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Abstract
Previous pandemics in 1918, 1957, 1968, and the ongoing COVID-19 pandemic have provided sufficient evidence of health 
concerns caused by influenza pandemics. The existing health care system is overwhelmed by the surging demand of sus-
ceptible and infected individuals due to the COVID-19 outbreak. It is crucial to identify and isolate infected individuals 
to prevent pandemic spread. Thus, a mixed-integer linear programming model is proposed in this study for the location-
allocation of health care facility networks (i.e., temporary testing laboratories). The objective of this study is to ensure that 
test samples from various geographical locations reach testing laboratories as soon as possible and at minimum cost to ensure 
timely testing. Hence, the proposed model has two objectives: (i) minimization of the total cost and (ii) minimization of the 
maximum travel time from a patient node to a testing facility. Furthermore, to prevent capacity underutilization, the capac-
ity of temporary testing laboratories is tailored in the model. A case study in Maharashtra, India, is used to demonstrate the 
real-life applicability of the proposed model. The study results has interesting implications for decision- and policy-makers.

Keywords  Healthcare facility location · Mixed-integer linear programming · Pandemic outbreak · Healthcare in developing 
countries

1  Introduction

Pandemic outbreaks, whether driven by natural calamities 
or bioterrorism, have posed a threat to human lives and eco-
nomic progress (Liu et al. 2020). There were three major 
influenza pandemics in the twentieth century: the Spanish flu 
(1918), Asian flu (1957), and Hong Kong flu (1968) (Ekici 
et al. 2014). Among these three pandemics, the Spanish flu 
had the highest impact, leading to 40–50 million deaths 
worldwide (Sun et al. 2014). Other examples of recent pan-
demics include the H5N1 outbreak in 2003 and the H1N1 
outbreak in 2009, which affected millions of people world-
wide (Liu et al. 2020). The recent coronavirus or COVID-19 
pandemic has been the first global pandemic since the 1918 
Spanish flu (Sodhi et al. 2021). The COVID-19 pandemic 

was first reported in Wuhan, China and has had a devas-
tating impact on people's lives (Queiroz et al. 2020). The 
COVID-19 pandemic claimed 3.8 million lives and infected 
approximately 176 million people as of May 2021 (Koshta 
et al. 2021).

COVID-19 is a contagious disease spread by saliva drop-
lets suspended in the air when an infected person coughs or 
sneezes (Mangili and Gendreau 2005). The virus can also 
survive for hours on metal surfaces and spread to those who 
come in contact with these surfaces (Koshta et al. 2021). The 
risk of virus spread is higher in crowded places and when 
people move from an infected area to another place, neces-
sitating increased monitoring and planning activities (Lam 
et al. 2011; Chowdhury et al. 2020). To break the COVID-19 
transmission chain, countries worldwide have suspended all 
economic and noneconomic activities and gone into com-
plete lockdowns (Chakraborty and Maity 2020; Qin et al. 
2021). The WHO (2020) has recommended several COVID-
19 preparedness practices, including regular handwashing, 
social distancing, and avoiding unnecessary travel. However, 
an effective and efficient health care system is also critically 
needed. A healthcare system enables infected patients to be 
quickly identified, such that these patients can be separated 
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from others and treated, thereby preventing the spread of 
disease.

Operations and supply chain management (OSCM)  
scholars have been quick to respond to the disruption caused 
by COVID-19 by publishing articles to provide support to 
decision-makers, policy-makers, and researchers. For exam-
ple, Aldrighetti et al. (2021), Ivanov and Dolgui (2021a, 
b), Queiroz et al. (2020), and Sodhi et al. (2021) provided 
guidance to researchers on disruption risk modeling, meth-
ods to cope with the ripple effect, guidance on resilience 
assessment and viability analysis, strategies that commer-
cial supply chains could use to cope with the pandemic, 
and ways to improve the responsiveness of supply chains 
for essential products, respectively. Paul and Chowdhury 
(2020) proposed a mathematical model for supply chains 
for essential products to manage disruptions. Ivanov (2021) 
proposed four adaptive strategies to maintain supply chain 
viability during a pandemic outbreak using a mixed-method 
approach. However, the health care supply chain, which is 
at the forefront of the fight against COVID-19, is equally 
important and has not received sufficient attention from 
OSCM scholars.

Although measures such as lockdowns and social distanc-
ing are important to confine the spread of COVID-19, it is 
equally important to have an effective health care system to 
facilitate widespread testing (Araz et al. 2020). The appro-
priate location of testing infrastructure or laboratories is cru-
cial to ensure that test samples are transported quickly from 
any geographical location to testing laboratories (Koshta 
et al. 2021). Thus, appropriate location of testing laborato-
ries facilitates timely identification and isolation of infected 
individuals, ultimately reducing pandemic spread. Further-
more, testing laboratories should be located outside hospi-
tals to prevent overcrowding and the possibility of trans-
mission to other patients and health care workers (Salathé 
et al. 2020); hence, such testing laboratories are referred 
to as temporary testing laboratories (TTLs) in this paper. 
The aim of this study is to develop a mathematical model 
for locating a temporary testing laboratory (TTL) and the 
allocation of demand thereof. The following research ques-
tions are proposed in light of the discussion presented above.

RQ1. How can a network of temporary testing laborato-
ries be developed for timely testing during a pandemic?
RQ2. How can temporary testing laboratories be located 
and demand be allocated during an influenza pandemic 
outbreak?
RQ3. How can equity of services to demand locations 
be ensured?

A response model is proposed in this study to determine 
the locations of temporary testing laboratories (TTLs) 
to escalate the testing rate during an influenza pandemic 

outbreak. The proposed location-allocation model has two 
objectives: i) minimization of cost and ii) minimization of 
the maximum travel time. The cost components include the 
fixed cost, variable or operating cost, transportation cost, 
and capacity underutilization cost. The minimization of the 
maximum travel time is used as an objective to ensure that 
no customer location is prohibitively far from a TTL, which 
could delay testing due to the long time spent transporting 
test samples. Furthermore, scholars suggest that capacity 
underutilization can result in extra costs due to resource 
wastage (Blackmon et al. 2021). Therefore, the model is 
updated to address capacity underutilization.

In summary, the problem is solved in two steps. First, 
a mathematical model is proposed to establish TTLs with 
predetermined capacities to provide equity of service at 
minimum cost. Second, the model is modified by incorpo-
rating capacity as a decision variable to prevent capacity 
underutilization. Finally, the model is solved for a case study 
in Maharashtra during the COVID-19 pandemic. The case 
details are discussed later in the paper.

The remainder of this study is organized as follows: a 
literature review is presented in Sect. 2. The problem is 
described in Sect. 3, along with the study assumptions and 
the mathematical model. In Sect. 4, numerical experiments 
and a modification of the mathematical model are presented. 
In Sect. 5, we present a case study in Maharashtra, India, 
describe the case information in detail and illustrate the 
application of the proposed model. The model results are 
also reported and discussed. The implications of the study 
are discussed in Sect. 6. Finally, conclusions and future 
directions are presented in Sect. 7.

2 � Background

2.1 � Literature review

The COVID-19 pandemic has had a dynamic and severe 
impact on people's lives due to the contagious nature of the 
disease (Koshta et al. 2021). Thus, the location of TTLs is 
critical for reducing the spread of the pandemic by providing 
timely testing and ensuring equity of services at various geo-
graphical locations. Hence, three research directions are fol-
lowed in the present study: (1) OSCM during the COVID-19 
outbreak, (2) health care facility location during a pandemic 
or epidemic outbreak, and (3) health care facility location to 
ensure equity or fairness of services.

2.1.1 � OSCM during COVID‑19

The tremendous challenges posed by COVID-19 have 
exposed the vulnerability of supply chains. These chains 
have been faced with and struggled to manage both 
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supply- and demand-side disruptions. OSCM scholars pro-
posed various strategies for decision-makers to respond 
to the disruption caused by the COVID-19 pandemic. For 
example, Blackmon et al. (2021) developed a decision sup-
port system to assist the Los Angeles Regional Food Bank in 
alleviating food insecurity during the COVID-19 outbreak. 
Ivanov (2021) predicted the impact of COVID-19 on global 
supply chain performance and reported that the timing of 
opening and closing facilities at different echelons is the 
most important predictor of supply-chain performance. Paul 
and Chowdhury (2020) proposed a production recovery plan 
for supply chains of essential or high-demand products using 
a mathematical modeling approach. Based on the tenets of 
organizational information processing theory and a resource-
based view, Baz and Ruel (2021) reported that supply-chain 
risk management is crucial for absorbing disruptions and 
improving the resilience and robustness of supply chains.

In the context of health care planning during the COVID-
19 outbreak, Oeser and Romano (2021) examined risk pool-
ing using the survey method. These authors suggested that 
risk pooling could substantially reduce economic loss while 
maintaining service levels during the outbreak. Tirkolaee 
et al. (2021) proposed a mixed-integer linear programming 
location-routing problem with time windows for COVID-19 
medical waste management. Zeferino et al. (2021) prior-
itized the factors that influence site-selection decisions for 
the location of quarantine centers for COVID-19 patients 
using the analytical hierarchy process (AHP) and Pareto 
techniques. The authors reported the safety of quarantine 
facilities as the most important factor, followed by skilled 
workforce availability. Finally, Risanger et al. (2021) pro-
posed an optimization model for increasing coverage 
of COVID-19-related health care services in the United 
States. The aim of the study was to choose pharmacies to 
provide COVID-19 testing (or COVID-19 sample collec-
tion) by maximizing people's ability to travel to the nearest 
pharmacy.

2.1.2 � Healthcare facility location during pandemic 
or epidemic outbreak

Health care planning during pandemic or epidemic out-
breaks has received significant attention from OSCM  
scholars in the past (Sun et al. 2014). Scholars have pro-
posed facility location models for various types of health 
care facilities during pandemic or epidemic outbreaks. Lee 
et al. (2009) investigated the optimal location of point-of-
distribution sites for mass prophylaxis during an anthrax 
attack in a metropolitan area. The model was also used 
to allocate and determine the number of health personnel 
needed to manage the established facilities. Büyüktahtakın 
et al. (2018) proposed a spatio-temporal mixed-integer pro-
gramming model to locate Ebola treatment centers (ETCs). 

The allocation of a limited budget over a multiperiod plan-
ning horizon to control the effects of the Ebola outbreak in 
West Africa was investigated.

Liu et al. (2020) modified this model for the 2009 H1N1 
pandemic by changing the capacity constraints and applied 
the modified model to China as a case study. The authors 
developed a mixed-integer nonlinear programming model 
(MINLP) and determined when isolation wards should 
be opened and closed when not in use. In a recent study, 
Anparasan and Lejeune (2019) proposed an integer linear 
programming model for locating treatment facilities in Haiti 
in response to the 2010 cholera outbreak. The model maxi-
mizes the number of adversely affected people transported 
from a triage point to treatment facilities. Additionally, the 
allocation of health care staff and ambulances to the triage 
point was considered in the model.

2.1.3 � Healthcare facility location for equity or fairness 
of services

Another theme in the extant literature that is closely related 
to the present study is equity or fairness of services. Equity 
or fairness refers to equal access of resources at all demand 
points, irrespective of geographical location (Rodríguez-
Espíndola et al. 2018). Beheshtifar and Alimoahmmadi 
(2015) proposed a multiobjective location-allocation model 
for new clinics to improve health care services. The opti-
mal location of clinics was determined by considering four 
objectives: (1) minimization of land acquisition and clinic 
establishment costs, (2) minimization of land-use incompati-
bility, (3) minimization of inequity in access to facilities, and 
(4) minimization of the total travel cost. The authors defined 
equity as the reduction of variation in the access distance to 
a clinic. Núñez Ares et al. (2016) proposed a mathematical 
model for the location of a fixed number of roadside well-
ness centers in Sub-Saharan Africa by maximizing the num-
ber of patients covered and ensuring continuity of access 
along routes to the centers. The authors modeled equity 
considering continuity of access to health services for long-
distance truck drivers in Sub-Saharan Africa.

Similarly, Rodríguez-Espíndola et al. (2018) developed a 
multiobjective model for the location of emergency health 
care, shelter, and distribution centers and the allocation of 
resources to provide relief to disaster victims. The authors 
tested the model using the Mexico flood of 2013 as a case 
study. The objective minimizes the maximum unfulfillment 
of products and services across all shelters and serves as a 
measure of equity or fairness among demand points. In a 
recent study, Nasrabadi et al. (2020) explored a real-world 
issue encountered at public health care facilities in Sem-
nan Province, Iran. The problem was defined as the location 
of health care facilities with improved customer access at 
minimum cost. A model was developed to make decisions 
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on the allocation of service units and the capacity of health 
care facilities.

2.2 � Research gaps and study contributions

The review of the extant literature shows that OSCM schol-
ars have primarily worked on strengthening commercial 
supply chains. However, no studies performed at the inter-
section of COVID-19 and the health care supply chain have 
determined TTL locations to reduce the transportation time 
of COVID-19 test samples from sample collection cent-
ers to TTLs. As explained earlier, reducing the transporta-
tion time facilitates the timely testing and identification of 
infected individuals, ultimately helping to reduce the spread 
of COVID-19.

In the context of past pandemics or epidemics, scholars 
have proposed facility location models for various types of  
health care facilities, such as treatment and point-of- 
distribution facilities, to carry out relief operations. However, to  
the best of our knowledge, the location of TTLs has not 
been studied in the past. The location of TTLs is vital within 
the considered context because of the contagious nature of 
COVID-19. The ability of the COVID-19 virus to spread 
through the air and on material surfaces makes it important 
to establish testing laboratories outside existing health facili-
ties to prevent cross-contamination (Koshta et al. 2021).

Despite the importance of equity or fairness in health care 
services, the concept of equity has received little attention 
from OSCM scholars (as mentioned in Sect. 2.1.3). Given 
the contagious nature of COVID-19 and its negative impact 
on human health, all members of the population must be 
treated equally during these challenging times. Another rea-
son for ensuring equity is that any neglected geographical 
location can become a hub for virus spread. As a result, the 
objective of a virus-free society will not be achieved. There-
fore, equity also helps to create a win–win situation for all. 
In the present study, we achieve equity by effectively locat-
ing TTLs, i.e., minimizing the maximum travel time between 
any geographical location or demand node and a TTL.

3 � Problem definition and model 
formulation

3.1 � Problem definition

The problem considered in the present study is one faced 
by decision- and policy-makers, that is, the identification of 
locations for health care facilities, especially TTLs, during a 
pandemic outbreak. A pandemic or epidemic is a large-scale 
emergency that occurs unexpectedly with low frequencies 
and lasts several months. Testing, isolation, and contact trac-
ing of suspects are the backbone of the response phase to 

curb escalation of virus transmission. However, geographic 
differences and limited numbers of health care facilities can 
considerably increase the time required to reach designated 
health care facilities and can likely affect testing, as has been 
evident during the COVID-19 pandemic. As per the Centre 
of Disease Control (2021) guidelines, COVID-19 test sam-
ples should reach a testing lab as soon as possible. Hence, 
timely test sample delivery can be achieved by locating a 
testing facility close to a demand point/node. In the present 
study, a mixed-integer linear programming model for the 
location of TTLs during the pandemic outbreak is proposed 
to ensure equity of service at minimum cost. The proposed 
bi-objective mixed-integer programming model simultane-
ously minimizes the cost of TTL location and minimizes the 
maximum travel time between the TTL and demand nodes. 
The model can also be used to determine the capacity of 
TTLs to ensure full capacity utilization and avoid resource 
wastage. The proposed model is detailed in the following 
section.

3.2 � Assumptions

The following assumptions are made in this study and are 
consistent with the literature and practical observations.

•	 Potential facility locations for the TTLs are known, which 
is in line with the literature (Nasrabadi et al. 2020).

•	 An arborescent network is considered within which 
each TTL can serve multiple patient demands, but 
the converse is not allowed (Chowdhury et al. 2017). 
This assumption is valid within the considered context 
because samples from demand nodes are sent to the near-
est TTL to ensure timely testing. Hence, the demand of a 
node is assigned to only one TTL.

•	 We consider a particular region's demand/test samples to 
be concentrated at one point, referred to as the demand 
node. Hence, the samples collected at various locations 
are moved to a hub (demand node) with a known loca-
tion. The samples from the hub are subsequently deliv-
ered to the assigned TTL. This assumption is commonly 
made in facility location problems.

•	 The cost of transporting test samples from a demand node 
to a TTL (the transportation cost) is considered to be a 
linear function of the distance traveled from the demand 
node to the potential TTL location, i.e., the larger the 
distance is, the higher the cost is. Therefore, the trans-
portation cost increases with the distance between nodes.

•	 TTLs are capacitated in nature. This assumption is valid 
because various reasons make it practically impossible 
for a facility to have unlimited capacity. For example, 
unlimited space is required to produce or store an unlim-
ited quantity of products to serve demand. Moreover, 
capacity is used as the decision variable in the updated 

490



A location‑allocation model for influenza pandemic outbreaks: A case study in India﻿	

1 3

model to determine the capacity of a TTL. Capacity 
determination circumvents the problem of underutiliza-
tion, as shown in the following section.

3.3 � Model formulation

In this section, the notations and symbols used in the model 
formulation are presented (Table 1), followed by a descrip-
tion of the mathematical model.

In the present study, the location of TTLs are selected 
from a set of potential locations J to cater to a set of demand 
nodes I . The study considers two objectives. The first objec-
tive minimizes the total cost, including costs for fixed facil-
ity opening, operation, capacity underutilization, and trans-
portation. The second objective minimizes the maximum  
travel time between any demand node i and a TTL j . In  
the present study, the travel time Tij is considered a linear 
function of the distance Dij , i.e., 

(

Tij = Dij + �
)

 . Hence, the 
time required to travel 60 km equals (60 + �) minutes. Here, 
� represents the time consumed in other activities, such as 
the loading and unloading of samples. We take the value of 
� to be 60 min.

Objective 1: Minimize

(1)

(
∑

j∈J

Fjyj +
∑

i∈I

∑

j∈J

Qi ∗ Oj ∗ yj +
∑

i∈I

∑

j∈J

(Hj − Qi) ∗ Cj ∗ yj

+
∑

j∈J

∑

i∈I

zij ∗ M ∗ Dij )

Objective 2:

Subject to:

The first objective function (1) minimizes the total cost. 
The first term in Eq. (1) represents the fixed cost for open-
ing TTLs, including rent, labor, and equipment costs. The 
second term is the operating or variable cost of TTLs. 
The third term represents the capacity underutilization or 

(2)Min X

(3)
∑

j∈N

zij = 1 ∀i ∈ N

(4)zij ≤ yj ∀i ∈ N, j ∈ N

(5)
∑

i∈I

Qizij ≤ yjHj ∀j ∈ N

(6)
∑

j∈J

yj ≤ P

(7)X ≥

∑

j∈J

Tij ∗ zij ∀i ∈ N

(8)yj ∈ {0,1} ∀i ∈ N, j ∈ N

(9)zij ∈ {0,1} ∀i ∈ N, j ∈ N

Table 1   Notations List of sets and indices

   N Set of all nodes in the network (I, J)
   I Set of demand nodes, I = {i|i�(1, 2, 3… .m)}, indexed by i
   J Set of potential facility locations, J = {j|j�(1, 2, 3… .n)} , indexed by j
Parameters
   Fj Fixed cost of opening a facility at node j
   Oj Operating cost of the facility at node j
   Cj Non-operating cost of TTL (underutilization cost)
   Hj The capacity of the facility at node j
   Qi Demand at customer node i
   M Per unit transportation cost
   Dij Distance between customer node i and facility node j
   P Total number of TTLs
   Tij Travel time from demand node i to facility location node j
   β Variable time (time-consumed to load and unload the samples)
Decision variables
   yj

{

1 if the facility is located at node j

0 if the facility is not located at node j

   zij
{

1 if a customer node i is assigned to facility node j

0 if a customer node i is not assigned to facility node j
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nonoperating cost. As the name suggests, underutiliza-
tion costs are incurred when TTLs have unused capacity. 
Underutilization may occur when a facility is opened with 
predetermined capacity, but the assigned demand falls short 
of the facility's capacity. The underutilization cost is calcu-
lated by multiplying the per unit underutilization cost by the 
unused capacity. The final term in the first objective function 
is the transportation cost of collecting samples from demand 
nodes. Here, it is important to mention that the study does 
not consider vehicle routing for the collection of test sam-
ples. That is, a vehicle leaves the TTL, reaches a demand 
point, collects all the test samples (assuming that the vehicle 
has sufficient capacity to carry all the samples available at 
any demand node), and returns to the same TTL without 
traveling to any other demand node.

The second objective function (2) minimizes the maxi-
mum travel time between a TTL and a demand node. The 
maximum travel time between any TTL location j and 
demand node i is modeled using Eq. (7). The value for X 
determined by using Eq. (7) is minimized using Eq. (2) to 
achieve the desired objective. The second objective function 
ensures equity or fairness of treatment at all demand nodes. 
Minimization of the maximum travel time between the loca-
tions of the TTL j and demand node i ensures that the facil-
ity will not be located excessively far from any demand node 
i . Therefore, the time to transport test samples to a TTL from 
a demand node is minimized, irrespective of the geographi-
cal location of the demand node.

Equations (3) to (9) represent the constraints on the pro-
posed model. Equation (3) is an assignment constraint that 
ensures that a demand node i is assigned to exactly one TTL. 
Constraint (4) ensures that the demand node i is assigned 
to the potential facility location node j if and only if the 
TTL has been opened at node j . Equation (5) is a capacity 
constraint on the TTLs, which ensures that the total demand 
assigned to a TTL at a potential facility location node j is 

less than or equal to the TTL capacity. Constraint (6) ensures 
that the number of TTLs opened are less than or equal to a 
maximum allowed number. Constraint (7) sets the maximum 
travel time between the demand node i and potential facility 
location node j . Finally, constraints (8) and (9) restrict the yj 
and zij variables to take only binary values, i.e., (0,1).

4 � Numerical experiment and model 
modification

The proposed model (see Sect. 3.3) is solved using the 
benchmark instances of Holmberg et al. (1999). Specifically, 
the test P1 instance for the capacitated single-source facility 
location problem is used in the present study. The test P1 
instance has 10 nodes, which are potential facility locations 
as well as demand nodes. The fixed, variable or operating, 
and capacity underutilization costs are 14,000 INR, 4000 
INR, and 1000 INR, respectively. All costs in the manuscript 
are presented in INR, i.e., Indian currency/rupees. The pro-
posed model is solved for three different values of P , i.e., 
P = 4 , P = 6 , and P = 9.

The results of all three values of P are presented in 
Tables 2, 3, and 4. These results show that when predefined 
capacity TTLs are opened, a portion of the capacity remains 
underutilized. This underutilized capacity may result in extra 
costs for decision- or policy-makers interested in establish-
ing TTLs (Blackmon et al. 2021).

To eliminate capacity underutilization, the model pro-
posed in Sect. 3.3 is modified. In the updated model, a new 
decision variable Sj is introduced to determine the capacity 
of a facility opened at any node j . We assume that an addi-
tional cost is incurred for every opened unit to tailor the 
capacity of each TTL. Hence, a per-unit capacity tailoring 
cost R is introduced into the model. The modified model is 
presented below.

Table 2   Results of facility 
location, demand allocation, 
and underutilized capacity for 
P = 4

Objective function1: 5.9047e + 7, Objective function 2: 260 min, computational time: 0.37 s

Potential locations 
of TTL ( j)

Opened 
facility 
( ��)

Capacity of 
facility ( ��)

Assigned 
demand points 
( ���)

Demand ( ��) Total 
demand 
served

Underutilized 
capacity

1 0 110 0 0 0 0
2 1 110 1,2 49,29 78 32
3 1 110 3,5,7,9 23,18,48,15 104 6
4 0 110 0 0 0 0
5 0 110 0 0 0 0
6 0 110 0 0 0 0
7 0 110 0 0 0 0
8 1 110 4,6,8,10 40,17,13,31 101 9
9 0 110 0 0 0 0
10 0 110 0 0 0 0
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New parameter:
R = Per unit capacity cost of the facility.
New Decision variable:
Sj = Capacity of facility node j.
Modified objective 1: Minimize

objective 2: Eq. (2)
Subject to:
Equation (3), (4), (7) - (9)

(10)

(
∑

j∈J

Fjyj +
∑

i∈I

∑

j∈J

Qi ∗ Oj ∗ yj +
∑

i∈I

∑

j∈J
zij ∗ M ∗ Dij

+
∑

j∈J
Sj ∗ R )

(11)Sj ≥
∑

i∈I

Qi ∗ zij ∀j ∈ J

(12)
∑

j∈J

yj = P

The updated model is first solved using the Holmberg 
et al. (1999) benchmark instance for the aforementioned P 
values. The results show that for all three cases, i.e., P = 4 , 
P = 6 , and P = 9 , there is no capacity underutilization 
(Table 5). These results demonstrate that the proposed model 
can ensure equity of services with minimum cost and no 
underutilized capacity. The model is applied to a case study 
in the following section.

5 � Case study

A case study is presented in this section along with the data 
employed in the analysis. The results of applying the model 
to the case study and a sensitivity analysis are also presented.

5.1 � Case description

The proposed model is tested using a case study in Maha-
rashtra, India. India is chosen because it is the world's 

Table 3   Results of facility 
location, demand allocation, 
and underutilized capacity for 
P = 6

Objective 1: 8.7876e + 6; Objective 2: 295 min; computational time: 18.28 s

Potential loca-
tions of TTL ( j)

Opened 
facility ( yj)

Capacity of 
facility ( Hj)

Assigned 
demand point 
( zij)

Demand ( Qi) Total 
demand 
served

Underutilized 
capacity

1 1 60 1 49 49 11
2 1 60 2 29 29 31
3 1 60 3,5,9 23,18,15 56 4
4 1 60 4,6 40,17 57 3
5 0 60 0 0 0 0
6 0 60 0 0 0 0
7 1 60 7 48 48 12
8 1 60 8,10 13,31 44 16
9 0 60 0 0 0 0
10 0 60 0 0 0 0

Table 4   Results of facility 
location, demand allocation, 
and underutilized capacity for 
P = 9

Objective 1: 1.0308e + 7; Objective 2: 143 min; computational time: 64 s

Potential location 
of TTL ( j)

Opened 
facility 
( yj)

Capacity of 
facility ( Hj)

Assigned 
demand points 
( zij)

Demand ( Qi) Total 
demand 
served

Underutilized 
capacity

1 1 50 1 49 49 1
2 1 40 2 29 29 11
3 0 40 0 0 0 0
4 1 40 4 40 40 0
5 1 40 5 18 18 22
6 0 40 0 0 0 0
7 1 50 7 48 48 2
8 1 40 6,8 17,13 30 10
9 1 40 3,9 23,15 38 2
10 1 40 10 31 31 9
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second-largest populous country and has only 1.3 hospi-
tal beds for every 1000 people. During the initial phase of 
COVID-19, the country had approximately 52 testing labo-
ratories (Tanne et al. 2020). As of 10 April 2020, 146 gov-
ernment laboratories and 67 private laboratories were des-
ignated by the Indian Council of Medical Research (ICMR) 
for COVID-19 testing (Meghana et al. 2021). However, an 
abrupt lockdown resulted in the mass exodus of 120 mil-
lion individuals from cities to rural areas, transmitting the 
coronavirus and making the Indian health care system more 
fragile and fragmented (Meghana et al. 2021), highlighting 
the need to strengthen the health care system. Among Indian 
states, Maharashtra has had the highest number of COVID-
19 cases since the very beginning of the pandemic (https://​
www.​covid​19ind​ia.​org/; Kodge 2021). The state accounted 
for almost 21.25% of the total cases in the country (Kumar 
2020). Moreover, Maharashtra has the country's most popu-
lated cities (Radhakrishnan et al. 2020). Therefore, the Pune 
division of Maharashtra is considered as a case study for 
analysis.

The Pune division is the largest of the six administrative 
divisions of Maharashtra (Banerjee 2018) and consists of 
five districts, namely, Pune, Solapur, Satara, Sangali and 
Kolhapur (IndiaNetZone 2017), and 58 subdistricts. The 
Pune division covers 57,275 square kilometers and has a 
population of 19,997,778 (Census 2011). Pune district has 
14 subdistricts, Solapur and Satara each have 11 subdistricts, 
Sangali has ten subdistricts, and Kolhapur has 12 subdis-
tricts. During the second wave of COVID-19, the Pune 
division reported the highest number of COVID-19 cases in 
Maharashtra and was among the worst affected regions in the 
entire country (Sinha 2021). Considering the severity of the 
situation in the Pune division, the proposed model provides 

insights into the effective location of TTLs in the subdistricts 
of this division. The subdistricts are considered potential 
facility location sites as well as demand nodes. Subdistrict-
level data are used to provide microlevel information that is 
otherwise overlooked by using district- or state-level data 
because of the size and population of India.

5.2 � Data

The model has two major dataset requirements. The first 
is demand data or data for individuals suspected of hav-
ing COVID-19, and the second is the data on the distances 
between subdistricts. The suspects are individuals who have 
been subjected to a COVID-19 test. Hence, these suspects 
constitute the demand to be met by all the TTLs. The total 
number of tested samples is not available, but the number 
of people who tested positive for COVID-19 have been pub-
lished in a report by the Public Health care Department,  
Government of Maharashtra, India (https://​www. 
​covid​19mah​arash​tragov.​in/​mh-​covid/​dashb​oard). The report also  
states a positivity rate of approximately 15%, i.e., of the total 
samples tested for COVID-19, 15% are positive, and the rest 
are negative. The total number of people who tested positive 
for COVID-19 and the positivity rate are used to calculate 
the demand using Eq. 13.

This demand data is available at the district level. We 
obtain subdistrict-level data by distributing this demand over 
the proportion of the population for a subdistrict obtained 

(13)

Total number of samples tested by TTLs

= (100∕positivity rate)

× number of people tested positive

Table 5   Solutions of the 
modified model

Potential facility locations ( j) When P = 4
Opened TTL 
with capacity 
( Sj)

When P = 6 opened 
TTL with capacity 
( Sj)

When P = 9 opened 
TTL with capacity 
( Sj)

Underutilized 
capacity

1 49 49 49 0
2 29 29 29 0
3 104 104 0 0
4 0 40 40 0
5 0 0 18 0
6 0 17 17 0
7 0 0 71 0
8 101 0 13 0
9 0 0 15 0
10 0 44 31 0
Objective 1 5.019e + 6 7.3048e + 6 1.0739e + 7
Objective 2 167 min 122 min 28 min
Computation-al time 11 s 12 s 16 s
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from census data, i.e., Census (2011) (Anparasan and 
Lejeune 2019). Next, data on the latitude and longitude of 
subdistricts are obtained from latlong.net. These latitudes 
and longitudes are used to calculate a distance matrix using 
the popular Haversine formula. The fixed and variable costs 
are assumed to be 14,000 and 4000, respectively. The per-
unit transportation cost is assumed to be 20, and the per-unit 
capacity cost is 1500. As previously mentioned, the 58 sub-
districts of the Pune division are considered potential facility 
locations as well as demand nodes. This data is also reported 
in Appendix Table 7.

5.3 � Results

The proposed mathematical model is solved using CPLEX 
12.10.0 optimization software. The solver returns optimal 
solutions for the datasets in a reasonable time. All computa-
tional experiments are conducted on an Intel (R) Core (TM) 
i5–10th GEN HP laptop with a 2.11 GHz processor, 8 GB 
of RAM, and a Windows 10 64-bit operating system. The 
proposed model is evaluated using real data to demonstrate 
the model's applicability to real life during a pandemic out-
break such as COVID-19. Subdistrict-level data are obtained 
for the Pune division of Maharashtra, India. First, we ana-
lyze the value of the objective functions for various values 
of P(P = 1,2, 3… .58) . The results show that the value of 

the first objective function (the total cost) increases with P 
(Fig. 1). The value of the second objective function, which 
aims to minimize the maximum travel time, decreases with 
increasing P.

We use P = 27 as an example of how the TTLs should 
have been installed/located in the Pune division to ensure 
equity of services to all the subdistricts during COVID-
19. We also show how demand nodes/subdistricts should 
be assigned to TTLs and report the capacities of the TTLs 
needed to fulfil the demand of all subdistricts. These results 
are presented in Table 6. The first column of Table 6 lists 
the 58 subdistricts of the Pune division. The second col-
umn shows whether a TTL has been opened in a subdis-
trict. The value of yj is 1 if a facility has been opened 1 and  
0 otherwise. The third column contains the assignment of 
demand nodes to the TTLs. The fourth column presents 
the capacities of the TTLs opened at various locations. 
Finally, the fifth column shows that none of the TTLs have 
underutilized capacity. For P = 27 , the value of the first 
objective function, the total cost, is 6.08E + 11, and the 
value of the second objective function, the maximum travel 
time, is 30.681 min for a computational time of 180.31 s. 
Figure 2 shows the TTL locations on a map of the Pune 
division. Subdistricts are labeled from 1 to 58 on the pic-
torial map, and details of all the subdistricts are given in  
Table 7 (Appendix).

Fig. 1   Objective functions at the different number of opened facilities
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Table 6   Solutions referring 
to facility location, demand 
allocation and capacity

S No Potential locations ( j) Opened 
facility 
( yj)

Assigned demand 
points ( zij)

Capacity of 
opened facility 
( Sj)

Underutilized 
capacity

1 Junnar 0 0 0 0
2 Ambegaon 1 1,2 254,690 0
3 Shirur 1 3 159,308 0
4 Khed 1 4 188,387 0
5 Mawal 0 0 0 0
6 Mulshi 1 5,6,8,11 1,597,354 0
7 Haveli 1 7 1,042,520 0
8 Pune City 0 0 0 0
9 Daund 1 9 155,452 0
10 Purandhar 1 10 94,963 0
11 Velhe 0 0 0 0
12 Bhor 0 0 0 0
13 Baramati 1 13,18 227,321 0
14 Indapur 1 14,32 210,853 0
15 Mahabaleshwar 0 0 0 0
16 Wai 1 12,15,16,17 137,130 0
17 Khandala 0 0 0 0
18 Phaltan 0 0 0 0
19 Man 0 0 0 0
20 Khatav 1 19,20 76,333 0
21 Koregaon 0 0 0 0
22 Satara 1 21,22 115,744 0
23 Jaoli 1 23 16,230 0
24 Patan 1 24 45,642 0
25 Karad 0 0 0 0
26 Karmala 1 26 27,987 0
27 Madha 1 27,28,30 107,076 0
28 Barshi 0 0 0 0
29 Solapur North 1 29,35 144,970 0
30 Mohol 0 0 0 0
31 Pandharpur 1 31,34 71,295 0
32 Malshiras 0 0 0 0
33 Sangole 1 33,54 53,855 0
34 Mangalvedhe 0 0 0 0
35 Solapur South 0 0 0 0
36 Akkalkot 1 36 34,594 0
37 Shahuwadi 0 0 0 0
38 Panhala 0 0 0 0
39 Hatkanangle 1 39,40,41,44 224,870 0
40 Shirol 0 0 0 0
41 Karvir 0 0 0 0
42 Bavda 0 0 0 0
43 Radhanagari 1 42,43,45 34,542 0
44 Kagal 0 0 0 0
45 Bhudargad 0 0 0 0
46 Ajra 1 46,48,47 47,737 0
47 Gadhinglaj 0 0 0 0
48 Chandgad 0 0 0 0
49 Shirala 1 37,38,49,50 121,875 0
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5.4 � Discussion

The aim of the present study is to provide guidance to health 
care supply chains during a pandemic outbreak by propos-
ing a location-allocation model for the location of TTLs. 
The proposed model simultaneously minimizes the cost 
of facilities and ensures equity of services at all demand 
nodes. The model is first solved using Holmberg et al.'s 
(1999) benchmark instances, and the results show that the 
located TTLs suffer from capacity underutilization, resulting 
in resource wastage during critical times of a pandemic out-
break. Therefore, the model is updated to prevent capacity 

underutilization by introducing a variable to capture the 
capacity requirements of each TTL. The updated model is 
solved using the same benchmark instances, and the results 
show that the updated model can ensure no capacity underu-
tilization. Finally, a case study of the Pune division of Maha-
rashtra is utilized to demonstrate the model's applicability 
to real life.

The results show a linear relationship between the num-
ber of facilities opened and the total cost (Fig. 1). That is, 
the number of facilities to be opened increases the value  
of objective function 1, which increases the total cost. 
Each new facility opening adds a fixed cost to the objective 

Table 6   (continued) S No Potential locations ( j) Opened 
facility 
( yj)

Assigned demand 
points ( zij)

Capacity of 
opened facility 
( Sj)

Underutilized 
capacity

50 Walwa 0 0 0 0
51 Palus 0 0 0 0
52 Kadegaon 1 25,52 107,965 0
53 Khanapur (Vita) 0 0 0 0
54 Atpadi 0 0 0 0
55 Tasgaon 1 51,53,55,56,57 211,193 0
56 Miraj 0 0 0 0
57 Kavathemahankal 0 0 0 0
58 Jat 1 58 43,516 0

Fig. 2   Temporary testing labo-
ratories locations at sub-districts 
across Pune division
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function (Eq. 10). By contrast, the operating and capac-
ity costs remain constant, because these costs depend on 
demand and are independent of the number of facilities  
to be opened P . The transportation cost decreases with 
increasing P, because placing facilities closer to demand 
nodes reduces the travel time. However, the transporta-
tion cost is smaller than the fixed cost of opening a facility, 
which is in line with results in the literature (Amiri et al. 
2019). Hence, the total cost of establishing TTLs increases  
with P.

The study findings show that the maximum travel time is 
a negative exponential function in the number of facilities 
to be opened P(Fig. 1). The maximum travel time decreases 
suddenly from P = 1 to P = 5 and decreases gradually 
beyond P = 5 . The maximum travel time changes marginally 
beyond P = 14 . This finding is in line with Risanger et al.'s 
report (2021) that an increase in test pharmacies reduces 
the transportation distance and increases access to COVID-
19 testing. The results of the present study can be used to 
determine the trade-off between the proposed objective 
functions (Fig. 1). For example, a short transportation time 
for test sample delivery is important (Koshta et al. 2021). 
However, decision-makers/policy-makers may not be inter-
ested in marginal changes in the delivery time after a certain 
number of facilities are opened because limited resources 
and finances are available for multiple tasks (Queiroz et al. 
2020).

Finally, for the instance P = 27 , the highest number of 
TTLs are opened in Pune district, followed by Solapur, 
Satara, Sangali, and Kolhapur districts (Fig. 2). We also 
find that the TTL opened at Tasgaon is assigned the high-
est number of subdistricts. These subdistricts include Palus, 
Khanapur (Vita), Tasgaon, Miraj, and Kavathemahankal. 
Furthermore, four TTLs are assigned four subdistricts, three 
TTLs are assigned three subdistricts, nine TTLs are assigned 
two subdistricts, and ten TTLs are only assigned to them-
selves. The capacity determination results show that the TTL 
opened at Mulshi has the highest capacity of 1,597,354 units, 
whereas the TTL opened at Jaoli has the lowest capacity of 
16,230 units.

5.5 � Sensitivity analysis

The number of TTLs to be opened P and the per-unit trans-
portation cost M are the most critical factors in the proposed 
model. Hence, the impact of these factors on the model out-
put is assessed in this section, and the results are reported in 
Fig. 3. Different values of the transportation cost M are con-
sidered under four scenarios of P = 30%, 40%, 60%, and70% 
to assess the change in the model output. For all four sce-
narios, there is a linear relationship between the transporta-
tion cost and the value of objective function 1 (Fig. 3). For 
P = 30% , a 100-unit increase in the per-unit transportation 
cost results in an average 0.00268% increase in the total 

Fig. 3   Results of sensitivity analysis for the change in model output under different values of transportation cost M and number of TTLs P
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cost. However, for P = 70% , the percentage increase in the 
total cost decreases to 0.000291% per 100-unit increase in 
the per-unit transportation cost. As P increases from 30 to 
40%, the total cost increases by 28%. The total cost increases 
by 44% as P increases from 40 to 60% and by 15% as P 
rises from 60 to 70%. Increasing P from 30 to 70% causes 
the total cost to increase by 115%, maintaining the trans-
portation cost constant. Finally, as P increases from 30 to 
70%, the maximum travel time decreases from 40.44 min to 
21.77 min, corresponding to a reduction of almost 50% in 
the maximum travel time.

6 � Study implications

This study has three major implications for practice. The 
proposed model can provide guidance to decision-makers 
and government health authorities on improving the health 
care system during a pandemic. First, motivated by the cur-
rent scenario in which countries are struggling to reduce the 
spread of the COVID-19 pandemic, we propose a mathemat-
ical model for the location of temporary testing laboratories 
(TTLs) to enable the timely identification and isolation of 
infected individuals. The model can be used to make deci-
sions on the location of TTLs and the assignment of demand 
nodes (susceptible individuals in pandemic outbreaks) to 
these facilities.

Second, the initial/first model is characterized by capacity 
underutilization or nonoperating costs, and the model results 
show that capacity underutilization can lead to inefficient 
use of available/allocated funds. The updated model can 
enable policy- and decision-makers to evaluate/determine 
the capacity of located facilities. This capacity determination 
can prevent underutilization of located facilities, thus mini-
mizing resource wastage. Exactly one assignment is consid-
ered in the model to ensure that the nearest TTL fulfils the 
demand of all the nodes in a timely manner.

Third, policy- and decision-makers could use the pro-
posed model to ensure equity of services at all demand 
nodes. That is, the aim of the objective function, the mini-
mization of the maximum travel time, is to reduce the  
distance between any demand node and a TTL location. 
This unique feature is important because services may 
be delayed to demand nodes that are far from TTLs near 
populated zones or a cluster of other demand nodes. As a  
result, the number of infected cases at the isolated demand 

nodes may increase and infection may thereby spread to 
nearby nodes, preventing the realization of a virus-free 
society. However, the proposed model ensures equity of 
services, i.e., the TTLs are located to ensure no demand  
nodes are far from a TTL.

7 � Conclusion and future research avenues

The contagious nature of COVID-19 has caused immense 
human suffering. As a result, timely testing is crucial to sup-
press pandemic spread to reduce suffering. We propose that 
timely testing could be achieved by reducing the logistics/
transportation time of test samples from sample collection 
centers to temporary testing laboratories (TTLs). A bi-
objective mixed-integer linear programming model is pro-
posed for the location of TTLs at the subdistrict level. An 
objective function is proposed to minimize the total cost of 
establishing and operating TTLs. The cost of transporting 
test samples from a demand node to a TTL and capacity 
underutilization costs are included in the total cost. A second 
objective function is proposed to minimize the maximum 
travel time from a demand node to a TTL to ensure equity 
of services at all demand nodes. The model can be used to 
determine the capacity of opened TTLs to prevent capacity 
underutilization. Finally, the model is tested for a case study 
in Maharashtra, India.

Scholars could explore several further research direc-
tions. First, the proposed model could be extended to 
determine the location of sample collection centers and 
TTLs simultaneously. For this purpose, ward-village level 
data should be used to ensure that the sample collection 
centers are located near people for ease and convenience 
of action. Second, researchers should determine other 
factors that negatively impact test samples' logistics and 
work toward eliminating these barriers. Finally, scholars 
have increasingly been suggesting that the implementa-
tion of Industry 4.0 technologies, such as the Internet of 
Things, big data, and artificial intelligence, could sub-
stantially enhance the resilience of supply chains (Kumar 
et al. 2021). The implications of using Industry 4.0 tech-
nologies in health care supply chains to facilitate timely 
sample testing could be explored in future studies.

Appendix
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Table 7   Districts/Sub-districts 
details of Pune division

S.No District Sub-district Longitude Latitude Cumulative 
Infected 
case

Demand (number of 
susceptible individuals)

1 Pune Junnar 19.2113 73.8734 24,040 160,265
2 Ambegaon 19.1166 73.7306 14,164 94,425
3 Shirur 18.8309 74.3733 23,897 159,308
4 Khed (pn) 18.8608 73.8844 28,258 188,387
5 Mawal 18.7464 73.6372 23,580 157,198
6 Mulshi 18.5245 73.6153 10,698 71,320
7 Haveli 19.7515 75.7139 156,378 1,042,520
8 Pune City 18.5167 73.8542 202,058 1,347,053
9 Daund 18.4666 74.5793 23,318 155,452
10 Purandhar 18.3447 74.0317 14,244 94,963
11 Velhe 18.3004 73.6372 3267 21,783
12 Bhor 18.1563 73.8432 11,186 74,571
13 Baramati 18.1537 74.5711 26,265 175,102
14 Indapur 18.1171 75.0239 23,616 157,446
15 Satara Mahabaleshwar 17.9248 73.658 1665 11,099
16 Wai 17.9523 73.8914 4578 30,519
17 Khandala 18.0586 74.0148 3141 20,941
18 Phaltan 17.9911 74.4298 7833 52,219
19 Man 17.7027 74.5418 5158 34,384
20 Khatav 17.6627 74.3658 6292 41,949
21 Koregaon 17.7007 74.158 5886 39,240
22 Satara 17.6884 74.0042 11,476 76,504
23 Jaoli 17.9 76.4 2435 16,230
24 Patan 17.3772 73.9007 6846 45,642
25 Karad 17.2859 74.1823 13,351 89,009
26 Solapur Karmala 18.408 75.1912 4198 27,987
27 Madha 18.0342 75.5163 5345 35,634
28 Barshi 18.2359 75.6876 6148 40,988
29 Solapur North 17.6717 75.8975 17,442 116,279
30 Mohol 17.8093 75.6443 4568 30,454
31 Pandharpur 17.6787 75.3333 7297 48,648
32 Malshiras 17.8637 74.9091 8011 53,407
33 Sangole 17.4368 75.1928 5326 35,504
34 Mangalvedhe 17.5131 75.4489 3397 22,647
35 Solapur South 17.6599 75.9063 4304 28,691
36 Akkalkot 17.5269 76.206 5189 34,594
37 Kolhapur Shahuwadi 16.9189 73.9332 2493 16,621
38 Panhala 16.8069 74.1125 3484 23,224
39 Hatkanangle 16.7459 74.4268 10,846 72,313
40 Shirol 16.7339 74.6022 5250 35,005
41 Karvir 16.6954 74.2246 13,935 92,900
42 Bavda 16.5442 73.8284 480 3202
43 Radhanagari 16.4114 73.9964 2682 17,879
44 Kagal 16.5752 74.3156 3698 24,652
45 Bhudargad 16.316 74.1443 2019 13,461
46 Ajra 16.1162 74.21 1615 10,767
47 Gadhinglaj 16.2242 74.3515 3031 20,209
48 Chandgad 15.9413 74.1826 2514 16,761
49 Sangali Shirala 16.9846 74.1261 3239 21,592
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Table 7   (continued) S.No District Sub-district Longitude Latitude Cumulative 
Infected 
case

Demand (number of 
susceptible individuals)

50 Walwa 17.0505 74.2661 9066 60,438
51 Palus 17.0958 74.4518 3278 21,857
52 Kadegaon 17.2985 74.3321 2843 18,956
53 Khanapur (Vita) 17.2616 74.7151 3384 22,560
54 Atpadi 17.4232 74.939 2753 18,351
55 Tasgaon 17.0377 74.6025 4998 33,321
56 Miraj 16.8505 74.5949 16,989 113,266
57 Kavathemahankal 17.0052 74.8613 3028 20,189
58 Jat 17.0492 75.2179 6527 43,516
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