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In general, self-organization is defined as the transition of a

system into an organized form in the absence of external or

centralized control. Thus, one may emphasize two key

features of a self-organized system or process: (i) an

increase in organization (structure and/or functionality)

over some time, and (ii) the local interactions are not

guided by any external agent. At the first glance, the second

feature (the absence of external guidance) immediately

places the idea of Guided Self-Organization (GSO) under a

serious doubt. The term almost sounds self-contradictory or

paradoxical. However, there is a simple resolution of the

apparent inconsistency.

Let us first illustrate this with an example provided by

studies of optimal path formation within artificial ant col-

onies. Optimal paths (sometimes a network such as mini-

mal spanning tree; Prokopenko et al. 2005) connecting the

nest and some distributed food sources is a well-known

outcome of self-organization that involves pheromone-

depositing ants. Each individual ant uses only local infor-

mation, without reference to the global network, and the

latter self-organizes after multiple stigmergic interactions

between the ants and the environment. The first feature of

self-organization—the increase in organization over

time—is manifested by such an optimal network (paths).

The second feature demanding that the local interactions

are not guided by any centralized control or external agent

is also evident: every ant acts independently and locally,

without tracing some predesigned blueprint.

At this stage, we extend this example by using the

results reported by Van Vorhis Key and Baker (1982) who

studied odor-conditioned anemotaxis exhibited by Argen-

tine ant workers, Iridomyrmex humilis. They experimented

with a specific trail pheromone component that was pre-

sented in two ways: as a wide, relatively uniform swath of

permeated air, and as a point source creating a time-aver-

aged plume downwind. One of the main observations was

that ants traveled significantly farther toward the phero-

mone source in wind than without wind. That is, the

external pressure provided by the additional point source of

the specific trail pheromone guided the ants in a particular

way. Such guidance, however, was not provided as a

control input to individual ants, i.e., without any modifi-

cations of the ants’ neural circuitry. One may therefore

argue that the resulting optimal paths still appeared as an

outcome of self-organization driven by pheromone-depos-

iting ants, and not by any specific blueprint—but at the

same time, the paths were affected (guided) toward a

specific goal or task. One may imagine, for instance, that

deploying other point-sources of the trail pheromone

component may guide the resulting optimal paths in vari-

ous ways.

Crucially, the external pressure provided by the addi-

tional point source of the trail pheromone was not applied

via some explicit change to control logic of the local

agents. In the second example, the paths still formed

optimally subject to the additional constraint within the

environment, while the inner workings of local agents

(ants) stayed the same—it is just that the extra pheromone

affected some of the local decisions by changing the
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environment. This illustration suggests that in order to

consistently define GSO we may need to elaborate on the

second feature of self-organization as follows: (ii) the local

interactions are not explicitly guided by any external agent.

In this context, by an explicit effect, we mean a change

within the agents’ decision-making mechanism, while an

implicit change assumes a modification to the environment.

Such an elaboration would not violate the spirit of many

adopted definitions of self-organization (Prokopenko et al.

2009), relegating all implicit guidance sources to the level

of additional, task-dependent, system constraints.

Finally, to make GSO more specific one may need to

add another feature: (iii) task-independent objectives are

combined with task-dependent constraints. For instance,

the actual path formation is understood in this context as an

example of a task-independent objective (which is ulti-

mately relevant to the global ant colony survival), while

additional point-sources of the trail pheromone component

may correspond to various tasks such as development of

specific network topologies.

The interpretation suggested above provides some

means to consistently incorporate numerous ways that

guidance may be given to a self-organizing system/process,

suggesting to treat these ways as additional constraints

imposed on the system under consideration. The program

of The Second International Workshop on Guided Self-

Organization (GSO-2009) included 19 presentations where

GSO aspects were presented and investigated. In particular,

the workshop puts an emphasis on principles based on

information flows through the perception–action loops of

embodied systems—relating GSO to the notion that cog-

nition and action emerge from interactions between brain,

body, and environment while optimizing task-independent

objective functions (Ay et al. 2008; Polani et al. 2007). The

contributions to this special issue are grouped into three

clusters corresponding to (i) guided self-organization in

robotic systems (Martius and Herrmann 2011), (ii) infor-

mation-theoretic studies of the sensorimotor loop (Ay et al.

2011; Capdepuy et al. 2011; Still and Precup 2011), and

(iii) self-organization in information processing networks

(Boedecker et al. 2011; Greshenson 2011; Lizier et al.

2011).

Martius and Herrmann (2011) postulate that autono-

mous robots can generate exploratory behavior by self-

organization of the sensorimotor loop, and show that the

behavioral manifold determined in this way can be modi-

fied in a goal-dependent way without reducing the self-

induced activity of the robot. Three presented strategies for

guided self-organization are then analyzed and evaluated

for two different robots in a physically realistic simulation,

using: (a) external rewards, (b) a problem-specific error

function, (c) assumptions about the symmetries of the

desired behavior.

Still and Precup (2011) continue the theme of maxi-

mizing predictive power in information-theoretic terms,

applying the idea to the problem of exploration in rein-

forcement learning and curiosity-driven learning. They

propose that, in addition to maximizing the expected

return, a learner should chose a policy that maximizes the

predictive power of its own behavior, measured by the

information that the most recent state–action pair carries

about the future. The proposed optimization principle

suggests that exploration emerges as a directed behavior

that optimizes information gain, rather than being modeled

solely as behavior randomization.

Capdepuy et al. (2011) propose a formalism for study-

ing embodied cognition among multiple agents that allows

to (i) identify information flows and their limits under

various scenarios and constraints, and (ii) use informational

quantities in order to induce the self-organization of the

agents behavior without any externally specified drives.

The central question investigated in this article is the

impact of coordination between agents, and it is shown

that, under some conditions, self-organizing systems based

on information-theoretic quantities have a tendency to

spontaneously generate coordinated behavior. Moreover,

the information-theoretic limits on what agents can achieve

with and without coordination put specific constraints on

the mechanisms underlying self-organization in the system.

Ay et al. (2011) further explore the idea that living

beings are information processing systems and that the

optimization of these processes should provide an evolu-

tionary advantage, and study the use of the predictive

information (PI) of the sensorimotor process. This measure

is applied utilizing the dynamical systems approach to

robot control. The study derives exact results for the PI

together with explicit learning rules for the parameters of

the controller. Interestingly, these learning rules are of

Hebbian nature and local in the sense that the synaptic

update is given by the product of activities available

directly at the pertinent synaptic ports. Overall, this study

shows that the learning rules derived from the maximum PI

principle are a versatile tool for the self-organization of

behavior in complex robotic systems.

Gershenson (2011) investigates Random Boolean net-

works (RBNs) as self-organizing systems and reviews

seven different methods for guiding the self-organization

of RBNs. In particular, the work is focused on guiding

RBNs toward the critical dynamical regime, which is near

the phase transition between the ordered and dynamical

phases. The properties and advantages of the critical

regime for life, computation, adaptability, evolvability, and

robustness are revised. Gershenson argues that the guid-

ance methods of RBNs can be used for engineering sys-

tems with the features of the critical regime, as well as for

studying how natural selection evolved living systems,
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which are also critical—resonating with the work of Boe-

decker et al. (2011).

Lizier et al. (2011) also turn the attention to criticality of

complex systems and distinguish complex computation via

its coherent structure in the corresponding local informa-

tion dynamics. This leads to the observation that complex

systems exhibit very highly structured coherent computa-

tion in comparison to: (a) ordered systems, which exhibit

coherence but minimal structure in a computation domi-

nated by information storage or non-interacting transfer

structures; and (b) chaotic systems, whose computations

are dominated by rampant information transfer eroding any

coherence. The presented rigorous methodology identifies

both clear and hidden coherent structure in complex com-

putation, and suggests that coherent information structure

may be a useful intrinsic goal in the domain of guided self-

organization.

Boedecker et al. (2011) investigate information pro-

cessing in randomly connected recurrent neural networks.

It has been shown previously that the computational

capabilities of these networks are maximized when the

recurrent layer is close to the border between a stable and

an unstable dynamics regime, the so-called edge of chaos.

The adopted information-theoretical framework allows the

authors to find evidence that both information transfer and

storage in the recurrent layer are maximized close to the

edge of chaos, explaining why guiding the recurrent layer

toward the edge of chaos is computationally useful. As a

consequence, this study suggests self-organized ways that

improve performance in recurrent neural networks, as well

as sheds some light on reasons why biological systems are

tuned into this specific regime.

The selection of contributions to this special issue

highlights an emerging trend in studies of embodied sys-

tems motivated by GSO: identification and application of

optimization principles that quantify specific information

flows through the perception–action loops. These papers

illustrate several important innovative concepts, further

advancing studies of guided self-organization. Overall, the

reported results strengthen the notion that cognition and

action may self-organize from interactions between brain,

body, and environment under appropriate constraints

guiding the process, and open several avenues for future

research.
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