �k

4

(
1 −

1

Rk

)
(Rk − R∗

k
)

}
dBk

≤ �ds +

{
�k
0

(
1 −

1

zk

)
(zk − z∗

k
) + �k

2

(
1 −

1

Sk

)
(Sk − S∗

k
)

+�k
3

(
1 −

1

Ik

)
(Ik − I∗

k
) + �k

4

(
1 −

1

Rk

)
(Rk − R∗

k
)

}
dBk,
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where � is a positive constant. Integration of both sides of 
the Inequality (16) from 0 to ŝm ∧ t yield

where ŝm ∧ t = min{ŝm, t} . After taking expectations on both 
sides lead to

Define ℵm = {ŝm ≤ t}, ∀m ≥ m1 . Previous discussion 
implies, for any 𝜀 > 0 there exists an integer m1 ≥ m0 such 
that, Pr[ŝm ≤ t] ≥ 𝜀 therefore, Pr(ℵm) ≥ 𝜀 . For each ℘ ∈ ℵm , 
∃ an i such that �i(ŝm,℘) = m or 1∕m for i = 1,… , 4 . There-
fore, �

[
zk(ŝm,℘), Sk(ŝm,℘), Ik(ŝm,℘),Rk(ŝm,℘)

]
 has the 

lower bound min{m − 1 − lnm, 1∕m − 1 − ln(1∕m)} . This 
yields,

where 1ℵm(℘) is a simple function on ℵm . Letting m ↓ ∞ leads 
to ∞ = �t +�[zk(0), Sk(0), Ik(0),Rk(0)] < ∞ , which is a 
contradiction.   ◻

Proof of Lemma 2 As stochastic opinion dynamics is on 
F, this surface is oscillatory in nature. Total social inter-
action variation between two probabilistic interactions 
Wk,�−k ,�−k

(s, h) and Wl,�−l,�−l
(s, h) can be defined in terms of a 

Hahn–Jordon orthogonal decomposition

such that

Therefore, for h ∈ F,

�
ŝm∧t

0

d�[zk(s), Sk(s), Ik(s),Rk(s)]

≤ �
ŝm∧t

0

�ds

+

{
𝜎k
0

(
1 −

1

zk

)
(zk − z∗

k
) + 𝜎k

2

(
1 −

1

Sk

)
(Sk − S∗

k
)

+𝜎k
3

(
1 −

1

Ik

)
(Ik − I∗

k
) + 𝜎k

4

(
1 −

1

Rk

)
(Rk − R∗

k
)

}
dBk,

��[zk(ŝm ∧ t), Sk(ŝm ∧ t), Ik(ŝm ∧ t),Rk(ŝm ∧ t)]

≤ �t +�[zk(0), Sk(0), Ik(0),Rk(0)].

�t +�[zk(0), Sk(0), Ik(0),Rk(0)]

≥ �
{
1ℵm(℘)�[zk(ŝm), Sk(ŝm), Ik(ŝm),Rk(ŝm)]

}

≥ 𝜀min
{
m − 1 − ln(m),

1

m
− 1 − ln

(
1

m

)}
,

W = Wk,�−k ,�−k
−Wl,�−l,�−l

= W+
k,�−k ,�−k

−W−
l,�−l,�−l

,

|||
|||
(
Wk,�−k�−k

−Wl,�−l,�−l

)|||
||| = W+

k,�−k ,�−k
(F) = W−

l,�−l,�−l
(F).

Therefore,

Supremum over h ∈ F yields,

The reverse inequality can be checked trivially by introduc-
ing a simple function 1G , with G ∈ E , belong to F. Therefore, 
we are able to show that

Now, by construction, there exists two disjoint subsets F+ 
and F− such that, W+(F−) = 0 = W−(F+) (Moral 2004). 
For any graph G ∈ E  , W+(G) = W(G ∩ F+) ≥ 0 and, 
W−(G) = −W(G ∩ F+) ≥ 0. Hence,

and,

Consider ĥ be another probability measure for any G ∈ E by,

By construction,

|||Wk,�−k ,�−k
(s, h) −Wl,�−l,�−l

(s, h)
|||

=
||||∫ℝ

h(s,�k)W
+
k,�−k ,�−k

(F)(d�k)

−∫
ℝ

h(s,�k)W
−
l,�−l,�−l

(F)(d�l)
||||

=
|||
|||
(
Wk,�−k�−k

(s) −Wl,�−l,�−l
(s)

)|||
|||

||||∫ℝ

[
h(s,�k) − h(s,�l)

]

×
W+

k,�−k ,�−k
(d�k)

W+
k,�−k ,�−k

(F)
×
W−

l,�−l,�−l
(d�l)

W−
l,�−l,�−l

(F)

||||||
.

|||Wk,�−k ,�−k
(s, h) −Wl,�−l,�−l

(s, h)
|||

≤ |||
|||
(
Wk,�−k�−k

−Wl,�−l,�−l

)|||
|||.

sup
{|||

(
Wk,�−k ,�−k

(s, h) −Wl,�−l,�−l
(s, h)

)|||
}

≤ |||
|||
(
Wk,�−k�−k

−Wl,�−l,�−l

)|||
|||.

|||
|||
(
Wk,�−k�−k

(s) −Wl,�−l,�−l
(s)

)|||
|||

= sup
{|||

(
Wk,�−k ,�−k

(s, h) −Wl,�−l,�−l
(s, h)

)|||
}
.

Wk,�−k ,�−k
(G ∩ F+) ≥ Wl,�−l,�−l

(G ∩ F+),

Wl,�−l,�−l
(G ∩ F−) ≥ Wk,�−k ,�−k

(G ∩ F−).

ĥ(G) = Wk,𝜒−k ,𝜔−k
(G ∩ F−) +Wl,𝜒−l,𝜔−l

(G ∩ F+).

(17)ĥ(G) ≤ Wk,𝜒−k ,𝜔−k
(G) ∧Wl,𝜒−l,𝜔−l

(G),
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and,

As

by Eq. (18) one obtains

The reverse inequality is proved as follows. Suppose, h̃ be a 
nonnegative measure such that for any graph G ∈ E we have

Assuming G = F+ and G = F− give us

Therefore,

which implies

Taking the infimum over all the distributions h̃ ≤ Wk,𝜒−k𝜔−k
(s) 

and Wl,�−l,�−l
(s) , we get

To prove the final part of the lemma note that,

and

Hence,

(18)ĥ(F) = Wk,𝜒−k ,𝜔−k
(F−) +Wl,𝜒−l,𝜔−l

(F+).

|||
|||
(
Wk,�−k�−k

(s) −Wl,�−l,�−l
(s)

)|||
||| = W+(F) = W(F+)

= Wk,�−k ,�−k
(F+) −Wl,�−l,�−l

(F−)

= 1 −
[
Wk,�−k ,�−k

(F+) +Wl,�−l,�−l
(F−)

]
,

1 − sup

ĥ∈
(
Wk,𝜒−k ,𝜔−k

(s),Wl,𝜒−l ,𝜔−l
(s)

) h̃(F) ≤ 1 − ĥ(F)

=
|||
|||
(
Wk,𝜒−k𝜔−k

(s) −Wl,𝜒−l,𝜔−l
(s)

)|||
|||.

h̃(G) ≤ Wk,𝜒−k𝜔−k
(G) ∧Wl,𝜒−l,𝜔−l

(G).

h̃(F+) ≤ Wk,𝜒−k ,𝜔−k
(F+) and, h̃(F−) ≤ Wl,𝜒−l,𝜔−l

(F−).

h̃(F) ≤ Wk,𝜒−k ,𝜔−k
(F+) +Wl,𝜒−l,𝜔−l

(F−)

= 1 −
|||
|||
(
Wk,𝜒−k𝜔−k

(s) −Wl,𝜒−l,𝜔−l
(s)

)|||
|||,

1 − h̃(F) ≥ |||
|||
(
Wk,𝜒−k𝜔−k

(s) −Wl,𝜒−l,𝜔−l
(s)

)|||
|||.

|||
|||
(
Wk,𝜒−k𝜔−k

(s) −Wl,𝜒−l,𝜔−l
(s)

)|||
|||

= 1 − sup

ĥ∈
(
Wk,𝜒−k ,𝜔−k

(s),Wl,𝜒−l ,𝜔−l
(s)

) ĥ(F).

Wl,�−l,�−l
(F+) = Wk,�−k ,�−k

(F+) ∧Wl,�−l,�−l
(F+),

Wk,�−k ,�−k
(F−) = Wk,�−k ,�−k

(F−) ∧Wl,�−l,�−l
(F−).

As F+ and F− are mutually exclusive, therefore,

where the infimum is taken over all resolutions of F into 
pairs of non-intersecting subgraphs Gi , 1 ≤ i ≤ I  , I ≥ 1 . 
Reverse inequality can be shown by using the definition of 
ĥ . By Eq. (18) for any finite subgraph Gi ∈ E , we have

Therefore,

By taking the infimum over all subgraphs yields

since

This completes the proof.   ◻

Proof of Proposition 2 Consider ℧ ∶ ΩE → � is an increasing 
function which represents the influence of risk-group k in 
the network which is a convex function of the odds of them-
selves to get the signals from the neighbors about their social 
interactions and is defined by �̂� = log[𝜚∕(1 − 𝜚)] . Assume 
for �3 , the signal profile � of risk-group k is in � ⊆ (0, 1) . 
Now suppose, J  is the total number of interactions of risk-
group k with open edges with the set of edges with boxes 
Λ as �Λ . Then by Theorem 4.2 of Grimmett (1995) and by 
Picard–Lindelof theorem there exists a unique random opin-
ion in G (Board and Meyer-ter Vehn 2021).   ◻

Proof of Proposition 3 I have divided the proof into two 
cases.

���� � : There are total K-risk-groups with an indi-
vidual risk-group k such that k = 1, 2,… ,K  . I assume 
that m ⊂ ℕ , a set ℶ with condition |ℶ| = m + 1 , and 

ĥ(F) = Wk,𝜒−k ,𝜔−k
(F−) +Wl,𝜒−l,𝜔−l

(F+)

=
[
Wk,𝜒−k ,𝜔−k

(F−) ∧Wl,𝜒−l,𝜔−l
(F−)

]

+
[
Wk,𝜒−k ,𝜔−k

(F+) ∧Wl,𝜒−l,𝜔−l
(F+)

]
.

ĥ(F) ≥ inf

I∑
i=1

[
Wk,𝜒−k ,𝜔−k

(Gi) ∧Wl,𝜒−l,𝜔−l
(Gi)

]
,

ĥ(Gi) ≤ Wk,𝜒−k ,𝜔−k
(Gi) ∧Wl,𝜒−l,𝜔−l

(Gi).

ĥ(F) =

I∑
i=1

ĥ(Gi) ≤
I∑

i=1

[
Wk,𝜒−k ,𝜔−k

(Gi) ∧Wl,𝜒−l,𝜔−l
(Gi)

]

|||
|||
(
Wk,�−k�−k

(s) −Wl,�−l,�−l
(s)

)|||
|||

= 1 − inf

I∑
i=1

(
Wk,�−k ,�−k

(s,Gi) ∧Wl,�−l,�−l
(s,Gi)

)
,

ĥ(F) = 1 −
|||
|||
(
Wk,𝜒−k𝜔−k

(s) −Wl,𝜒−l,𝜔−l
(s)

)|||
|||.
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affinely independent state variables and lock-down intensity 
{Zk(s)}k∈ℶ ⊂ ℝ

6K × G such that Ξ̃ coincides with the simplex 
convex set of {Zk(s)}k∈ℶ . For each Z(s) ⊂ Ξ , there is a unique 
way in which the vector Z(s) can be written as a convex 
combination of the extreme valued state variables and lock-
down intensity, namely, Z(s) =

∑
k∈ℶ 𝛼k(s,Z)Zk(s) such that ∑

k∈ℶ 𝛼k(s,Z) = 1 and 𝛼k(s,Z) ≥ 0, ∀k ∈ ℶ and s ∈ [0, t] . For 
each risk-group k, define a set

By the continuity of the quantum Lagrangian of kth 
risk-group {Lk}k∈ℶ , Ξ̃k is closed. Now we claim that, for 
every ℶ̃ ⊂ ℶ , the convex set consists of {Zk}k∈ℶ̃ is proper 
subset of 

⋃
k∈ℶ̃

�Ξk . Suppose ℶ̃ ⊂ ℶ and Z(s) is also in the 
non-empty, convex set consists of the state variables and 
the lock-down intensity {Zk(s)}k∈ℶ̃ . Therefore, there exists 
k ∈ ℶ̃ such that �k(s,Z) ≥ �k

[
Lk(s,Z)

]
 which implies 

Z(s) ∈ Ξ̃ ⊂
⋃

l∈ℶ̃ Ξ̃l . By Knaster–Kuratowski–Mazurkie-
wicz Theorem, there is Z̄∗

k
∈
⋂

k∈ℶ Ξ̃k , in other words, the 
condition 𝛼k

[
Lk(s, Z̄

∗
k
)
] ≤ 𝛼k(s, Z̄

∗
k
) for all k ∈ ℶ and for each 

s ∈ [0, t] (González-Dıaz et al. 2010). Hence, Lk(s, Z̄
∗
k
) = Z̄∗

k
 

or Lk has a fixed-point.
���� �� : Again consider �Ξ ⊂ ℝ

6K × G is a non-empty, 
convex and compact set. Then for m ⊂ ℕ , a set ℶ with con-
dition |ℶ| = m + 1 , and affinely independent state variables 
and lock-down intensity {Zk(s)}k∈ℶ ⊂ ℝ

6K × G such that Ξ̃ 
is a proper subset of the convex set based on {Zk(s)}k∈ℶ for 
all s ∈ [0, t] . Among all the simplices, suppose ℵ̂ is the set 
with smallest m. Let Z̃(s) be a dynamic point in the m-dimen-
sional interior of ℵ̂ . Define L̂k , an extension of Lk to the 
whole simplex ℵ̂ , as follows. For every Z(s) ∈ ℵ̂ , let

and,

Therefore, 𝜁 is continuous which implies L̂k(s,Z) is con-
tinuous. Since the codomain of L̂k(s,Z) is in Ξ̃ , every fixed-
point of L̂k(s,Z) is also a fixed-point of Lk . Now by ���� � , 
L̂k(s,Z) has a fixed-point and therefore, Lk also does.   ◻

Proof of Theorem 1 From the quantum Lagrangian function 
expressed in Eq. (12), the Euclidean action function for risk-
group k in [0, t] is given by

Ξ̃k ∶=
{
Z ∈ Ξ̃ ∶ �k[Lk(s,Z)] ≤ �k(s,Z)

}
.

𝜁 (s,Z) ∶ max
{
𝜁 ∈ [0, 1] ∶ (1 − 𝜁 )Z̃(s) + 𝜁Z(s) ∈ �Ξ

}
, ∀s ∈ [0, 1],

L̂k(s,Z) ∶ Lk

{[
1 − 𝜁(s,Z)

]
Z̃(s) + 𝜁 (s,Z)Z(s)

}
.

where 𝜆i > 0 for all i = {1, 2, 3, 4} are time independent 
quantum Lagrangian multiplier. As at the beginning of the 
small time interval [s, s + �] , agent k does not have any future 
information, they make expectations based on their all state 
variables {zk, Sk, Ik,Rk,Wk} . For a penalization constant 
L𝜀 > 0 and for time interval [s, s + �] such that � ↓ 0 define 
a transition function from s to s + � as

where Ψk
s
(zk, Sk, Ik,Rk,Wk) is the value of the transition func-

tion at time s with the initial condition

and the action function of risk-group k is,

where gk(zk, Sk, Ik,Rk,Wk) ∈ C2([0, t] ×ℝ
5K) such that 

Assumptions 1- 3 hold and Ỹk(�) = gk[zk, Sk, Ik,Rk,Wk] , 
where Ỹk is an Itô process (Øksendal 2003) and,

Ak
0,t
(zk, Sk, Ik,Rk,Wk)

= ∫
t

0

�s

{
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]

+ �̆�kȟ𝜛k(s)Ik(s)ds

+ 𝜆1
[
Δzk(s) − [𝜅0{1 − ek(s)} − 𝜅1zk(s)p(𝜂ki , s)]ds

−𝜎k
0
[zk(s) − z∗

k
]dBk

0
(s)

]
+ 𝜆2

[
ΔSk(s) − 𝜇1(s, ek, zk, Sk, Ik,Rk)ds − 𝜎k

5
(Sk)dB

k
2

]
+ 𝜆3

[
ΔIk(s) − 𝜇2(s, ek, zk, Sk, Ik,Rk)ds − 𝜎k

6
(Ik)dB

k
2

]
+ 𝜆4

[
ΔRk(s) − 𝜇3(s, ek, zk, Sk, Ik,Rk)ds − 𝜎k

7
(Rk)dB

k
2

]
+ 𝜆5

[
ΔWk(s) − 𝜇4(s, ek, zk, Sk, Ik,Rk)ds

+𝜎k
10
(s, ek,𝜔k,𝜔l)dB

k
2

]}
,

(19)

Ψk

s,s+�
(z

k
, S

k
, I

k
,R

k
,W

k
) =

1

L�
∫
ℝ5K

exp[−�A
s,s+�(zk, Sk, Ik,Rk

,W
k
)]

Ψk

s
(z

k
, S

k
, I

k
,R

k
,W

k
)

× dz
k
× dS

k
× dI

k
× dR

k
× dW

k
,

Ψk
0
(zk, Sk, Ik,Rk,Wk) = Ψk

0

As,s+𝜀(zk, Sk, Ik,Rk,Wk)

= ∫
s+𝜀

s

�𝜈

{[
exp{−𝜌𝜈}

K∑
k=1

𝜃kzk(𝜈)
[
Nk − Ek(𝜈)

]

+�̆�kȟ𝜛k(𝜈)Ik(𝜈)
]
d𝜈

+ gk
[
𝜈 + Δ𝜈, Sk(𝜈) + ΔSk(𝜈), IK

+ΔIk(𝜈),Rk(𝜈) + ΔRk(𝜈),Wk(𝜈) + ΔWk(𝜈)
]}

,
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where Δzk = zk(s + �) − zk(s) ,  ΔSk = Sk(s + �) − Sk(s) , 
ΔIk = Ik(s + �) − Ik(s)  ,  ΔRk = Rk(s + �) − Rk(s)  a n d 
ΔWk = Wk(s + �) −Wk(s) . In Eq. (19) L� is a positive penali-
zation constant such that the value of Ψk

s,s+�
(.) becomes 1. 

One can think this transition function Ψk
s,s+�

(.) as some tran-
sition probability function on Euclidean space. I divide the 
time interval [0, t] into n small equal length time intervals 
[s, s + �] such that � = s + � . After using Fubini’s theo-
rem, the Euclidean action function for time interval [s, �] 
becomes,

A f t e r  u s i n g  t h e  f a c t  t h a t 
[Δz

k
(s)]2 = [ΔS

k
(s)]2 = [ΔI

k
(s)]2 = [ΔR

k
(s)]2 = [ΔW

k
(s)]2 = � , and 

�s[ΔB
k
0
] = �s[ΔB

k
2
] = �s[ΔB

k
3
] = �s[ΔB

k
4
] = �s[ΔB

k
7
] for all 

� ↓ 0 , (with initial conditions zk(0), Sk(0), Ik(0),Rk(0),Wk(0) ) 
Itô’s formula and Baaquie (1997) imply,

gk(zk, Sk, Ik,Rk,Wk)

= �1
[
Δzk(s) − [�0{1 − ek(s)} − �1zk(s)p(�ki , s)]ds

−�k
0
[zk(s) − z∗

k
]dBk

0
(s)

]
+ �2

[
ΔSk(s) − �1(s, ek, zk, Sk, Ik,Rk)ds − �k

5
(Sk)dB

k
2

]
+ �3

[
ΔIk(s) − �2(s, ek, zk, Sk, Ik,Rk)ds − �k

6
(Ik)dB

k
2

]
+ �4

[
ΔRk(s) − �3(s, ek, zk, Sk, Ik,Rk)ds − �k

7
(Rk)dB

k
2

]
+ �5

[
ΔWk(s) − �4(s, ek, zk, Sk, Ik,Rk)ds + �k

10
(s, ek,�k,�l)dB

k
2

]
+ o(1),

As,𝜏(zk, Sk, Ik,Rk,Wk)

= �s

{
∫

𝜏

s

[
exp{−𝜌𝜈}

K∑
k=1

𝜃kzk(𝜈)
[
Nk − Ek(𝜈)

]

+�̆�kȟ𝜛k(𝜈)Ik(𝜈)
]
d𝜈

+ gk
[
𝜈 + Δ𝜈, Sk(𝜈) + ΔSk(𝜈), IK

+ΔIk(𝜈),Rk(𝜈) + ΔRk(𝜈),Wk(𝜈) + ΔWk(𝜈)
]}

.

where gk = gk(zk, Sk, Ik,Rk,Wk).

As,𝜏(zk, Sk, Ik,Rk,Wk) = exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]

+ �̆�kȟ𝜛k(s)Ik(s)

+ gk +
𝜕

𝜕s
gk +

𝜕

𝜕zk
gk × [𝜅0{1 − ek(s)} − 𝜅1zk(s)p(𝜂ki , s)]

+
𝜕

𝜕Sk
gk𝜇1(s, ek, zk, Sk, Ik,Rk)

+
𝜕

𝜕Ik
gk𝜇2(s, ek, zk, Sk, Ik,Rk)

+
𝜕

𝜕Rk

gk𝜇3(s, ek, zk, Sk, Ik,Rk)

+
𝜕

𝜕Wk

gk𝜇4(s, ek, zk, Sk, Ik,Rk)

+
1

2

{
[𝜎k

0
(zk(s) − z∗

k
)]2

𝜕2

𝜕z2
k

gk + [𝜎k
5
(Sk)]

2 𝜕2

𝜕S2
k

gk

+[𝜎k
6
(Ik)]

2 𝜕
2

𝜕I2
k

gk + [𝜎k
7
(Rk)]

2 𝜕2

𝜕R2
k

gk

+[𝜎k
10
(s, ek,𝜔k,𝜔l)]

2 𝜕2

𝜕W2
k

gk + 2
[
𝜎k
5
(Sk)[𝜎

k
0
(zk(s) − z∗

k
)]

×
𝜕2

𝜕zk𝜕Sk
gk + 𝜎k

6
(Ik)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Ik
gk

+𝜎k
7
(Rk)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Rk

gk

+[𝜎k
0
(zk(s) − z∗

k
)]𝜎k

10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕zk𝜕Wk

gk

+𝜎k
5
(Sk)𝜎

k
6
(Ik)

𝜕2

𝜕Sk𝜕Ik
gk + 𝜎k

5
(Sk)𝜎

k
7
(Rk)

𝜕2

𝜕Sk𝜕Rk

gk

+𝜎k
5
(Sk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Sk𝜕Wk

gk + 𝜎k
6
(Ik)𝜎

k
7
(Rk)

×
𝜕2

𝜕Ik𝜕Rk

gk + 𝜎k
6
(Ik)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Ik𝜕Wk

gk

+𝜎k
7
(Rk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Rk𝜕Wk

gk

]}
+ o(1),
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Result in Eq. (19) implies,

(20)

Ψk
s,s+𝜀

(zk, Sk, Ik,Rk,Wk)

=
1

L𝜀 ∫ℝ5K

exp

[
−𝜀

[
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]
+ �̆�kȟ𝜛k(s)Ik(s)

+ gk +
𝜕

𝜕s
gk +

𝜕

𝜕zk
gk × [𝜅0{1 − ek(s)} − 𝜅1zk(s)p(𝜂ki , s)]

+
𝜕

𝜕Sk
gk𝜇1(s, ek, zk, Sk, Ik,Rk) +

𝜕

𝜕Ik
gk𝜇2(s, ek, zk, Sk, Ik,Rk)

+
𝜕

𝜕Rk

gk𝜇3(s, ek, zk, Sk, Ik,Rk) +
𝜕

𝜕Wk

gk𝜇4(s, ek, zk, Sk, Ik,Rk)

+
1

2

{
[𝜎k

0
(zk(s) − z∗

k
)]2

𝜕2

𝜕z2
k

gk + [𝜎k
5
(Sk)]

2 𝜕2

𝜕S2
k

gk

+[𝜎k
6
(Ik)]

2 𝜕
2

𝜕I2
k

gk + [𝜎k
7
(Rk)]

2 𝜕2

𝜕R2
k

gk

+[𝜎k
10
(s, ek,𝜔k,𝜔l)]

2 𝜕2

𝜕W2
k

gk + 2
[
𝜎k
5
(Sk)[𝜎

k
0
(zk(s) − z∗

k
)]

×
𝜕2

𝜕zk𝜕Sk
gk + 𝜎k

6
(Ik)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Ik
gk

+𝜎k
7
(Rk)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Rk

gk

+[𝜎k
0
(zk(s) − z∗

k
)]𝜎k

10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕zk𝜕Wk

gk

+𝜎k
5
(Sk)𝜎

k
6
(Ik)

𝜕2

𝜕Sk𝜕Ik
gk + 𝜎k

5
(Sk)𝜎

k
7
(Rk)

𝜕2

𝜕Sk𝜕Rk

gk

+𝜎k
5
(Sk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Sk𝜕Wk

gk + 𝜎k
6
(Ik)𝜎

k
7
(Rk)

×
𝜕2

𝜕Ik𝜕Rk

gk + 𝜎k
6
(Ik)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Ik𝜕Wk

gk

+𝜎k
7
(Rk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Rk𝜕Wk

gk

]}] ]

× Ψk
s
(zk, Sk, Ik,Rk,Wk) × dzk

× dSk × dIk × dRk × dWk + o(𝜀1∕2).
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For � ↓ 0 define a new transition probability Ψk�
s

 centered 
around time � . A Taylor series expansion (up to second 
order) of the left hand side of Eq. (20) yields,

as � ↓ 0 . For fixed s and �  let zk(s) = zk(�) + �1 , 
Sk(s) = Sk(�) + �2 , Ik(s) = Ik(�) + �3 , Rk(s) = Rk(�) + �4 and 
Wk(s) = Wk(�) + �5 . For some finite positive numbers ci with 
i = 1,… , 5 assume |�1| ≤ c1�

zk(s)
 , |�2| ≤ c2�

Sk(s)
 , |�3| ≤ c3�

Ik(s)
 , 

|�4| ≤ c4�

Rk(s)
 and, |�5| ≤ c5�

Wk(s)
 . Therefore, we get upper bounds 

of each state variable in this pandemic control model as 
zk(s) ≤ c1�∕(�1)

2  ,  Sk(s) ≤ c2�∕(�2)
2  ,  Ik(s) ≤ c3�∕(�3)

2  , 
Rk(s) ≤ c4�∕(�4)

2 and Wk(s) ≤ c5�∕(�5)
2 . Furthermore, by 

Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk) + 𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕s
+ o(𝜀)

=
1

L𝜀 ∫ℝ5K

exp

[
−𝜀

[
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]

+ �̆�kȟ𝜛k(s)Ik(s)

+ gk +
𝜕

𝜕s
gk +

𝜕

𝜕zk
gk × [𝜅0{1 − ek(s)} − 𝜅1zk(s)p(𝜂ki , s)]

+
𝜕

𝜕Sk
gk𝜇1(s, ek, zk, Sk, Ik,Rk) +

𝜕

𝜕Ik
gk𝜇2(s, ek, zk, Sk, Ik,Rk)

+
𝜕

𝜕Rk

gk𝜇3(s, ek, zk, Sk, Ik,Rk) +
𝜕

𝜕Wk

gk𝜇4(s, ek, zk, Sk, Ik,Rk)

+
1

2

{
[𝜎k

0
(zk(s) − z∗

k
)]2

𝜕2

𝜕z2
k

gk + [𝜎k
5
(Sk)]

2 𝜕2

𝜕S2
k

gk

+[𝜎k
6
(Ik)]

2 𝜕
2

𝜕I2
k

gk + [𝜎k
7
(Rk)]

2 𝜕2

𝜕R2
k

gk

+[𝜎k
10
(s, ek,𝜔k,𝜔l)]

2 𝜕2

𝜕W2
k

gk + 2
[
𝜎k
5
(Sk)[𝜎

k
0
(zk(s) − z∗

k
)]

×
𝜕2

𝜕zk𝜕Sk
gk + 𝜎k

6
(Ik)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Ik
gk

+𝜎k
7
(Rk)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Rk

gk

+[𝜎k
0
(zk(s) − z∗

k
)]𝜎k

10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕zk𝜕Wk

gk

+𝜎k
5
(Sk)𝜎

k
6
(Ik)

𝜕2

𝜕Sk𝜕Ik
gk + 𝜎k

5
(Sk)𝜎

k
7
(Rk)

𝜕2

𝜕Sk𝜕Rk

gk

+𝜎k
5
(Sk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Sk𝜕Wk

gk + 𝜎k
6
(Ik)𝜎

k
7
(Rk)

×
𝜕2

𝜕Ik𝜕Rk

gk + 𝜎k
6
(Ik)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Ik𝜕Wk

gk

+𝜎k
7
(Rk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Rk𝜕Wk

gk

]}] ]

× Ψk
s
(zk, Sk, Ik,Rk,Wk) × dzk × dSk

× dIk × dRk × dWk + o(𝜀1∕2),

Fröhlich’s reconstruction Theorem (Simon 1979; Pramanik 
2020, 2021d) and Assumptions 1–3 imply

as � ↓ 0 . For risk-group k ∈ {1, 2,… ,K} define a function
(21)

Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk) + 𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕s
+ o(𝜀)

=
1

L𝜀 ∫ℝ5K

[
Ψk𝜏

s
(zk, Sk, Ik,Rk,Wk) + 𝜍1

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕zk

+𝜍2
𝜕Ψk𝜏

s
(zk, Sk, Ik,Rk,Wk)

𝜕Sk
+ 𝜍3

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕Ik

+𝜍4
𝜕Ψk𝜏

s
(zk, Sk, Ik,Rk,Wk)

𝜕Rk

+ 𝜍5
𝜕Ψk𝜏

s
(zk, Sk, Ik,Rk,Wk)

𝜕Wk

+ o(𝜀)

]

× exp

[
−𝜀

[
exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]
+ �̆�kȟ𝜛k(s)Ik(s)

+ gk +
𝜕

𝜕s
gk +

𝜕

𝜕zk
gk × [𝜅0{1 − ek(s)} − 𝜅1zk(s)p(𝜂ki , s)]

+
𝜕

𝜕Sk
gk𝜇1(s, ek, zk, Sk, Ik,Rk) +

𝜕

𝜕Ik
gk𝜇2(s, ek, zk, Sk, Ik,Rk)

+
𝜕

𝜕Rk

gk𝜇3(s, ek, zk, Sk, Ik,Rk) +
𝜕

𝜕Wk

gk𝜇4(s, ek, zk, Sk, Ik,Rk)

+
1

2

{
[𝜎k

0
(zk(s) − z∗

k
)]2

𝜕2

𝜕z2
k

gk + [𝜎k
5
(Sk)]

2 𝜕2

𝜕S2
k

gk

+[𝜎k
6
(Ik)]

2 𝜕
2

𝜕I2
k

gk + [𝜎k
7
(Rk)]

2 𝜕2

𝜕R2
k

gk

+[𝜎k
10
(s, ek,𝜔k,𝜔l)]

2 𝜕2

𝜕W2
k

gk + 2
[
𝜎k
5
(Sk)[𝜎

k
0
(zk(s) − z∗

k
)]

×
𝜕2

𝜕zk𝜕Sk
gk + 𝜎k

6
(Ik)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Ik
gk

+𝜎k
7
(Rk)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Rk

gk

+[𝜎k
0
(zk(s) − z∗

k
)]𝜎k

10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕zk𝜕Wk

gk

+𝜎k
5
(Sk)𝜎

k
6
(Ik)

𝜕2

𝜕Sk𝜕Ik
gk + 𝜎k

5
(Sk)𝜎

k
7
(Rk)

𝜕2

𝜕Sk𝜕Rk

gk

+𝜎k
5
(Sk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Sk𝜕Wk

gk + 𝜎k
6
(Ik)𝜎

k
7
(Rk)

×
𝜕2

𝜕Ik𝜕Rk

gk + 𝜎k
6
(Ik)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Ik𝜕Wk

gk

+𝜎k
7
(Rk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Rk𝜕Wk

gk

]}] ]

× Ψk
s
(zk, Sk, Ik,Rk,Wk) × dzk × dSk

× dIk × dRk × dWk + o(𝜀1∕2),
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Therefore, after using the function f̃ (s, ek, zk, Sk, Ik,Rk,Wk) 
Eq. (21) yields,

f̃k(s, ek, zk, Sk, Ik,Rk,Wk)

= exp{−𝜌s}

K∑
k=1

𝜃kzk(s)
[
Nk − Ek(s)

]
+ �̆�kȟ𝜛k(s)Ik(s)

+ gk +
𝜕

𝜕s
gk +

𝜕

𝜕zk
gk × [𝜅0{1 − ek(s)} − 𝜅1zk(s)p(𝜂ki , s)]

+
𝜕

𝜕Sk
gk𝜇1(s, ek, zk, Sk, Ik,Rk) +

𝜕

𝜕Ik
gk𝜇2(s, ek, zk, Sk, Ik,Rk)

+
𝜕

𝜕Rk

gk𝜇3(s, ek, zk, Sk, Ik,Rk) +
𝜕

𝜕Wk

gk𝜇4(s, ek, zk, Sk, Ik,Rk)

+
1

2

{
[𝜎k

0
(zk(s) − z∗

k
)]2

𝜕2

𝜕z2
k

gk + [𝜎k
5
(Sk)]

2 𝜕2

𝜕S2
k

gk

+[𝜎k
6
(Ik)]

2 𝜕
2

𝜕I2
k

gk + [𝜎k
7
(Rk)]

2 𝜕2

𝜕R2
k

gk

+[𝜎k
10
(s, ek,𝜔k,𝜔l)]

2 𝜕2

𝜕W2
k

gk + 2
[
𝜎k
5
(Sk)[𝜎

k
0
(zk(s) − z∗

k
)]

×
𝜕2

𝜕zk𝜕Sk
gk + 𝜎k

6
(Ik)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Ik
gk

+𝜎k
7
(Rk)[𝜎

k
0
(zk(s) − z∗

k
)]

𝜕2

𝜕zk𝜕Rk

gk

+[𝜎k
0
(zk(s) − z∗

k
)]𝜎k

10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕zk𝜕Wk

gk

+𝜎k
5
(Sk)𝜎

k
6
(Ik)

𝜕2

𝜕Sk𝜕Ik
gk + 𝜎k

5
(Sk)𝜎

k
7
(Rk)

𝜕2

𝜕Sk𝜕Rk

gk

+𝜎k
5
(Sk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Sk𝜕Wk

gk + 𝜎k
6
(Ik)𝜎

k
7
(Rk)

×
𝜕2

𝜕Ik𝜕Rk

gk + 𝜎k
6
(Ik)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Ik𝜕Wk

gk

+𝜎k
7
(Rk)𝜎

k
10
(s, ek,𝜔k,𝜔l)

𝜕2

𝜕Rk𝜕Wk

gk

]}
.

Consider f̃k(s, ek, 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜍5) is a C2-function, then doing 
the Taylor series expansion up to second order yields

Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk) + 𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕s
+ o(𝜀)

=
1

L𝜀
Ψk𝜏

s
(zk, Sk, Ik,Rk,Wk)∫

ℝ5K

exp
{
−𝜀f̃k(s, ek, 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜍5)

} 5∏
i=1

d𝜍i

+
1

L𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕zk ∫
ℝ5K

𝜍1

exp
{
−𝜀f̃k(s, ek, 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜍5)

} 5∏
i=1

d𝜍i

+
1

L𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕Sk ∫
ℝ5K

𝜍2

exp
{
−𝜀f̃k(s, ek, 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜍5)

} 5∏
i=1

d𝜍i

+
1

L𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕Ik ∫
ℝ5K

𝜍3

exp
{
−𝜀f̃k(s, ek, 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜍5)

} 5∏
i=1

d𝜍i

+
1

L𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕Rk
∫
ℝ5K

𝜍4

exp
{
−𝜀f̃k(s, ek, 𝜍4, 𝜍2, 𝜍3, 𝜍4, 𝜍5)

} 5∏
i=1

d𝜍i

+
1

L𝜀

𝜕Ψk𝜏
s
(zk, Sk, Ik,Rk,Wk)

𝜕Wk
∫
ℝ5K

𝜍5

exp
{
−𝜀f̃k(s, ek, 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜍5)

} 5∏
i=1

d𝜍i + o(𝜀1∕2).
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where

f̃k(s, ek(s), 𝜍1, 𝜍2, 𝜍3, 𝜍4, 𝜍5)

= f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍1 − zk(𝜏)]

𝜕

𝜕zk
f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍2 − Sk(𝜏)]

𝜕

𝜕Sk
f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍3 − Ik(𝜏)]

𝜕

𝜕Ik
f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍4 − Rk(𝜏)]

𝜕

𝜕Rk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍5 −Wk(𝜏)]

𝜕

𝜕Wk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+
1

2
(Ξ1 + 2Ξ2) + o(𝜀),

Ξ1 = [𝜍1 − zk(𝜏)]
2

𝜕2

𝜕z2
k

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍2 − Sk(𝜏)]
2

𝜕2

𝜕S2
k

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍3 − Ik(𝜏)]
2

𝜕2

𝜕I2
k

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍4 − Rk(𝜏)]
2

𝜕2

𝜕R2
k

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍5 −Wk(𝜏)]
2

𝜕2

𝜕W2
k

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏)),

and,

as � ↓ 0 and Δek(s) ↓ 0 . Define m̆1 = 𝜍1 − zk , m̆2 = 𝜍2 − Sk , 
m̆3 = 𝜍3 − Ik , m̆4 = 𝜍4 − Rk and, m̆5 = 𝜍5 −Wk such that 
dm̆i = d𝜍i for all i = {1,… , 5} . Therefore, after denoting 
f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏)) = f̃k above expres-
sion becomes

Ξ2 = [𝜍1 − zk(𝜏)][𝜍2 − Sk(𝜏)]

𝜕2

𝜕zk𝜕Sk
f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍1 − zk(𝜏)][𝜍3 − Ik(𝜏)]

𝜕2

𝜕zk𝜕Ik
f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍1 − zk(𝜏)][𝜍4 − Rk(𝜏)]

𝜕2

𝜕zk𝜕Rk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍1 − zk(𝜏)][𝜍5 −Wk(𝜏)]

𝜕2

𝜕zk𝜕Wk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍2 − Sk(𝜏)][𝜍3 − Ik(𝜏)]

𝜕2

𝜕Sk𝜕Ik
f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍2 − Sk(𝜏)][𝜍4 − Rk(𝜏)]

𝜕2

𝜕Sk𝜕Rk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍2 − Sk(𝜏)][𝜍5 −Wk(𝜏)]

𝜕2

𝜕Sk𝜕Wk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍3 − Ik(𝜏)][𝜍4 − Rk(𝜏)]

𝜕2

𝜕Ik𝜕Rk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍3 − Ik(𝜏)][𝜍5 −Wk(𝜏)]

𝜕2

𝜕Ik𝜕Wk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏))

+ [𝜍4 − Rk(𝜏)][𝜍5 −Wk(𝜏)]

𝜕2

𝜕Rk𝜕Wk

f̃k(s, ek(s), 𝜍1(𝜏), 𝜍2(𝜏), 𝜍3(𝜏), 𝜍4(𝜏), 𝜍5(𝜏)),
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Let

and

and

(22)

∫
ℝ5K

exp
{
−𝜀f̃k(s, ek, Sk, Ik,Rk,Wk)

} 5∏
i=1

d𝜍i

= ∫
ℝ5K

{
− 𝜀

[
f̃k + m̆1

𝜕f̃k
𝜕zk

+ m̆2

𝜕f̃k
𝜕Sk

+ m̆3

𝜕f̃k
𝜕Ik

+ m̆4

𝜕f̃k
𝜕Rk

+ m̆5

𝜕f̃k
𝜕Wk

+
1

2

(
m̆2

1

𝜕2 f̃k

𝜕z2
k

+ m̆2
2

𝜕2 f̃k

𝜕S2
k

+ m̆2
3

𝜕2 f̃k

𝜕I2
k

+ m̆2
4

𝜕2 f̃k

𝜕R2
k

+ m̆2
5

𝜕2 f̃k

𝜕W2
k

+ 2

[
m̆1m̆2

𝜕2 f̃k
𝜕zk𝜕Sk

+ m̆1m̆3

𝜕2 f̃k
𝜕zk𝜕Ik

+ m̆1m̆4

𝜕2 f̃k
𝜕zk𝜕Rk

+ m̆1m̆5

𝜕2 f̃k
𝜕zk𝜕Wk

+ m̆2m̆3

𝜕2 f̃k
𝜕Sk𝜕Ik

+ m̆2m̆4

𝜕2 f̃k
𝜕Sk𝜕Rk

+ m̆2m̆5

𝜕2 f̃k
𝜕Sk𝜕Wk

+ m̆3m̆4

𝜕2 f̃k
𝜕Ik𝜕Rk

+m̆3m̆5

𝜕2 f̃k
𝜕Ik𝜕Wk

+ m̆4m̆5

𝜕2 f̃k
𝜕Rk𝜕Wk

])]} 5∏
i=1

d𝜍i.

�k =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2 f̃k
𝜕z2

k

𝜕2 f̃k
𝜕zk𝜕Sk

𝜕2 f̃k
𝜕zk𝜕Ik

𝜕2 f̃k
𝜕zk𝜕Rk

𝜕2 f̃k
𝜕zk𝜕Wk

𝜕2 f̃k
𝜕Sk𝜕zk

𝜕2 f̃k
𝜕S2

k

𝜕2 f̃k
𝜕Sk𝜕Ik

𝜕2 f̃k
𝜕Sk𝜕Rk

𝜕2 f̃k
𝜕Sk𝜕Wk

𝜕2 f̃k
𝜕Ik𝜕zk

𝜕2 f̃k
𝜕Ik𝜕Sk

𝜕2 f̃k
𝜕I2

k

𝜕2 f̃k
𝜕Ik𝜕Rk

𝜕2 f̃k
𝜕Ik𝜕Wk

𝜕2 f̃k
𝜕Rk𝜕zk

𝜕2 f̃k
𝜕Rk𝜕Sk

𝜕2 f̃k
𝜕Rk𝜕Ik

𝜕2 f̃k
𝜕R2

k

𝜕2 f̃k
𝜕Rk𝜕Wk

𝜕2 f̃k
𝜕Wk𝜕zk

𝜕2 f̃k
𝜕Wk𝜕Sk

𝜕2 f̃k
𝜕Wk𝜕Ik
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k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

m̆k =

⎡
⎢⎢⎢⎢⎢⎣

m̆1

m̆2

m̆3

m̆4

m̆5

⎤
⎥⎥⎥⎥⎥⎦

,

−Jk =

⎡
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𝜕

𝜕zk
f̃k

𝜕

𝜕Sk
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𝜕
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𝜕
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𝜕

𝜕Wk

f̃k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the symmetric matrix �k is assumed to be positive 
semi-definite. The integrand in Eq. (22) becomes a shifted 
Gaussian integral,

where JT
k
 is the transposition of Jk , m̆k

T is the transposition 
of m̆k and 

(
�k

)−1 is the inverse of �k.Hence,

such that the inverse matrix 
(
�k

)−1
> 0 exists. Similarly,

∫
ℝ5K
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�
− 𝜀

�
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T
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T
�km̆k

��
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�
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�
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(23)
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(24)
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The system of equations expressed in (23) through (24) 
implies that the Wick-rotated Schrödinger type equation or 
the Fokker–Plank type equation is,

as � ↓ 0 . Assuming L𝜀 = 𝜋∕
√
𝜀��k� > 0 yields,

as � ↓ 0 . As zk ≤ �∕c1�
2
1
 , assume |�−1

k
| ≤ 2c1�(1 − �−1

1
) 

such that |(2�k)
−1 + zk| ≤ c1� . In the similar fashion 

we assume |(2�k)
−1 + Sk| ≤ c2� , |(2�k)

−1 + Ik| ≤ c3� , 
|(2�k)

−1 + Rk| ≤ c4� and |(2�k)
−1 +Wk| ≤ c5� . There-

fore, |�−1
k
| ≤ 2�min

{
c1(1 − �−1

1
), c2(1 − �−1

2
), c3(1 − �−1

3
),

c4(1 − �−1
4
), c5(1 − �−1

5
)
}

 such that |(2�k)
−1 + zk| ↓ 0 , 

|(2�k)
−1 + Sk| ↓ 0 , |(2�k)

−1 + Ik| ↓ 0 , |(2�k)
−1 + Rk| ↓ 0 

and |(2�k)
−1 +Wk| ↓ 0 . Hence,
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+ o(𝜀1∕2),
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(zk, Sk, Ik,Rk,Wk)
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=
[
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1

4
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(
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1

2

(
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)−1
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]𝜕Ψk𝜏
s
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[
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(
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}
+ o(𝜀1∕2),

Therefore the Fokker–Plank type equation of this pandemic 
system is,

Finally, the solution of

is an optimal “lock down” intensity of risk-group k. 
Moreover,  as  �1 = zk(s) − zk(�) ,  �2 = Sk(s) − Sk(�) , 
�3 = Ik(s) − Ik(�) , �4 = Rk(s) − Rk(�) and �5 = Wk(s) −Wk(�) 
for all � ↓ 0 , in Eq.  (25), �i for all i = {1,… , 5} can be 
replaced by our original state variables. As the transition 
function Ψk�

s
(zk, Sk, Ik,Rk,Wk) is a solution of Eq. (25), the 

result follows.   ◻
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