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Abstract
Despite the near universal assumption of individuality in biology, there is little agreement about what individuals are and 
few rigorous quantitative methods for their identification. Here, we propose that individuals are aggregates that preserve a 
measure of temporal integrity, i.e., “propagate” information from their past into their futures. We formalize this idea using 
information theory and graphical models. This mathematical formulation yields three principled and distinct forms of 
individuality—an organismal, a colonial, and a driven form—each of which varies in the degree of environmental depend-
ence and inherited information. This approach can be thought of as a Gestalt approach to evolution where selection makes 
figure-ground (agent–environment) distinctions using suitable information-theoretic lenses. A benefit of the approach is that 
it expands the scope of allowable individuals to include adaptive aggregations in systems that are multi-scale, highly dis-
tributed, and do not necessarily have physical boundaries such as cell walls or clonal somatic tissue. Such individuals might 
be visible to selection but hard to detect by observers without suitable measurement principles. The information theory of 
individuality allows for the identification of individuals at all levels of organization from molecular to cultural and provides 
a basis for testing assumptions about the natural scales of a system and argues for the importance of uncertainty reduction 
through coarse-graining in adaptive systems.

Keywords  Shannon information · Mutual information · Information decomposition · Shared information · Synergy · 
Adaptation · Evolution · Control · Gestalt

The architecture of individuality

From the perspective of physics and chemistry, biological 
life is surprising. There is no physical or chemical theory 
from which we can predict biology, and yet if we break 
down any biological system into its elementary constituents, 
there is no chemistry or physics remaining unaccounted for 
(Gell-Mann 1995). The fact that physics and chemistry are 
universal—ongoing in stars, solar systems, and galaxies—
whereas to the best of our knowledge biology is exclusively 
a property of earth, supports the view that life is emergent. 
This stands in contrast to the universality of chemical phe-
nomena which can be predicted from quantum mechanical 

considerations in fundamental physics even when this proves 
to be computationally cumbersome or intractable (Defranc-
eschi and Le Bris 2000). The asymmetry in what can be 
gleaned from working down toward ever more elementary 
constituents versus working up through levels of aggrega-
tion is captured by the terms reductionism and emergence 
(Anderson 1972; Laughlin and Pines 2000). It is often 
difficult to predict physical properties of aggregates from 
knowledge of constituents, and this extends to questions 
of behavior where it is rarely clear how far “down” to go 
(Anderson 1972; Krakauer and Flack 2010a; Flack 2017b). 
There are assumed to be dominant microscopic scales for 
a given set of aggregate properties yet our understanding 
of what constitutes a fundamental unit (Gilbert et al. 2012; 
Daniels et al. 2016) and whether these units count as indi-
viduals, have implications for many areas of science, from 
taxonomy and cladistics through to physiology, behavior, 
and ecology (Clarke 2011; Wilson and Barker 2013).

It is almost inconceivable for us to imagine a biological 
science without a concept of units or individuality. After 
all, how could we speak about metabolism, behavior or 
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the genome without first establishing a unit or container 
of observation and measurement? Even Schrödinger in his 
prescient book, What is Life? (Schrodinger 2012), sought to 
explore the persistence of biological phenotypes of organ-
isms—or even features of ecosystems—through the lens 
of elementary and universal physical underpinnings, made 
strong prior assumptions about the reality of individual 
organisms:

“What degree of permanence do we encounter in heredi-
tary properties and what must we therefore attribute to the 
material structures which carry them? The answer to this can 
really be given without any special investigation. The mere 
fact that we speak of hereditary properties indicates that we 
recognize the permanence to be of the almost absolute. For 
we must not forget that what is passed on by the parent to 
the child is not just this or that peculiarity...Such features we 
may conveniently select for studying the laws of heredity. 
But actually it is the whole (four- dimensional) pattern of 
the phenotype, all the visible and manifest nature of the indi-
vidual, which is reproduced without appreciable change for 
generations, permanent within centuries—though not within 
tens of thousands of years—and borne at each transmission 
by the material in a structure of the nuclei of the two cells 
which unite to form the fertilized egg cell. That is a marvel.”

Schrödinger did not set out to derive the individual from 
fundamental physics but to reconcile existing and rather tra-
ditional conceptions of individuality (essentially the indi-
vidual as synonymous with the observable organism) with 
the new physics of quantum mechanics.

In this respect, Schrödinger was adopting a typically 
reductionist perspective, explaining features of biological 
science through first principles of physics (Weinberg 1995). 
In Schrödinger’s case, the physical feature of greatest impor-
tance to biology was the long-lived covalent bond. But for 
many reasons this line of approach has failed to deliver 
the deep and unifying insights based on physics (Ander-
son 1972), from which powerful biological ideas—such as 
adaptation or individuality—might be derived (Dupré 2009; 
Keller 2009).

The question we seek to address is more limited. How 
do we identify individuals without relying on features like 
cell membranes that may be solutions to challenges faced by 
particular systems for maintaining integrity rather than foun-
dational properties? We want to allow for the possibility that 
microbes and loosely bound ecological assemblages such as 
microbial mats and cultural and technological systems, when 
viewed with a mathematical lens, qualify as individuals even 
though their boundaries are more fluid than the organisms 
we typically allow. It may also be the case that entities cur-
rently considered individuals are indeed individuals but 
not in the way we think—organisms are more complicated 
than typical individuality definitions acknowledge. Humans 
for example contain approximately as many self-cells as 

symbiotic microbes (Andreu-Moreno and Sanjuán 2018), 
yet until recently with the advent of the concept of “holobi-
ont” (Gilbert et al. 2012), the microbe portion of the human 
cellular ecosystem was not typically considered part of the 
human individual.

In an ideal case, visitors to an exoplanet would have a 
procedure for identifying or “perceiving” individuals based 
on a quantitative survey with minimal prior knowledge of 
the type of life form that they expect to encounter. In the next 
sections of the paper, we briefly review a few key standard 
assumptions about individuality in biology and challenges 
to formalizing the concept. We then discuss a way forward 
and develop an information-theoretic formalism.

Standard assumptions and challenges

Here, we briefly review some of the criteria currently used 
to identify individuals. For a synoptic treatment of individu-
ality definitions see (Clarke 2011; Gilbert et al. 2012). A 
standard assumption is that replication presupposes indi-
viduality (Wilson and Barker 2013). Under this assumption, 
replicators typically include organisms that have developed 
from a fertilized egg, with individuality residing at the phe-
notypic level (see Dawkins 1983), and asexual microbes or 
clonal organisms for which individuality is defined based 
on shared genetic ancestry (Hughes 1990). The replicator 
assumption has served as the starting point for theorizing 
about what an individual is in a broad class of studies and 
out of this work has come three additional widely accepted 
properties of biological individuals: (1) they can increase in 
relative frequency by exploiting a source of metabolic free 
energy, (2) they respond adaptively to their environments, 
and (3) they are characterized by tightly coordinated rela-
tionships (chemical, physiological, computational) among 
their parts. The association of these properties with individu-
ality has raised debate about whether individuality applies 
only to “single” organisms, as the replicator assumption 
suggestions, or also to cells and aggregates like societies 
(Gilbert et al. 2012).

Beyond replicators as proxies for an individuals, almost 
all definitions of individuality assume a set members (indi-
vidual) and a set complement (environment). These are artic-
ulated in different ways including: (1) as an immunological 
concept pertaining to the idea of self and non-self (Pradeu 
2012), (2) as a temporal aggregate encoding a common past 
separable or independent from the past of other aggregates 
(ontogenetic or phylogenetic) (Rieppel 2013) (3) as a spa-
tially bounded collection of metabolic reactions insulated by 
a membrane from reactions in the environment (Rasmussen 
et al. 2004), and more abstractly, (4) as a unit of selection 
and evolutionary change (Buss 1987; Hughes 1990; Szath-
máry and Smith 1997; Callcott and Sterelny 2011).
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To reveal limitations of the above definitions and other 
hidden assumptions, a useful exercise is to consider aggre-
gates and processes that do not typically get classified as 
individuals (Santelices 1999).

Work on social insects and on a number of plant, fun-
gal and prokaryotic species demonstrates the possibility 
of individuality simultaneously at multiple organizational 
levels—physically distinct ants form aggregations called 
colonies and these colonies may be divided into spatially 
noncontiguous subsets (Gow et al. 2008; Esser et al. 2001). 
Furthermore, in many ant species the majority of worker 
ants do not replicate and the colony as whole does not repli-
cate, but contiguity between past and future is nonetheless a 
feature of the system. And, importantly, it is the combination 
of reproduction by a minority of colony members coupled 
to the industry of the majority that allows the colony as a 
whole to adapt in response to changes in the environment. 
Taken together, these two observations suggest it is possible 
to have individuality without replication and some forms of 
individuality benefit when replication is partial.

Viruses occupy a figurative twilight zone in biology. 
Declared by some non-living, and treated by most as a 
rather pathetic minimal limit of life, viruses constitute obli-
gate translational parasites, incapable of completing their 
life cycles without first appropriating the protein synthesis 
machinery of a host cell. The viral capsid contains a largely 
inert genome responsible for encoding only a small fraction 
of the proteins required for synthesizing a new virus genome 
and the capsid required for egressing from the infected cell. 
The virus exists only within the larger dynamical, regulatory 
network of the cell. Hence, the virus—understood as the 
active parasitic agent—is comprised largely of host encoded 
factors. And yet it can replicate, adapt, and has a persistent 
identity that distinguishes it from its “host” environment—
despite the fact it relies on its “host” environment for repli-
cating. And, recent work suggests that viruses like microbes 
form collective units that facilitate infection (Andreu-
Moreno and Sanjuán 2018). These observations suggest that 
viruses in aggregate are individuals but not in the conven-
tional sense. Rather they are what Krakauer (Krakauer and 
Zanotto 2006) has called “chimerical individuals.”

A way forward

The above examples are fascinating but without a rigorous 
definition of both the environment and the agent it is difficult 
to speak consistently of individuals. This is analogous to 
figure-ground separation in gestalt psychology or computer 
vision. The background of an image carries as much if not 
more information than the object, and the challenge is to 
separate the two rather than assume that they are already 
distinct and independent.

One possibility is that ant colonies and viruses [or 
humans, for that matter, composed of 37 trillion microbes 
and 30 trillion “human” cells (Andreu-Moreno and Sanjuán 
2018; Gilbert et al. 2012)] are only nominally individual—
a categorization resulting from human perceptual bias for 
certain kinds of aggregation. But if they are real in a deeper 
physical sense then how might we determine this? We 
propose:

•	 Individuality can be continuous, with the possible sur-
prising result that some processes possess greater indi-
viduality than others.

•	 Individuality can emerge at any level of organization. 
This requires we dispense with privileging a single level 
or object—for example, replicating cells or organisms—
and then defining individuality based on features of these 
objects, such as sequestered germ cells, vertical transmis-
sion of genetic material, a common pool of metabolic 
free energy, or coordinated immune responses. Although 
these features may indeed be effective proxies when we 
have significant prior knowledge of a system, our goal 
should be to find fundamental, rather that derivative, 
properties of individuality. Defining individuality around 
derived properties risks precluding the possibility of indi-
viduality in at super-organismal levels and in distributed 
systems.

•	 Individuality can be nested. Given that life is hierarchi-
cally organized into trophic and functional levels, we 
allow the possibility of multiple, parallel levels of indi-
viduality. We take this position to be related to the recent 
suggestion of (Rieppel 2013) where he argues for indi-
viduals based on hierarchical complexes of homeostatic 
properties and (Flack 2017a) who has proposed biologi-
cal systems are information hierarchies resulting from the 
collective effects of components estimating, in evolution-
ary or ecological time, regularities in their environments 
by coarse-graining or compressing time series data and 
using these perceived regularities to tune strategies. As 
coarse-grained (slow) variables become for components 
better predictors than microscopic behavior (which fluc-
tuates), and component estimates of these variables con-
verge, new levels of organization consolidate.

Allowing individuality to be continuous rather than binary, 
nested, and possible at any level, opens the door for more 
quantitative takes on familiar open questions in evolu-
tionary theory including the relation between the units of 
selection and temporal and spatial correlation and whether 
individuality at one scale impacts coherence and autonomy 
and “lower” and “higher” scales. These revealed time and 
space scales and their interdependencies should provide 
clues about the mechanisms driving their consolidation and 
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through this consolidation the emergence of individuals 
(Flack 2017a, b).

Given our proposition that individuals are aggregates 
that “propagate” information from the past to the future and 
have temporal integrity, and that individuality is a matter of 
degree, can be nested, distributed and possible at any level, 
how can we formalize individuality?

Formalizing individuality

We will take as our starting point measurements from a 
stochastic process. This could be a vector of chemical con-
centrations over time, the abundance of various cell types, 
or probabilities of observing coherent behaviors. We use 
coarse-grained or quantized information-theoretic filters the 
quantize the measurements. Some of these filters will reveal 
a coordinated pattern of behavior, whereas others will filter 
out all signal and detect nothing. Thus, signal amplitude 
given an appropriate filter becomes a means of discovering 
different forms of individuality. This is somewhat analo-
gous to observing patterns in infrared that would be invis-
ible using the wavelengths of visible light—individuality is 
revealed through characteristic patterns of information flow.

The basis for this approach to aggregation comes from 
information theory, and throughout this paper we assume 
that individuals are best thought of in terms of dynamical 
processes and not as stationary objects that leave informa-
tion-theoretic traces. In this respect, our approach might rea-
sonably be framed through the lens of “process philosophy” 
(Rescher 2007) which makes the elucidation of the dynami-
cal and coupled properties of natural phenomena the primary 
explanatory challenge. From the perspective of “process 
philosophy,” the tendency of starting with objects and then 
listing their properties—“substance metaphysics”—places 
the cart before the horse.

The origin of information

Our proposal that individuals are aggregates that propagate 
information from the past to the future and have temporal 
integrity can be viewed as a pragmatic operational definition 
that captures the idea there is something persistent about 
individuals. However, our motivation for defining individu-
ality this way is actually much deeper. It lies in the informa-
tion-theoretic interpretation of entropy, its connection to the 
physical theory of thermodynamics, and formal definition of 
work introduced by Clausius in the 1860s [see (Müller 2007) 
for an introduction to this history].

Briefly, work (displacement of a physical system) is 
produced by transferring thermal energy from one body to 
another (heat). Entropy captures, or measures, the loss in 
temperature over the range of motion of the working body. In 

other words, entropy measures the energy lost from the total 
available energy available for performing work. The insights 
of Clausius were formalized and placed in a mathematical 
framework by Gibbs in 1876.

In 1877, Boltzmann provided in his kinetic theory of gas-
ses an alternative interpretation of entropy. For Boltzmann 
entropy is a measure of the potential disorder in a system. 
This definition shifts the emphasis from energy dissipated 
through work to the number of unobservable configurations 
(microstates) of a system, e.g., particle velocities consistent 
with an observable measurement (macrostate), e.g., temper-
ature. The thermodynamic and Boltzmann definitions are 
closely related as Boltzmann entropy increases following the 
loss of energy available for work attendant upon the colli-
sion of particles in motion during heat flow. There are many 
different microscopic configurations of individual particles 
compatible with the same macroscopic measurement, and 
only a few of which are useful.

In 1948, encouraged by John von Neumann, Claude Shan-
non used the thermodynamical term entropy to capture the 
information capacity of a communication channel. A string 
of a given length (macrostate) is compatible with a large 
number of different sequences of symbols (microstates). A 
target word will be disordered during transmission in pro-
portion to the noise in a channel. If there were no noise, 
each and every microstate could be resolved and the entropy 
would define an upper limit on the number of signals that 
could be transmitted. The study of the maximum number 
of states that can be transmitted from one point to another 
across a channel, in the face of noise and when efficiently 
encoded, is called information theory.

Shannon did not describe entropy in terms of heat flow 
and work but in terms of information shared through a chan-
nel transmitted from a signaler to a receiver. The power of 
information theory derives in part from the incredible gen-
erality of Shannon’s scheme. The signaler can be a phone in 
Madison and the receiver a phone in Madrid, or the signaler 
can be a parent and the receiver its offspring. For phones, the 
channel is a fiber-optic cable and the signal pulses of light. 
For organisms the channel is the germ line and the signal the 
sequence of DNA or RNA polynucleotides in the genome. 
Increasing entropy for a phone-call corresponds to the loss 
or disruption of light-pulses, whereas increasing entropy 
during inheritance corresponds to mutation or developmen-
tal noise. The same scheme can be applied to development, 
in which case the signaler is an organism in the past and the 
receiver the same organism in the future. One way in which 
we might identify individuals is to check to see whether we 
are dealing with the same aggregation at time t and t + 1 . 
If the information transmitted forward in time is close to 
maximal, we take that as evidence for individuality.

In its simplest form, Shannon made use of the following 
formal measures when defining information. The entropy 
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H of a random variable S measures the uncertainty or 
information of the states that it can adopt:

where si are the possible values of the state and P(si) the 
probabilities of these states. For a coin there would be two 
possible values for S, heads and tails, and the values of these 
states for a fair coin would be the probability 0.5, yielding 
a metric entropy value of 1. Deviation from a fair coin cor-
responds to a reduction in information, as in the limit of 
bias where only one side of the coin is favored, the outcome 
is known in advance and any toss of the coin is perfectly 
predictable. This produces an entropy value of 0. Hence, 
information is minimized when predictability is maximized.

To capture the communication value of information 
Shannon introduced a signaler–receiver structure, which 
is now typically described using two random variables S 
and R. The maximum information transmitted between 
signaler and receiver is given by the Mutual Information 
(I). The I can be written in several different forms. One 
intuitive expression is:

where H(S) and H(R) are the entropies of the signals, and 
H(S; R) the joint entropy of the two variables,

The joint entropy is at a maximum when there is no rela-
tionship between the S and R variables. The I is therefore 
high when the information in S and R are high and they 
are strongly coupled in their values (H(S; R) is low). The 
I measures the information shared between S and R over a 
communication channel, because the only source of structure 
in R is assumed to come from S.

Another conventional way of writing I is,

where H(S|R) is the conditional entropy of R or the amount 
of information in R that is not in S. Hence, if all the infor-
mation in R comes from S then H(R|S) will be zero, and 
I(S;R) = H(R) . If one of the random variables, for exam-
ple the sender S consists of two parts S = {S1, S2} , we can 
decompose the mutual information using the chain rule 
(Cover and Thomas 1991)

with the second term being the conditional mutual 
information

H(S) = −
∑

i

P(si) log2 P(si)

I(S;R) = H(S) + H(R) − H(S,R)

H(S;R) = −
∑

i

∑

j

P(si, rj) log2 P(si, rj)

I(S;R) = H(R) − H(R|S)

I(S1, S2;R) = I(S1;R) + I(S2;R|S1)

These measures provide the necessary statistics for an infor-
mational theory of the individual.

When we model the interaction between a system and 
its environment we have to consider a more complicated 
situation which involves two channels. To be more precise, 
let S and E be the state set of the system and the environ-
ment. For simplicity, we assume that S and E are finite. The 
dynamics of the system is influenced by its own state, but it 
can also be influenced by the state of the environment. This 
can be modeled in terms of a channel � ∶ E × S → S , where 
�(e, s;s�) denotes the probability of the next system state s′ 
given that the current system state is s and the environment 
is in state e. In particular, we assume that �(e, s;s�) ≥ 0 for 
all e, s, s′ , and 

∑
s� �(e, s;s

�) = 1 for all e, s. We can model 
the dynamics of the environment in the same way, using a 
Markov kernel � ∶ S × E → E , where �(s, e;e�) denotes the 
probability for the next state e′ of the environment given the 
current states e and s of the environment and the system, 
respectively. The kernels � and � model the mechanisms 
that constitute the system–environment interaction. If we 
start this interaction process by selecting a states s and e 
according to some probability distribution � , we obtain a 
process (Sk,Ek) , k = 1, 2,… , in S × E that satisfies

Clearly, we can recover the mechanisms from the distribu-
tion of the process (Sk,Ek) , k = 1,… ,

We apply information-theoretic quantities, such as the 
mutual information, to variables of the process (Sk,Ek) , 
thereby quantifying information flows between the sys-
tem and the environment. The causal structure of the pro-
cess, as shown in Fig. 1, implies a number of conditional 

I(S2;R|S1) ∶= H(R|S1) − H(R|S1, S2).

ℙ(S1 = s1,E1 = e1, S2 = s2,E2 = e2,… , Sn

= sn,En = en)

= �(s1, e1)�(e1, s1;s2)�(s1, e1;e2) …

�(en−1, sn−1;sn)�(sn−1, en−1;en), n = 1, 2,… .

ℙ(S1 = s,E1 = e) = �(s, e),

ℙ(Sk = s� |Ek−1 = e, Sk−1 = s) = �(e, s;s�),

ℙ(Ek = e� | Sk−1 = s,Ek−1 = e) = �(s, e;e�).

Fig. 1   The causal diagram of the system–environment interaction
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independence statements. For instance En+1 is conditionally 
independent of Sn,En given Sn−1,En−1.

The informational individual

In the previous section, we set down the information-the-
oretic foundations for our formalism. Here, we discuss the 
additional mathematical properties required of the formalism 
if it is to capture the concept of individuality we developed 
in “A way forward” section.

We remind the reader our starting point is the assumption 
that biological individuality can usefully be understood as 
an “informational individual.” We further remind the reader 
this is not to be confused with Dawkin’s replicator, as we 
want to allow the possibility that replication is not a fun-
damental feature of individuality and be able to ask what 
role individuality plays in facilitating replication. What is 
fundamental in our view is the idea that information can be 
propagated forward through time, meaning that uncertainty 
is reduced over time. In this way, and returning to our open-
ing remarks in “A way forward” section, we suggest indi-
viduality is a natural extension of the ideas of Boltzmann 
and Von Neumann, and as such has foundations in statistical 
mechanics and thermodynamics, which consider the condi-
tions required for a persistently ordered states.

Defining properties and implications of the formalism 

1	 The system environment decomposition Consider a 
dynamical set of quantifiable measurements that we 
coarse grain into components of a system and compo-
nents of an environment. We seek a way of establish-
ing whether this partition is justifiable, and whether the 
individuality concept is relevant. We wish to allow for 
a hierarchy of such partitions in order to capture bio-
logical examples such as organelles within cells, and 
cells within bodies within populations, where in each 
case the target entity and the environment assume a 
different identity. We retain those partitions that meet 
our information-theoretic inclusion criteria and then 
can ask which among the natural, intuitive categories 
of biology—e.g., cells, organelles, organisms, popula-
tions, etc., are recovered.

2	 Informational individuals In the pursuit of generality, we 
consider a discrete, stochastic process where the state of 
the system in the future is determined by some subset of 
states in the present. If we arbitrarily divide these states 
into system and environment, we should like to be able 
to determine how the current system state Sn and the cur-
rent state of the environment En together are sufficient 
to determine the next system state Sn+1 . Formally, the 
predictability of the next state of the system is quantified 
via the mutual information: 

 This expression seeks to capture how much information 
at time n + 1 Sn+1 comes from the system itself at a previ-
ous time step (or generation) Sn—the individual—versus 
from the environment at a previous time En . This mutual 
information can now be decomposed in two ways 

 Each decomposition can be interpreted as different 
allocation for distributing the observed past regularities 
between the system and environment. Each of these will 
allow us to define different forms of individuality. 

a	 E n d o ge n o u s  d e t e r m i n a t i o n  C o n s i d e r 
I(Sn+1;Sn) + I(Sn+1;En|Sn):

	   Here, we measure the influence of the system state 
onto itself (at the next generation or time step). For 
a preferred interval of time, all observed dependen-
cies between successive system states are attributed 
to the system.

	   The quantity I(Sn+1;Sn) has been called autonomy 
in Krakauer and Zanotto (2006) and will be denoted 
as A∗ in the following. It should be high when the 
system is largely control of its environment.

	   The influence of the environment, as measured by 
I(Sn+1;En|Sn) , can be interpreted as new information 
for the system flowing from the environment into 
the system. When this information flow vanishes 
completely, a system can be said to be information-
ally closed. So this quantity measures the degree to 
which the system is controlled by the environment 
nC. Note that closure does not require causal inde-
pendence, it only states that all influences from the 
environment are predictable by the system.

b	 Environmentally driven An alternative to endog-
enous determination is structure imposed largely 
through environmental gradients driving the system. 
In other words, the history of the system is not as 
consequential as the history of the environment that 
impose strong boundary conditions on the system. 
Consider I(Sn+1;En) + I(Sn+1;Sn|En):

	   Here, the observed influences are attributed 
to the environment (as far as possible accord-
ing to I(Sn+1;En) ). Only the remaining influence 
I(Sn+1;Sn|En) is due to the system. This can be inter-
preted as an alternative concept of system autonomy 
(Bertschinger et al. 2008) and will be denoted as A 
in the following. It is valid under the assumption that 
all dependencies between the states of the system 

I(Sn,En; Sn+1) = H(Sn+1) − H(Sn+1|Sn,En).

I(Sn,En;Sn+1) = I(Sn+1;Sn) + I(Sn+1;En|Sn)
= I(Sn+1;En) + I(Sn+1;Sn|En)
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and the environment are attributed to the environ-
ment.

	    These properties allow us to identify three quantities, 
each corresponding to a type of individuality: 

 To rigorously formalize these different types of indi-
viduality, however, we need to consider them on a more 
fine-grained scale.

Fine‑grained decomposition

Using the chain rule for mutual information, we encounter 
an ambiguity in attributing influence to the environment or 
to the system. The partial information decomposition (Wil-
liams and Beer 2010; Bertschinger et al. 2013). allows us 
to resolve this ambiguity by introducing notions of unique, 
shared and complementary information.1

The mutual information between the future state of the 
system at time n + 1 and the joint state of system and envi-
ronment at time n is decomposed into four terms:

Those four terms appear in the pairwise mutual information 
and conditional mutual information that we obtained from 
the chain rule:

Colonial Individuality A ∶= I(Sn+1;Sn|En)

Organismal Individuality A∗ ∶= I(Sn+1;Sn)

Environmental Determined Individuality nC ∶= I(Sn+1;En|Sn)

(1)

I(Sn+1;Sn,En) = SI(Sn+1;Sn,En)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

shared

+CI(Sn+1;Sn,En)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

complementary

+ UI(Sn+1;Sn�En)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
unique (Sn wrt En)

+UI(Sn+1;En�Sn)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
unique (En wrt Sn)

.

(2)I(Sn+1;Sn) = SI(Sn+1;Sn,En) + UI(Sn+1;Sn�En),

(3)I(Sn+1;En|Sn) = CI(Sn+1;Sn,En) + UI(Sn+1;En�Sn),

(4)I(Sn+1;En) = SI(Sn+1;Sn,En) + UI(Sn+1;En�Sn),

(5)I(Sn+1;Sn|En) = CI(Sn+1;Sn,En) + UI(Sn+1;Sn�En),

In our context the four terms have the following meaning: 

a	 The unique informat ion from the system 
UI(Sn+1;Sn ⧵ En) . This is information maintained by the 
system.

b	 The shared information between the system and environ-
ment SI(Sn+1, Sn,En).

c	 The unique information from the environment 
UI(Sn+1;En ⧵ Sn) . This quantifies the influence of the 
environment on the system. (Information flow in the 
narrow sense).

d	 The complementary or synergistic information. Informa-
tion that is only present in the interaction of systems and 
environment.

It is important to emphasize that these decompositions 
are a means of supporting our formal intuition and do not 
correspond to a specification of the information-theoretic 
quantities. This choice remains disputed and several alterna-
tive proposals have been published. These are reviewed in 
a special issue of the journal Entropy (Lizier et al. 2018). 
Nevertheless, the measures that we derive fully accord with 
the conceptual decomposition.

Forms of individuality

With a good understanding of the implications of partial 
information decomposition in hand in hand, we can now 
rigorously define three forms of individuality and an addi-
tional measure quantifying contribution of each in the case 
of hybrid types. These measures are defined in terms of 
the information that is shared by system and environment 
(e.g., adaptive information), information that is unique 
to either the system or the environment (e.g., memory in 
each), and information that depends in some complicated 
way on both the system and the environment (e.g., regula-
tory information).

Organismal Individuality A∗

 Organisms are well adapted when they share through 
adaptation or learning significant information with the 
environment in which they live. In addition, they contain 
a large amount of private information required for effec-
tive function. By maximizing this measure, we are able to 
identify complex organisms in their environments.
Colonial Individuality A

 Many organisms such as microbes share only a small 
amount of information with the environment in which 

A∗ = SI(Sn+1;Sn,En) + UI(Sn+1;Sn�En)

A = CI(Sn+1;Sn,En) + UI(Sn+1;Sn�En)

1  The terms of the partial information decomposition in Williams and 
Beer (2010) were derived from a set of very general axioms. These 
axioms, however, do not define concrete measures for the specific 
term. One needs an additional definition for one of the four terms. 
The original proposal by Williams and Beer (2010) was criticized as 
counterintuitive and several other proposals have been made, such as 
(Harder et al. 2013; Bertschinger et al. 2014; Finn and Lizier 2018; 
James et al. 2017), albeit no consensus has yet been reached. In this 
paper, we will use the decomposition as a conceptual framework to 
interpret classical information-theoretic quantities.
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they live. They contain regulatory mechanisms that allow 
for adaptation through ongoing interaction between their 
biotic and abiotic environment. By maximizing this meas-
ure, we are able to identify “environmentally regulated 
aggregations,” which we call “colonial individuals.”
Environmental determination nC

 This measure quantifies the degree of environmental 
determinism on the temporal evolution of an individual. 
When this measure is minimized an individual becomes 
completely insensitive to the environment—and hence is 
neither in the organismal or colonial form—and not in 
any real sense adaptive. It represents the persistence of an 
environmental memory capable through interaction with 
the system of generating structure, such as temperature 
gradients in a fluid that produce vortices.
Environmental Coding

 The intuition behind this measure is to quantify the dif-
ference between a colonial and organismal measure of 
individuality. The difference is captured by the difference 
between shared information (e.g., adaptive information) 
and the interaction of individual and environment (e.g., 
regulatory information). One way to think about this is 
how much information can be encoded about the envi-
ronment in the system innately (e.g., inherited informa-
tion) versus how much information needs to be encoded 
through ongoing interaction. When the measure is large 
nature dominates nurture. As the measure declines, nur-
ture begins to dominate nature.

Individuality measures in an illustrative example

To gain a better understanding of each of these measures, we 
work through a quantitative example.

We consider two binary units En and Sn , with state sets 
{−1,+1} . Following the general structure introduced in 
sect. 2.1 and Fig. 1, these states are synchronously updated 
according to the following conditional distribution:

where

nC = I(Sn+1;En|Sn) = CI(Sn+1;Sn,En)

+ UI(Sn+1;En�Sn)

NTIC = SI(Sn+1;Sn,En) − CI(Sn+1;Sn,En)

p(sn+1, en+1|sn, en) = pS(sn+1|sn, en) ⋅ pE(en+1|sn, en),

(6)pS(sn+1|sn, en) =
1

1 + e−2sn+1(�S+�Ssn+�Sen+�Ssnen)

(7)pE(en+1|sn, en) =
1

1 + e−2en+1(�E+�Een+�Esn+�Esnen)
.

Evaluating the individual conditional distributions, we 
obtain

and correspondingly

Finally, this yields the following stochastic matrix with 
entries p(sn+1, en+1|sn, en):

We apply each individuality measure to this stochastic 
process. The results of this analysis are shown in Fig. 2 for 
a random environment and in Fig. 3 for an environment with 
memory. The panel sweeps through three coupling param-
eters for the systems state sn+1 : �S—the coupling parameter 
of the system state to its previous state sn , �S—the coupling 
parameter to the environment, and �S the coupling parameter 
mediating the combined influence of the previous system 
and environmental states. When �S = 0 , we are not imposing 
any higher-order correlations on the time series.

When the value of �S = 0 , we detect colonial indi-
viduals as well as organismal individuals most readily at 
high values of �S and �S . When there are no higher-order 
interactions between system and environment then these 
two types of individual become indistinguishable in this 
parameter region and represent unique information in the 
system state. Both forms of individuality become more 
visible as more information is transmitted into the future. 
In the case of a non-random environment, the system can 
adapt to the environment and we observe high values of 
A⋆ together with low values of A and nC for high values 

pS(+1| + 1,+1) =
1

1 + e−2(�S+�S+�S+�S)
=∶ aS

pS(+1| − 1,+1) =
1

1 + e−2(�S−�S+�S−�S)
=∶ bS

pS(+1| + 1,−1) =
1

1 + e−2(�S+�S−�S−�S)
=∶ cS

pS(+1| − 1,−1) =
1

1 + e−2(�S−�S−�S+�S)
=∶ dS

pE(+1| + 1,+1) =
1

1 + e−2(�E+�E+�E+�E)
=∶ aE

pE(+1| − 1,+1) =
1

1 + e−2(�E+�E−�E−�E)
=∶ bE

pE(+1| + 1,−1) =
1

1 + e−2(�E−�E+�E−�E)
=∶ cE

pE(+1| − 1,−1) =
1

1 + e−2(�E−�E−�E+�E)
=∶ dE

(+1,+1) (−1,+1) (+1,−1) (−1,−1)

(+1,+1) aSaE (1 − aS)aE aS(1 − aE) (1 − aS)(1 − aE)

(−1,+1) bSbE (1 − bS)bE bS(1 − bE) (1 − bS)(1 − bE)

(+1,−1) cScE (1 − cS)cE cS(1 − cE) (1 − cS)(1 − cE)

(−1,−1) dSdE (1 − dS)dE dS(1 − dE) (1 − dS)(1 − dE)
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of |�S| and low values of �S . Thus, the information flow 
from the environment into the system represented by high 
values of nC in the case of the random environment gets 
now internalized into the system.

As the value of �S increases, the signatures of the organ-
ismal and colonial individuals diverge. Colonial individuals 
are most apparent at low values of �S and �S where most of 
the information persistence derives from ongoing interac-
tions between system and environment. Organismal indi-
viduals begin to disappear at high � as autonomy is lost. It is 
preserved only at high levels of �.

The environmentally determined information transforms 
into colonial individuality at low � to becoming almost indis-
tinguishable from it at high values of �S . This is because 
when the system and environment become strongly coupled, 
complementary information comes to dominate the signal, 
and the environment on its own becomes less predictive of 
the future state of the system.

The effect of �S is to reduce the total entropy of the system 
(by creating systematic correlations and hence regularities 
in the information channel), and to reverse the pattern of 
total mutual information between successive time steps. This 

Fig. 2   Mutual information between two time steps (Total_MI), 
Entropy of the system (H_sys), colonial (A) and organismal (A_star) 
individuality, and environmental determination (nC) for different val-

ues of �
S
,�

S
 , and for �

S
 (subscript “S” omitted in the figure) with a 

random environment �
E
= �

E
= �

E
= 0
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value is a minimum for low �S and �S when �S = 0 and a 
maximum when �S = 5.

From the previous empirical example, we discern a pro-
cess for identifying different forms of informational individ-
uals in a more general setting. We find that system–environ-
ment distinctions increase in those parameters that increase 
independent memory ( �, � ) when higher-order coupling is 
low. When this coupling increases, organismal individuals 
disappear and colonial individuals appear with reduced inde-
pendent memories.

Let as assume that the transition parameters are held 
constant and we vary the system states. By systematically 

increasing the number of variables that we assign to the 
target system while reducing the environmental states, we 
can deduce whether this procedure leads to an increase in 
a suitable individuality measure.

If the expansion of the boundary of the system does not 
lead to an increase in information, then we have incorpo-
rated an environmental variable needlessly. In this way, 
individuals maximize their prediction of the future while 
minimizing their coding capacity. If individuality increases 
as we expand our system and environmental determination 
decreases, then we have grounds for the belief that we are 

Fig. 3   Mutual information between two time steps (Total_MI), Entropy of the system (H_sys), colonial (A) and organismal (A_star) individual-
ity, and environmental determination (nC) for different values of �

S
,�

S
 , and for �

S
 with a correlated environment �

E
= 2 �

E
= �

E
= 0
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capturing more of the individual by including more pro-
cesses formerly treated as environmental.

Let us denote the original system with S and the part of 
the initial environment which becomes the system by ΔS . 
The remaining environment should be denoted by E′.

•	 Environmental determination
	   We get the two information flows 

 and 

 Using some algebra we get 

 The first term subtracts the information flow which 
is now internalized and the second term adds the flow 
which resided previously in the environment. Clearly the 
system becomes more closed if the former, now internal-
ized flow, is larger than the latter.

•	 Organismal individuality
	   Let us start with the simpler measure A∗ , the mutual 

information between subsequent states: 

 and 

•	 Colonial individuality

	 
Both individuality measures can only grow or stay constant 
with increasing system size when information is available 
but they never decrease. Thus, they are not sufficient to 
detect the precise boundaries between individuals. In order 
to obtain precise boundaries we would need to impose a 
cost function—or regularizer—on system size to establish 
a threshold for termination. Our objectives here are not to 
find the optimal partition but present different informational 
“windows” on individuality.

nC = I(Sn+1;En|Sn)
= I(Sn+1;E

�
n
ΔS|Sn)

nC� = I(Sn+1ΔSn+1;E
�
n
|ΔSn, Sn)

nC� = nC − I(Sn+1;ΔSn|Sn)
+ I(ΔSn+1;E

�
n
|ΔSn, Sn+1, Sn)

A∗ = I(Sn+1;Sn)

A�∗ = I(Sn+1ΔSn+1;SnΔSn)

= A∗ + I(ΔSn+1;Sn|Sn+1) + I(Sn+1ΔSn+1;ΔSn|Sn).

A = I(Sn+1;Sn|En)

= I(Sn+1;Sn|E�
n
ΔSn)

A� = I(Sn+1ΔSn+1;SnΔSn|E�
n
)

= A + I(Sn+1ΔSn+1;ΔSn|E�
n
)

+ I(ΔSn+1;Sn|E�
n
ΔSnSn+1)

= A + I(Sn+1;ΔSn|E�
n
) + I(ΔSn+1;SnΔSn|E�

n
Sn+1)

Implications of ITI

Fundamental units and mechanism

Using an information-theoretic framework (ITI) applied to a 
stochastic process, we derived a number of principled quan-
tities that capture forms and degrees of individuality. The 
approach has been somewhat formal as we have sought to pro-
vide a means for “detecting” or “perceiving” through an appro-
priate information-theoretic filter individuals in a variety of 
different evolutionary and ecological contexts. This is related 
to research that seeks to discover integrated spatiotemporal 
patterns for the purpose of discovering “agents” in a stochastic 
process (Biehl et al. 2016). It is also worth noting that the idea 
we can detect fundamental units in adaptive systems using 
an appropriate filter provides a second conceptual connection 
to physics beyond the thermodynamic connection outlined in 
A way forward section and discussed again in the next para-
graph. Despite good theoretical reasons to expect the existence 
of particles beyond those predicted by the Standard Model, 
there is no direct empirical evidence BSM particles exist. To 
search for such particles, physicists are moving toward “model 
free” approaches, enhanced by machine learning (Collins et al. 
2018), that allow detection of subtle correlations or anomalies 
in the data without making assumptions a priori about how 
the particles (presumably producing the anomalies) behave.

Questions of individuality connect to challenges related to 
explaining how functional space and time scales consolidate 
and new function emerges in biological systems (reviewed in 
Flack 2012, 2017a, b). This work suggests one driver of new 
function is the reduction in environmental uncertainty through 
the construction of dynamical processes with a range of char-
acteristic time constants, described as nested slow variables. 
Slow variables are coarse-grained encodings of fast, micro-
scopic dynamics. Slow variables provide better predictors 
of the local future configuration of a system than the states 
of the fluctuating microscopic components. As proposed in 
Flack (2017b) maximizing uncertainty reduction through the 
computation of nested, coarse-grained slow variables, should 
be an organizing principle of adaptive systems . This begs the 
question of how computations supporting regularity estima-
tion get refined through learning and evolutionary dynamics 
and whether information processing is ever optimal, as some 
studies intriguingly suggest (Tkacik et al. 2012), and which 
provide support for the use of the information-theoretic for-
malisms supporting our individuality lenses.

Levels of selection

The purpose of this paper has been to place the discussion 
of adaptive individuality on a solid logical and probabilistic 
foundation. In order to do so, we have taken a fair amount 
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for granted, including the ability to make accurate measure-
ments at arbitrary scales of granularity and over scales of 
time that are historically meaningful. We have also neglected 
to discuss those mechanisms that make heredity or transmis-
sion possible in the first place, in other words, robustness 
mechanisms that enable the error-free, or low error, trans-
mission of information across generations. We have avoided 
discussing the specifics of the functional or selective benefits 
of hierarchical levels, concentrating on their identification. 
It is fair to assume that long-lived aggregates could develop 
the capacity to replicate and become a significant target 
for selection and hence a bona fide level at which selection 
operates, which for some is what is implied by biological 
individuality (Okasha 2006), in which case our approach 
could provide a means of identifying both pre-individuals 
(low autonomy) as well as fully fledged individuals (high 
autonomy). We discuss each of these topics in more detail 
below. 

a	 The partitioning requirement In the previous discussion, 
we have “defined” the quantities, autonomy, closure and 
sufficiency, in terms of system and environment, but we 
have not provided any mechanisms that might gener-
ate a time series with appropriate values, or discussed 
how we might go about identifying the best system and 
environmental variables in the first place. Moreover, the 
choice of time scale will be instrumentally critical, as 
over very short or very long time scales we are unlikely 
to observe the regularities from which we seek to derive 
the individuality quantities: autonomy, sufficiency, and 
closure. It is our belief that few of these attributes (sys-
tem and environment variables, time scales, etc) can be 
known in advance, and that it is precisely through the 
algorithmic determination of the individual that each 
will obtain relative support.

b	 The robustness requirement Further to identifying nested 
or hierarchical partitions, we also require some specifi-
cation of the machine itself—the generator of the time 
series. This will be equated with parts of the individual 
and needs to possess some level of robustness or an 
error-correcting property. This is because individuality 
in adaptive systems often seems to be associated with 
adaptive mechanisms of homeostasis—mechanisms that 
monitor internal states and ensure that deviations are 
minimized. It is this self-preserving quality of the indi-
vidual that allows us to make some useful discrimina-
tion between physical phenomena and biological ones, 
without exaggerating the dynamical differences.

c	 The levels of selection In many previous treatments of 
individuality, the idea that the individual has a special 
evolutionary status has been posited. This is presented in 

terms of levels of selection, where coarse-grained aggre-
gates achieve a coordinated persistence property that 
now allows them to be treated as segregating, selective 
units. The most popular formalism for thinking about 
this process is presented in terms of the Price equation, 
which describes how the mean value of a trait changes 
as a function of the covariance in that trait and fitness, 
and the previous value of the trait. Of interest to us here 
is that the Price equation assumes some partition of trait 
values into groups and attempts to do this in such a way 
as to best capture the evolution of the mean value of the 
trait in the population. Assuming some true underlying 
structure and dynamics (see appendix of Nowak et al. 
2010), the accuracy of the equation will depend on the 
choice of partition (Krakauer and Flack 2010b), and the 
ITI could provide such a principled platform for mod-
eling.

Future work

Related formalisms

Before closing with a brief discussion of algorithms, a 
few comments about adjacent mathematical measures 
and approaches. Our approach is related to the concept of 
autopoiesis developed by Maturana (Maturana 1975) who 
emphasizes the “unity” of a network of processes engaged 
in self-production in terms of autonomy (Maturana 1980), 
and the idea of a Gestalt perception in which the figure is 
observed to be more than the sum of its parts and distinct 
from the parts of its grounding.

Another related body of work is the study of modularity 
network sciences. For static structures, there are reasonable 
definitions of modularity. Many of these definitions are asso-
ciated with procedures for partitioning microscopic data into 
tightly bound groups, such as communities. For example, in 
networks quantitative modularity measures seek partitions 
of nodes and edges into sets that are statistically overrepre-
sented in data when compared to an appropriate null model 
(Newman 2016). Developmental definitions of modularity, 
such as those applied to limb formation, or the appearance 
of body segments, also provide a window into individuality 
(Davidson et al. 2004) but they have not been presented in 
the form of quantitative measures for identification as they 
have in network science.

There is also a connection to the free-energy principle 
(FEP) as developed by Karl Friston and collegues Ram-
stead et al. (2018). Like the ITI, the FEP is built from first 
principles, moving forward from Schrodinger, and with the 
goal of explaining how adaptive systems resist decay and 
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persist over time. It also stresses uncertainty reduction, but 
does through the lens of minimizing free energy. The FEP 
rests on the idea that adaptive systems will occupy a small 
bounded set of states within the total possible phase space. 
Furthermore, adaptive systems accomplish free energy mini-
mization through construction of partitions that separate the 
organisms from its environment—in the FEP formulation 
this “filter” is a Markov blanket, which specify the condi-
tional independence of internal and external states, with the 
internal states only perceiving the external states through 
the Markov filter.

Algorithmic implementation

The last topic we discuss briefly is implementation of our 
measure on data. The ITI is mathematical formalism based 
on first principles for capturing information flow from the 
past to the future and which allows us to rigorously define 
a number of different forms of individuality. We have not 
provided an optimal algorithm for individuality-induction 
which we have left this for future work. Here, we do, how-
ever, note a few requirements.

A key empirical requirement is the careful measurement 
of a number of hypothesized individual attributes or proper-
ties over the course of time. For example, the abundance of 
organisms in a population; the genetic or phenotypic states 
of cells or tissues over time, the firing rates of neurons over 
time. In each case, we require a consistent time series of 
measurements in an appropriate coordinate frame (concen-
tration, spatial position, firing rate, chemical concentration) 
that provide the input to our algorithms. It is our contention 
that many existing biological concepts (e.g., tightly coor-
dinated replicators, developmental individuals), will be 
identified and become perceptible through this procedure. 
Many novel “individuals” might also be identified, includ-
ing those at the societal level that are currently deprecated 
as derivative or epiphenomenal of lower level forms. And of 
great interest preadaptive organizations that emerge quickly 
relative to their own dynamical history and that experience 
a relatively long environmental history (i.e., self-organizing 
structures such as vortices that are picked up by the environ-
mental determination measure).
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Appendix: Reflections on closure 
and sufficiency

We can think about an individual as a system that is a 
sufficient predictor of its own future. This implies that 
that Sn−1 does not add any information about Sn+1 besides 
the one already contained in Sn . Formally this reads as 
I(Sn+;Sn−1|Sn) = 0.

Note that by the Markovian structure of the system–envi-
ronment interaction

Thus, I(Sn+1;En|Sn) = I(Sn+1;Sn−1|Sn) + I(Sn+1;En|Sn−1, Sn) 
which means that informational closure implies sufficiency, 
i.e.,

Informational closure is therefore a stronger notion than suf-
ficiency2 which allows the system to be influenced by the 
environment as long as this influence cannot be predicted 
from within the system.

Considering longer histories

The above calculations can be generalized to longer 
histories:

I(Sn+1;Sn,En) = I(Sn+1;Sn−1, Sn,En)

= I(Sn+1;Sn) + [I(Sn+1;Sn−1|Sn)
+ I(Sn+1;En|Sn−1, Sn)]

= I(Sn+1;Sn) + I(Sn+1;En|Sn)

nC = I(Sn+1;En|Sn) = 0 ⟹ I(Sn+1;Sn−1|Sn) = 0

I(Sn+1;Sn,En) = I(Sn+1;S
n
n−l

,En
n−k

)

= I(Sn+1;E
n
n−k

) + I(Sn+1;S
n
n−l

|En
n−k

)

= I(Sn+1;S
n
n−l

) + I(Sn+1;E
n
n−k

|Sn
n−l

)

= I(Sn+1;S
n
n−l

) + [I(Sn+1;En|Snn−l)
+ I(Sn+1;E

n−1
n−k

|Sn
n−l

,En)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

]

2  For a more general setting this was shown in (Pfante et al. 2014).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Thus, overall the same relationships between autonomy, clo-
sure and sufficiency are obtained

Sufficiency expansion and boundary detection

We can explore sufficiency a little more formally in terms of 
Markov conditions. We consider a system as self-sufficient 
if its dynamics are Markovian, i.e.,

In the following we consider only the case m = 1:
We get for the non-sufficiency nS� = I(S�

n+1
;S�

n−1
|S�

n
) of 

the enlarged system

Now we apply the chain rule:

which leads to

We see that the only term which can lead to a decrease in 
the non-sufficiency is I(Sn+1;ΔSn|Sn) − I(Sn+1;ΔSn|Sn−1Sn) . 

I(Sn+1;E
n
n−k

) + I(Sn+1;Sn|En
n−k

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Ak

= I(Sn+1;Sn)
⏟⏞⏞⏟⏞⏞⏟

A∗

+ I(Sn+1;S
n−1
n−l

|Sn)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
(non-)sufficiency

+I(Sn+1;En|Snn−l)

= A∗ + nC

I(Sn+1;Sn−m|Sn−1,… , Sn−m+1) = 0.

(8)I(S�
n+1

;S�
n−1

|S�
n
) = I(Sn+1ΔSn+1;Sn−1ΔSn−1|SnΔSn)

I(Sn+1ΔSn+1;Sn−1ΔSn−1|SnΔSn)
= I(Sn+1ΔSn+1;Sn−1|SnΔSn)
+ I(Sn+1ΔSn+1;ΔSn−1|Sn−1, SnΔSn)

I(Sn+1ΔSn+1;Sn−1|SnΔSn)
= I(Sn+1;Sn−1|SnΔSn) + I(ΔSn+1;Sn−1|SnΔSnSn+1)

I(Sn+1ΔSn+1;ΔSn−1|Sn−1, SnΔSn)
= I(Sn+1;ΔSn−1|Sn−1, SnΔSn)
+ I(ΔSn+1;ΔSn−1|Sn−1SnΔSnSn+1)

and

I(Sn+1;Sn−1|SnΔSn)
= I(Sn+1;Sn−1|Sn) + I(Sn+1;ΔSn|Sn−1Sn)
− I(Sn+1;ΔSn|Sn)

nS� = nS − I(Sn+1;ΔSn|Sn) + I(Sn+1;ΔSn|Sn−1Sn)
+ I(Sn+1;ΔSn−1|Sn−1, SnΔSn)
+ I(ΔSn+1;ΔSn−1|Sn−1SnΔSnSn+1)
+ I(ΔSn+1;Sn−1|SnΔSnSn+1)

nS� = nS − [I(Sn+1;ΔSn|Sn) − I(Sn+1;ΔSn|Sn−1Sn)]
+ I(S�

n+1
;ΔSn−1|Sn+1S�n) + I(ΔSn+1;Sn−1|S�nSn+1)

It can be interpreted as the internalized information from 
Sn−1 to Sn+1.

The other two terms are always positive and related to 
new information flows through the environment—which are 
made possible by enlarging the system and which are not 
accounted for by nS.
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