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Abstract A model for assessing the effect of periodic

fluctuations on the transmission dynamics of a communi-

cable disease, subject to quarantine (of asymptomatic

cases) and isolation (of individuals with clinical symptoms

of the disease), is considered. The model, which is of a

form of a non-autonomous system of non-linear differential

equations, is analysed qualitatively and numerically. It is

shown that the disease-free solution is globally-asymptot-

ically stable whenever the associated basic reproduction

ratio of the model is less than unity, and the disease persists

in the population when the reproduction ratio exceeds

unity. This study shows that adding periodicity to the

autonomous quarantine/isolation model developed in Safi

and Gumel (Discret Contin Dyn Syst Ser B 14:209–231,

2010) does not alter the threshold dynamics of the auton-

omous system with respect to the elimination or persistence

of the disease in the population.

Keywords Quarantine � Isolation � Periodicity �
Basic reproduction ratio

Introduction

It is well known that some infectious diseases, such as

measles, mumps and chickenpox, exhibit periodic fluctua-

tions in their transmission dynamics. For instance, the city

of New York recorded yearly outbreaks of chickenpox and

mumps, and a biennial pattern of measles outbreaks,

between 1929 and 1970 (Cooke and Kaplan 1976; London

and Yorke 1973). Furthermore, contact rates may vary

during a time period due to a number of factors such as

environmental (weather changes; emergence of insects

caused by seasonal variation) and the fact that children are

in school during certain months etc. (Diekmann and

Heesterbeek 2000). London and Yorke (1973) showed such

variations in contact rates by studying data for mumps,

chickenpox and measles. Other diseases show seasonal

behavior as well (see, for instance, Bacaër (2009), Bacaër

and Guernaoui (2006), Cornelius (1971), Dowell (2001),

Earn et al. (2002), Hethcote and Levin (1989), London and

Yorke (1973)). As noted by Cooke and Kaplan (1976),

since periodic fluctuation in contact rate is crucial to a

number of diseases, it is instructive and theoretically

evaluate the effect of such fluctuations on the transmission

dynamics of the relevant diseases in a population.

During outbreaks of a communicable disease in human

populations, basic public health control measures, notably

quarantine (of individuals suspected of being exposed to

the disease) and isolation (of individuals with clinical

symptoms of the disease) are generally implemented aimed

at controlling or mitigating the disease burden (measured in

terms of number of new cases, hospitalization, morbidity,

mortality). Over the decades, such control measures have

been successfully applied to effectively combat the spread

of some emerging and re-emerging diseases such as lep-

rosy, plague, cholera, typhus, yellow fever, smallpox,

diphtheria, tuberculosis, measles, ebola, pandemic influ-

enza and, more recently, severe acute respiratory syndrome

(SARS) (Chowell et al. 2004a, b; Donnelly et al. 2003;

Gumel et al. 2004; Hethcote et al. 2002; Lipsitch et al.

2003; Lloyd-Smith et al. 2003; McLeod et al. 2006; Riley
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et al. 2003; Wang and Ruan 2004; Webb et al. 2004).

However, as noted by McLeod et al. (2006), such basic

control measures are gradually refined during the course of

a disease outbreak (as more data and knowledge about the

epidemiology and biology of the disease become avail-

able). Thus, it is reasonable to include periodicity in dis-

ease transmission models that involve the use quarantine

and isolation.

The purpose of the current study is to qualitatively

assess the impact of periodicity on the transmission

dynamics of communicable disease in the presence of

quarantine and isolation. In particular, to determine whe-

ther or not adding periodicity to the autonomous quaran-

tine/isolation model considered in Safi and Gumel (2010)

affects the dynamics of the quarantine/isolation model with

respect to the elimination and persistence of the disease. To

achieve this objective, a deterministic non-autonomous

system of non-linear differential equations, which takes

into account the aforementioned periodicity, will be

designed and analyzed.

Model formulation

The model to be considered is that for the transmission

dynamics of an infectious disease, in the presence of

quarantine of exposed individuals and isolation of infected

individuals with clinical symptoms of the diseases (infec-

tious and symptomatically-infected individuals are used

interchangeably in this study). It is based on splitting the

total population at time t, denoted by N(t), into the sub-

populations of susceptible (S), exposed (infected, but not

yet show clinical symptoms of the disease; E), infected

with symptoms (I), quarantined (Q), hospitalized (H) and

recovered (R) individuals (it is assumed that individuals in

the Q class are infected but do not display clinical symp-

toms of the disease).

It is worth mentioning that, although (in general) the

process of quarantine also involves the isolation of sus-

ceptible individuals who are suspected of being exposed to

the disease (see, for instance, Feng et al. (2007), Lipsitch

(2003)), the quarantine class (Q) involves only newly-

infected (asymptomatic) individuals (detected either via

contact tracing of symptomatic cases or random testing).

That is, in this study quarantine refers to the removal of

newly-infected individuals from having contact with the

general population (i.e. individuals who remain susceptible

at the end of the quarantine period are not counted in the

Q class). The justification for this is based on the fact that,

for large total population sizes (N), the quarantine of sus-

ceptible individuals is unlikely to have a significant impact

on the disease dynamics (Feng et al. 2007). It is known, for

instance, that the mass quarantine implemented during the

SARS outbreaks in the Greater Toronto Area of Canada

only resulted in the detection of very few confirmed SARS

cases (Day et al. 2006).

The model is given by the following non-autonomous

system of non-linear differential equations:

dS

dt
¼ Pþ wRðtÞ � kaðtÞSðtÞ � lSðtÞ;

dE

dt
¼ kaðtÞSðtÞ � ½jðtÞ þ rðtÞ þ l�EðtÞ;

dI

dt
¼ jðtÞEðtÞ � ½c1ðtÞ þ /ðtÞ þ lþ d1�IðtÞ;

dQ

dt
¼ rðtÞEðtÞ � ½aðtÞ þ c2ðtÞ þ l�QðtÞ;

dH

dt
¼ aðtÞQðtÞ þ /ðtÞIðtÞ � ½c3ðtÞ þ lþ d2�HðtÞ;

dR

dt
¼ c1ðtÞIðtÞ þ c2ðtÞQðtÞ þ c3ðtÞHðtÞ � ðwþ lÞRðtÞ;

ð1Þ

where ka(t) is the time-dependent infection rate, given by

kaðtÞ ¼ bðtÞ IðtÞ þ gEðtÞEðtÞ þ gðtÞ½�1QðtÞ þ �2HðtÞ�
NaðtÞ

; ð2Þ

and Na(t) is the total actively-mixing population, given by

NaðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ �1QðtÞ þ �2HðtÞ þ RðtÞ: ð3Þ

In (2), b(t) is the effective time-dependent contact rate, the

modification parameter 0 B g(t) \ 1 accounts for the

assumed reduction of infectiousness of quarantined and

hospitalized individuals in relation to the symptomatically-

infected (infectious) individuals in the I class. This study

assumes that exposed individuals can transmit infection

(at a assumed reduced rate b(t)gE(t), where 0 B gE(t) \ 1

accounts for the reduction of transmission rate of exposed

individuals in relation to individuals in the I class). It should be

mentioned that many disease modeling studies that include

quarantine tend to assume that quarantined individuals do not

transmit infection (because individuals in quarantine are

typically asymptomatic; and, for some diseases such as HIV,

there is positive correlation between infectiousness and viral

load). This assumption is relaxed in this study by allowing for

the possibility of disease transmission by individuals in

quarantine. Transmission by asymptomatically-infected

individuals (such as those in the E and Q classes) occurs in

the context of some diseases, such as influenza.

In (3), �1 and �2 (with 0� �1; �2� 1) are modification

parameters used to measure the efficacy of quarantine and

isolation in preventing quarantined and isolated individuals

from having contact with the general public (thereby not

partaking in the disease transmission process). If �1 ¼ �2 ¼ 0;

then quarantine and isolation are perfectly implemented (so

that individuals in the quarantine and isolation classes are not

20 Theory Biosci. (2012) 131:19–30

123



part of the actively-mixing population, and do not transmit

infection). This is in line with one of the six incidence function

formulations (quarantine-adjusted) in Hethcote et al. (2002).

Leaky quarantine and isolation is represented by the case with

0\�1; �2\1: The case �1 ¼ �2 ¼ 1 represents the scenario

when individuals in quarantine and isolation are equally likely

to have contact with the general public than anyone else in the

population. The vast majority of quarantine and isolation

models published in the literature, such as those in Chowell

et al. (2004), Feng (2007a, b, Gumel et al. (2004), Hethcote

et al. (2002), McLeod et al. (2006), Mubayi et al. (2010), Safi

and Gumel (2010), Webb et al. (2004), adopt the case with

�1 ¼ �2 ¼ 1: It is worth stating that quarantine is not always

administered via the healthcare system. That is, it may be

administered at home, and there is no guarantee that individ-

uals in quarantine strictly adhere to the stipulated guidelines

(this may be the reason for the choice of the scenario with

�1 ¼ �2 ¼ 1Þ:
Susceptible individuals acquire infection, following

effective contacts with infected individuals (in the E, Q, I

and H classes), at the time-dependent rate ka(t). It should

be mentioned that, in (2), the transmission rate for indi-

viduals in the quarantine and hospitalized classes (b(t)g(t))

is further reduced by their respective contact efficacy (�1

and �2). The parameter P in (1) represents recruitment rate

into the population and w is the rate of loss of infection-

acquired immunity. Exposed individuals are quarantined at

a rate r(t). These individuals develop symptoms at a rate

j(t). Quarantined and symptomatically-infected (infec-

tious) individuals are hospitalized at the rates a(t) and /
(t), respectively. The parameters c1(t), c2(t) and c3(t) rep-

resent the recovery rates for symptomatic, quarantined and

hospitalized individuals, respectively, while l is the natu-

ral death rate (so that 1/l is the average lifespan). Finally,

d1 and d2 are disease-induced death rates for infectious and

hospitalized individuals, respectively. It is worth empha-

sizing that the model (1) monitors humans populations.

Hence, all its state variables and parameters are assumed to

be non-negative (and bounded) for all time t C 0. A flow

diagram of the model is given in Fig. 1, and the associated

variables and parameters are described and estimated in

Tables 1 and 2.

Fig. 1 Flow diagram of the

model (1)
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The non-autonomous model (1) is an extension of the

autonomous quarantine/isolation model studied in Safi and

Gumel (2010), by considering some of the parameters

(namely, b; g; j; r;/; c1; c2; c3 and a) to be periodic positive

continuous functions in t with period x[ 0 (unlike in the

autonomous model (Safi and Gumel 2010), where all the

model parameters are assumed to be constant; it is worth

stating that the model in Safi and Gumel (2010) does not

account for the recovery of quarantined individuals). The non-

autonomous system reduces to the autonomous system in Safi

and Gumel (2010) by setting bðtÞ ¼ b; gðtÞ ¼ g; jðtÞ ¼
j; /ðtÞ ¼ /; aðtÞ ¼ a; c1ðtÞ ¼ c1; c2ðtÞ ¼ 0; c3ðtÞ _¼ c3

and r(t) = r.

Using the definition N = S ? E ? I ? Q ?

H ? R, the non-autonomous system (1) can be re-written

as:

dS

dt
¼ Pþ w½NðtÞ � SðtÞ � EðtÞ � IðtÞ � QðtÞ � HðtÞ�

� bðtÞ IðtÞ þ gEðtÞEðtÞ þ gðtÞ½�1QðtÞ þ �2HðtÞ�
NðtÞ � ð1� �1ÞQðtÞ � ð1� �2ÞHðtÞ

SðtÞ

� lSðtÞ;
dE

dt
¼ bðtÞ IðtÞ þ gEðtÞEðtÞ þ gðtÞ½�1QðtÞ þ �2HðtÞ�

NðtÞ þ ð�1 � 1ÞQðtÞ þ ð�2 � 1ÞHðtÞ SðtÞ

� ½jðtÞ þ rðtÞ þ l�EðtÞ;
dI

dt
¼ jðtÞEðtÞ � ½c1ðtÞ þ /ðtÞ þ lþ d1�IðtÞ;

dQ

dt
¼ rðtÞEðtÞ � ½aðtÞ þ c2ðtÞ þ l�QðtÞ;

dH

dt
¼ aðtÞQðtÞ þ /ðtÞIðtÞ � ½c3ðtÞ þ lþ d2�HðtÞ;

dN

dt
¼ P� d1IðtÞ � d2HðtÞ � lNðtÞ: ð4Þ

Following Liu et al. (2009), the parameter b(t) is defined as

bðtÞ ¼ b0 1:1þ sin
pðtþ1Þ

6

h in o
; where b0 [ 0. Although

seasonality (or periodicity) has not played any role in the

transmission dynamics of SARS, the parameter values in

Table 2, used to simulate the model (4), are consistent with

those associated with the spread of SARS in a population

Table 2 Estimated values of the parameters of the model

Parameters Values (per day) References

P 136 (people per day) Gumel et al. (2004)

1/l 78 years

(l = 0.0000351

per day)

Hong Kong Special

Administrative Region

(2006)

g 0.5 Assumed

gE 0.25 Assumed

�1 0.5 Assumed

�2 0.8 Assumed

j 0.156986 Donnelly et al. (2003)

r 0.1 Gumel et al. (2004)

a 0.156986 Donnelly et al. (2003)

/ 0.20619 Chowell et al. (2004)

w 0.5 Assumed

c1 0.03521 Chowell et al. (2004)

c2 0.042553 Chowell et al. (2004)

c3 0.042553 Chowell et al. (2004)

d1 0.04227 Leung et al. (2004)

d2 0.027855 Chowell et al. (2004)

All time-dependent parameters, with exception of b(t), are given

constant values. The demographic parameters (l and P) are chosen

such that P=l ¼ 4 million (in line with the population of the Greater

Toronto Area of Canada). The average lifespan is taken to be 1/

l = 78 years (i.e. l = 0.0000351 per day), so that P ¼ 136 people

per day

Table 1 Description of the variables and parameters of the model (4)

Description

Variable

S(t) Population of susceptible individuals

E(t) Population of exposed individuals

I(t) Population of infected individuals with disease

symptoms

Q(t) Population of quarantined individuals

H(t) Population of hospitalized individuals

R(t) Population of recovered individuals

Parameter

P Recruitment rate

1/l Average lifespan

b(t) Effective contact rate

gE(t) Modification parameter for reduced

infectiousness of exposed individuals

g(t) Modification parameter for reduction in

infectiousness of quarantined and hospitalized

individuals

�1; �2 Modification parameters for efficacy of

quarantine and isolation

j(t) Progression rate from exposed to infectious class

r(t) Quarantine rate for exposed individuals

a(t) Hospitalization rate for quarantined individuals

/(t) Hospitalization rate for infectious individuals

w Rate of loss of infection-acquired immunity

c1(t) Recovery rate for infectious individuals

c2(t) Recovery rate for quarantined individuals

c3(t) Recovery rate for hospitalized individuals

d1 Disease-induced death rate for infectious

individuals

d2 Disease-induced death rate for hospitalized

individuals
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(since the autonomous version of the model was used to

study SARS dynamics) (Chowell et al. 2004a, b; Donnelly

et al. 2003; Gumel et al. 2004; Lipsitch et al. 2003; Lloyd-

Smith et al. 2003; McLeod et al. 2006; Riley et al. 2003;

Wang and Ruan 2004; Webb et al. 2004).

Basic properties

The basic properties of the non-autonomous model (4)

(which is equivalent to system (1)) will now be studied.

Lemma 1 System (4) has a unique and bounded solution

with the initial value ðS0;E0; I0;Q0;H0;N0Þ 2 X ¼
fðS;E; I;Q;H;NÞ 2 R

6
þ : N� Sþ E þ I þ Qþ Hg: Fur-

ther, the compact set

D ¼ fðS;E; I;Q;H;NÞ2 X : N�P=lg

is positively-invariant and attracts all positive orbits in X.

Proof Following Liu et al. (2009), let g 2 ðR6
þ;RÞ be

defined by

gðS;E;I;Q;H;NÞ

¼
0;ðS;E; I;Q;H;NÞ¼ ð0;0;0;0;0;0Þ;

S½IðtÞþgEðtÞEðtÞþgðtÞ½�1QðtÞþ �2HðtÞ�
N�ð1� �ÞQ�ð1� �2ÞH

; otherwise:

8<
:

Using the definition of the function g, the system (4) can

also be re-written as:

dS

dt
¼ Pþ w½NðtÞ � SðtÞ � EðtÞ � IðtÞ � QðtÞ � HðtÞ�

� bðtÞgðS;E; I;Q;H;NÞ � lSðtÞ;
dE

dt
¼ bðtÞgðS;E; I;Q;H;NÞ � ½jðtÞ þ rðtÞ þ l�EðtÞ;

dI

dt
¼ jðtÞEðtÞ � ½c1ðtÞ þ /ðtÞ þ lþ d1�IðtÞ;

dQ

dt
¼ rðtÞEðtÞ � ½aðtÞ þ l�QðtÞ;

dH

dt
¼ aðtÞQðtÞ þ /ðtÞIðtÞ � ½c2ðtÞ þ lþ d2�HðtÞ;

dN

dt
¼ P� d1IðtÞ � d2HðtÞ � lNðtÞ: ð5Þ

Thus, the function g(S, E, I, Q, H, N) is continuous on R
6
þ:

Furthermore, it can be shown that g(S, E, I, Q, H, N) is

globally-Lipschitz on R
6
þ (with Lipschitz constant L = 6).

Theorem 5.2.1 of Smith (1995) can then be applied to show

that, for any ðS0;E0; I0;Q0;H0;N0Þ 2 R
6
þ; the system (4)

has a unique local non-negative solution

(S, E, I, Q, H, N), with

½Sð0Þ;Eð0Þ; Ið0Þ;Qð0Þ;Hð0Þ;Nð0Þ�
¼ ðS0;E0; I0;Q0;H0;N0Þ:

It follows from the last equation of the system (4) that

dN

dt
¼ P� d1I � d2H � lN�P� lN;

from which it is clear that the associated linear differential

equation,

dN

dt
¼ P� lN;

has a unique equilibrium N� ¼ P=l; which is globally-

asymptotically stable (GAS). Finally, it can be shown,

using comparison theorem (Smith and Waltman 1995), that

N(t) is bounded. Thus, the solution of the system (4) exists

globally on the interval ½0;1Þ: h

Stability of disease-free equilibrium (DFE)

Local stability of DFE

Although the concept of basic reproduction number has

been extensively addressed (over the decades) for autono-

mous models for disease transmission, such a concept has

not been extended to disease transmission models with

periodic coefficients until very recently (see, for instance,

the notable contributions of Bacaër (2007, 2009), Bacaër

and Guernaoui (2006), Bacaër and Ouifki (2007), Bacaër

and Abdurahman (2008), Bacaër and Ait Dads (2011) and

Zhao and co-workers (2009, 2010a, b, 2008)). This article

uses the methodology in Wang and Zhao (2008) to com-

pute the reproduction number (or ratio) associated with the

non-autonomous SEIRS model with quarantine and isola-

tion, given by (4).

The DFE of the system is given by

E0 ¼ ðS0;E0; I0;Q0;H0;N0Þ ¼
P
l
; 0; 0; 0; 0;

P
l

� �
: ð6Þ

The equations for the rates of change of the infected

components (E, I, Q, H) of the linearized version of the

system (4) at the DFE ðE0Þ are given by

dE

dt
¼ bðtÞf½IðtÞ þ gEðtÞEðtÞ þ gðtÞ½�1QðtÞ þ �2HðtÞ�g

� ½jðtÞ þ rðtÞ þ l�EðtÞ;
dI

dt
¼ jðtÞEðtÞ � ½c1ðtÞ þ /ðtÞ þ lþ d1�IðtÞ;

dQ

dt
¼ rðtÞEðtÞ � ½aðtÞ þ c2ðtÞ þ l�QðtÞ;

dH

dt
¼ aðtÞQðtÞ þ /ðtÞIðtÞ � ½c3ðtÞ þ lþ d2�HðtÞ:

Using the notation in Wang and Zhao (2008), the next

generation matrix F(t) (of the new infection terms) and the

M-matrix V(t) (of the remaining transfer terms) associated

with the model (4) are given, respectively, by

Theory Biosci. (2012) 131:19–30 23

123



FðtÞ ¼

gEðtÞbðtÞ bðtÞ �1gðtÞbðtÞ �2gðtÞbðtÞ
0 0 0 0

0 0 0 0

0 0 0 0

0
BB@

1
CCA;

and,

Following Wang and Zhao (2008), let UM be the

monodromy matrix of the linear x-periodic system

dZ

dt
¼ MðtÞZ;

and qðUMðxÞÞ be the spectral radius of UMðxÞ: Further, let

Yðt; sÞ; t� s;

be the evolution operator of the linear x-periodic system

dy

dt
¼ �VðtÞy:

In other words, for each s 2 R; the associated 4 9 4 matrix

Y(t, s) satisfies

dYðt; sÞ
dt

¼ �VðtÞYðt; sÞ 8t� s; Yðs; sÞ ¼ I:

It is further assumed that /(s) (x-periodic in s) is the initial

distribution of infectious individuals. That is, F(s)/(s) is

the rate at which new infections are produced by infected

individuals who were introduced into the population at

time s (Wang and Zhao 2008). Since t C s, it follows then

that Y(t, s)F(s)/(s) represents the distribution of those

infected individuals who were newly-infected at time

s, and remain infected at time t.

Hence, the cumulative distribution of new infections at

time t, produced by all infected individuals (/(s)) intro-

duced at a prior time s = t, is given by

WðtÞ ¼
Z t

�1

Yðt; sÞFðsÞ/ðsÞds

¼
Z1

0

Yðt; t � aÞFðt � aÞ/ðt � aÞda:

Let Cx be the ordered Banach space of all x-periodic

functions from R to R
4; which is equipped with maximum

norm k:k and positive cone

C
þ
x ¼ f/ 2 Cx : /ðtÞ� 0; 8t 2 Rg:

Define a linear operator L : Cx ! Cx (Wang and Zhao

2008)

ðL/ÞðtÞ ¼
Z1

0

Yðt; t � aÞFðt � aÞ/ðt � aÞda 8t 2 R;/

2 Cx:

The reproduction ratio ðR0Þ is then given by the spectral

radius of L, denoted by q(L). That is, R0 ¼ qðLÞ (Wang

and Zhao 2008). It can be verified that system (4) satisfy

the Assumptions A1–A7 in Wang and Zhao (2008) (see

Appendix). Thus, using Theorem 2.2 in Wang and Zhao

(2008), the following result is established.

Lemma 2 The DFE of the model (4), given by (6), is

locally-asymptotically stable if R0\1; and unstable if

R0 [ 1:

To compute the reproduction ratio R0; associated with

the model (4), the following result will be used.

Theorem 1 (Wang and Zhao (2008)). Let W(t, k) t C 0

be the standard fundamental matrix of

dw

dt
¼ �VðtÞ þ 1

k
FðtÞ

� �
w; w 2 R

n; k 2 ð0;1Þ;

with W(0,k) = I. The following statements are valid:

(i) If q(W(x, k)) = 1 has a positive solution k0, then k0 is

an eigenvalue of L, and hence R0 [ 0;

(ii) If R0 [ 0; then k ¼ R0 is the unique solution of

q(W(x, k)) = 1;

(iii) R0 ¼ 0; if and only if q(W(x, k)) \ 1 for all k[ 0:

The computation forR0 is then carried out via the following

steps (Wang and Zhao 2008) (see also Bacaër (2007) for other

particular examples based on using Floquet theory):

(a) First of all, for a given value of k, the matrix W(x, k)

is numerically computed using a standard numerical

VðtÞ ¼

jðtÞ þ rðtÞ þ l 0 0 0

�jðtÞ c1ðtÞ þ /ðtÞ þ lþ d1 0 0

�rðtÞ 0 aðtÞ þ c2ðtÞ þ l 0

0 �/ðtÞ �aðtÞ c3ðtÞ þ lþ d2

0
BB@

1
CCA:
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integrator (such as the forward-Euler or Runge-Kutta

finite-difference method (Kincaid and Cheney 1991));

(b) Then, the spectral radius q(W(k)) is calculated;

(c) Let f(k) = q(W(k)) - 1. Then, a root finding method

(such as the bisection method (Kincaid and Cheney

1991)) is used to find the zero of f.

The epidemiological implication of the result in Lemma 2

is that the disease can be eliminated from the community

(whenR0\1) if the initial sizes of the sub-populations of the

model are in the basin of attraction of the DFE (E0). To ensure

that disease elimination is independent of the initial sizes of

the sub-populations of the model, it is necessary to show that

the DFE is GAS ifR0\1: This is explored below.

Global stability of DFE

Theorem 2 The DFE of the model (4), given by (6), is

GAS in D whenever R0\1:

Proof. First of all, using the fact that SðtÞ�NðtÞ�
½ð1� �1ÞQðtÞ þ ð1� �2ÞHðtÞ� for all t C 0 in D; the

system (4) can be re-written as

dE

dt
� bðtÞ½gEðtÞEðtÞ þ IðtÞ þ gðtÞð�1QðtÞ þ �2HðtÞÞ�

� ½jðtÞ þ l�EðtÞ;
dI

dt
¼ jðtÞEðtÞ � ½c1ðtÞ þ /ðtÞ þ lþ d1�IðtÞ;

dQ

dt
¼ rðtÞEðtÞ � ½aðtÞ þ c2ðtÞ þ l�QðtÞ;

dH

dt
¼ aðtÞQðtÞ þ /ðtÞIðtÞ � ½c3ðtÞ þ lþ d2�HðtÞ:

ð7Þ

The equations in (7), with equality used in place of the

inequality, can be re-written in terms of the matrices F(t)

and V(t), as follows:

dW

dt
¼ ½FðtÞ � VðtÞ�WðtÞ: ð8Þ

It follows from Lemma 2.1 in Zhang and Zhao (2007) that

there exists a positive x-periodic function, wðtÞ ¼
ðEðtÞ; IðtÞ;QðtÞ;HðtÞÞ; such that

WðtÞ ¼ ehtwðtÞ; with h ¼ 1

x
lnq½/F�VðxÞ�;

is a solution of the equation given by (8). However, R0\1

implies that q(/F-V(x)) \ 1 (by Theorem 2.2 in Wang and

Zhao (2008)). Hence, h is a negative constant. Thus,

WðtÞ ! 0 as t!1: This implies that the trivial solution

of system (8), given by W(t) = 0, is GAS.

For any non-negative initial solution (E(0), I(0), Q(0),

H(0))T of the system (8), there exists a sufficiently large

M* [ 0 such that

ðEð0Þ; Ið0Þ;Qð0Þ;Hð0ÞÞT �M�ðEð0Þ; Ið0Þ;Qð0Þ;Hð0ÞÞT :

Thus, by comparison theorem (Smith and Waltman 1995),

it follows that

ðE; I;Q;HÞ�M�WðtÞ for all t [ 0;

where, M*W(t) is also a solution of (8). Hence,

ðEðtÞ; IðtÞ;QðtÞ;HðtÞÞ ! ð0; 0; 0; 0Þ as t!1: Finally,

by Theorem 1.2 in Thiem (1992), it follows that NðtÞ !
P=l and SðtÞ ! P=l as t!1: In summary,
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Fig. 2 Simulation of the model (4) showing the total number of

infected individuals as a function of time forR0\1: Parameter values

used are as given in Table 2, with b0 = 0.08 (so that,

R0 ¼ 0:75833351:)

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

x 10
6

Time in days

E
(t

)+
I(

t)
+

Q
(t

)+
H

(t
)

Fig. 3 Simulations of the model (4) showing the total number of

infected individuals as a function of time. Parameter values used are

given as in Table 2, with b0 = 1 (so that, R0 [ 1)
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lim
t!1
½SðtÞ;EðtÞ; IðtÞ;QðtÞ;HðtÞ;NðtÞ�
! E0; whenever R0\1:

Hence, noting that E0 is asymptotically-stable when R0\1

(Lemma 2), it follows that E0 is globally-attractive if

R0\1: h

The epidemiological implication of Theorem 2 is that

the use of quarantine and isolation can lead to disease

elimination in the community if it brings (and keeps) the

threshold quantity, R0; to a value less than unity. That is,

the threshold condition R0\1 is necessary and sufficient

for disease elimination from the community. Figure 2

depicts the numerical results obtained by simulating the

model (4) using various initial conditions for the case

R0\1: It is evident from this figure that all solutions

converged to the DFE, E0 (in line with Theorem 2). It is

worth mentioning that the DFE of the corresponding

autonomous model was also shown to be globally-asymp-

totically stable when the associated reproduction number is

less than unity (see Safi and Gumel (2010)). Thus, this

study shows that adding periodicity to the corresponding

autonomous quarantine/isolation model given in Safi and

Gumel (2010) does not alter the stability properties of the

associated DFE of the autonomous model.

The following result can be proved for the system (4)

using persistence theory (see, for instance, Liu et al.

(2009), Zhang and Zhao 2007, Zhao 2003)):

Theorem 3 If the reproduction ratio R0 [ 1; then there

exists s[ 0 such that any solution (S(t), E(t), Q(t), H(t),

N(t)) of the system (4) with initial value ðS0;E0; I0;Q0;H0;

N0Þ 2fðS;E; I;Q;H;NÞ 2X : E [ 0; I [ 0;Q [ 0;H [ 0g
satisfies

liminf
t!1

I�s; liminf
t!1

E�s; liminf
t!1

Q�s; and liminf
t!1

H�s:

The epidemiological implication of Theorem 3 is that

the disease will persist in the population if R0 [1:

Figure 3 shows a time series plot of the total number of

infected individuals for two sets of initial conditions. It

should be mentioned that the solutions did not converge to
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Fig. 4 Blow up of the tail end of Fig. 3
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Fig. 5 Phase portraits of the

model (4). Parameter values

used are as given in Table 2,

with b0 = 1.6 (so that, R0 [ 1)
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zero as they appear to in Fig. 3 (see Fig. 4 for a depiction

of the zoomed version of the tail end of Fig. 3). Figures 3

and 4 clearly show convergence of the solutions to the non-

trivial periodic solution for the case R0 [1 (in line with

Theorem 3). Phase portraits of the solutions are also

provided (Fig. 5).

Figure 6 shows the fixed-points of the Poincar�e map

associated with the system (4). The fixed-points are cal-

culated as follows:

(i) For each value of b0, the model is run 5000 times, and

the transient solutions are removed by discarding the

first 4900 iterates;

(ii) An arbitrary point (typically the first local maximum)

is picked out of the remaining 100 iterates;

(iii) A time period of 12 days is arbitrarily selected;

(iv) The fixed-points of the Poincar�e map are then

plotted, starting from the first local maximum.

For all the iterations carried out, the local maxima (corre-

sponding to each period) are the same (as plotted in Fig. 6). It

follows from Fig. 6 that forb0 \b0c (i.e.R0\1), the map has

a unique trivial fixed-point (corresponding to the DFE, E0).

Furthermore, for b0 [b0c (i.e.R0 [ 1), the map has a unique

non-trivial fixed-point (corresponding to non-trivial periodic

solution). Hence, the system (4) undergoes a forward

(transcritical) bifurcation at b0 = b0c (for the parameter

values used in the simulations, this bifurcation occurs at the

point b0 ¼ b0cw 0:10497). It should be recalled that for b0 ¼
b0c ¼ 0:10497;R0w 1 (which is in line with the result

depicted in Fig. 6). A detailed bifurcation diagram of the

periodic solution is given in Fig. 7 (this figure is plotted using

the same approach as that for plotting Fig. 6, except that, here,

the absolute minimum and maximum of the number of

infectious individuals in class I, denoted by Imin and Imax, are

depicted). Clearly, Fig. 7 shows that b0 must exceed a certain

critical value (b0 [b0c = 0.10497) for the disease to persist

in the population. In summary, Figs. 3, 4, 5, 6,7 show disease

persistence (via the existence of a periodic solution) when

R0 [ 1: It should be recalled that the corresponding auton-

omous model given in Safi and Gumel (2010) was shown to

have a stable unique endemic equilibrium whenever its

associated reproduction number is less than unity (so that the

disease persists). Thus, the analyses in this article show that

adding periodicity to the autonomous model in Safi and

Gumel (2010) does not alter its qualitative dynamics with

respect to the elimination and persistence of the disease in the

population.

Conclusions

A deterministic non-autonomous model for assessing the

impact of quarantine (of asymptomatic cases) and isolation

(of symptomatic cases) on curtailing the spread of a com-

municable disease is presented. The model is simulated

using a reasonable set of parameter values (consistent with

the 2002/2003 SARS outbreaks). The study shows that the

associated disease-free solution is globally-asymptotically

stable whenever the reproduction threshold is less than

unity. The disease persists in the population if the threshold

exceeds unity. The study shows that adding periodicity to

the corresponding autonomous model in Safi and Gumel

(2010) does not alter its qualitative dynamics with respect

to the elimination and persistence of the disease.

Fig. 7 Bifurcation diagram of the non-trivial periodic solution;

showing the number of infectious individuals in class I as a function

of b0 2 ½0; 0:5�: Parameter values used are as given in Table 2
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Fig. 6 Simulations of the model (4) showing the fixed-points of the

Poincar�e map as b0 varies from 0 to 0.5. Parameter values used are as

given in Table 2
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Appendix

Verification of Assumptions A1–A7 in Wang and Zhao

(2008). The purpose here is to check whether the system

(4) (or, equivalently, (1)) satisfies Conditions A1–A7 in

Wang and Zhao (2008). Since the system (1) is equivalent

to (4), the former system will be used in this analysis (for

mathematical convenience). Using the notation in Wang

and Zhao (2008), system (1) can be re-written as:

d

dt
xðtÞ ¼ Fðt; xðtÞÞ � Vðt; xðtÞÞ ¼ f ðt; xðtÞÞ; ð9Þ

where,

and,

Furthermore, let,

Vþ ¼

Pþ wRðtÞ
0

0

0

0

c1IðtÞ þ c2QðtÞ þ c3HðtÞ

0
BBBBBB@

1
CCCCCCA
;

V� ¼

bðtÞSðtÞ gEðtÞEðtÞþIðtÞþgðtÞ½�1QðtÞþ�2HðtÞ�f g
SðtÞþEðtÞþIðtÞþ�1QðtÞþ�2HðtÞþRðtÞ þ lSðtÞ

ðjðtÞ þ rðtÞ þ lÞEðtÞ
ðc1 þ /þ lþ d1ÞIðtÞ
ðaðtÞ þ c2ðtÞ þ lÞQðtÞ
ðc2 þ lþ d2ÞHðtÞ
ðwþ lÞRðtÞ

0
BBBBBBBB@

1
CCCCCCCCA
:

It is easy to see that V ¼ V� � Vþ: The functions F ;Vþ
and V� satisfy the following:

(A1) For each 1 B i B 6,F iðt; xÞ; Vþi ðt; xÞ and V�i ðt; xÞ
are non-negative, continuous on R� R

6
þ and contin-

uously differential with respect to x (since each function

denotes a direct non-negative transfer of individuals).

V ¼

�P� wRðtÞ þ bðtÞSðtÞ gEðtÞEðtÞ þ IðtÞ þ gðtÞ½�1QðtÞ þ �2HðtÞ�f g
SðtÞ þ EðtÞ þ IðtÞ þ �1QðtÞ þ �2HðtÞ þ RðtÞ þ lSðtÞ

ðjðtÞ þ rðtÞ þ lÞEðtÞ
ðc1 þ /þ lþ d1ÞIðtÞ
ðaðtÞ þ c2 þ lÞQðtÞ
ðc3 þ lþ d2ÞHðtÞ

�c1IðtÞ � c2QðtÞ � c3HðtÞ þ ðwþ lÞRðtÞ

0
BBBBBBBB@

1
CCCCCCCCA
:

x ¼

SðtÞ
EðtÞ
IðtÞ
QðtÞ
HðtÞ
RðtÞ

0
BBBBBB@

1
CCCCCCA
; F ¼

0
bðtÞSðtÞ gEðtÞEðtÞ þ IðtÞ þ gðtÞ½�1QðtÞ þ �2HðtÞ�f g

SðtÞ þ EðtÞ þ IðtÞ þ �1QðtÞ þ �2HðtÞ þ RðtÞ
jðtÞEðtÞ
rðtÞEðtÞ
aðtÞQðtÞ

0

0
BBBBBBB@

1
CCCCCCCA
;
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(A2) By assumption (it should be noted that it is assumed

that some of the model parameters are x-periodic

functions), there exists a real number x[ 0, such

that F iðt; xÞ; Vþi ðt; xÞ and V�i ðt; xÞ are x-periodic

in t.

(A3) If xi = 0, then V�i ¼ 0 for i = 2, 3, 4, 5.

(A4) F i ¼ 0 for i = 1, 6.

(A5) Define Xs ¼ fx� 0 : xi ¼ 0 for i ¼ 2; 3; 4; 5g: It is

clear that if x [ Xs, then F i ¼ Vþi ¼ 0 for

i = 2, 3, 4, 5. System (1) has a disease-free solu-

tion, given by x* = (P=l, 0, 0, 0, 0, 0). Define a

2 9 2 matrix

MðtÞ ¼ ofiðt; x�Þ
oxj

� �

i;j¼1;6

:

It follows from (9), and the definitions of the matrices F
and V; that

MðtÞ ¼ �l w
0 �ðlþ wÞ

� �
:

(A6) Since M(t) is a diagonalizable matrix with negative

eigenvalues, then

qðUMðxÞÞ\1:

(A7) Similarly,-V(t) is a diagonalizable matrix with

negative eigenvalues. Hence,

qðU�VðxÞÞ\1:

Thus, the system (1) , or (equivalently) (4), satisfies Con-

ditions A1–A7 in Wang and Zhao (2008).
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