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Abstract
As a large number of companies are resorting to increased product variety and customization, a growing attention is being 
put on the design and management of part feeding systems. Recent works have proved the effectiveness of hybrid feeding 
policies, which consist in using multiple feeding policies in the same assembly system. In this context, the assembly line 
feeding problem (ALFP) refers to the selection of a suitable feeding policy for each part. In literature, the ALFP is addressed 
either by developing optimization models or by categorizing the parts and assigning these categories to policies based on 
some characteristics of both the parts and the assembly system. This paper presents a new approach for selecting a suitable 
feeding policy for each part, based on supervised machine learning. The developed approach is applied to an industrial case 
and its performance is compared with the one resulting from an optimization approach. The application to the industrial case 
allows deepening the existing trade-off between efficiency (i.e., amount of data to be collected and dedicated resources) and 
quality of the ALFP solution (i.e., closeness to the optimal solution), discussing the managerial implications of different 
ALFP solution approaches and showing the potential value stemming from machine learning application.

Keywords Assembly system · Part feeding · Factory logistics · Optimization · Machine learning · End-to-end learning

1 Introduction

Several manufacturing companies are resorting to increased 
product variety and customization in order to face competi-
tion (Wiengarten et al. 2017). While it helps meeting cus-
tomer expectations, this strategy also results in a high num-
ber of parts to be handled in assembly systems and calls for 
the adoption of mixed-model assembly lines, where a single 
line can make several product models in an arbitrary mix 
(Golz et al. 2012; Faccio 2014). In this context, growing 
attention is being put on the design of part feeding systems, 
required to supply a wide variety of parts to assembly sta-
tions in time for the start of assembly operations, but without 

piling up inventories on the shop floor (Sternatz 2015; Emde 
and Schneider 2018).

Different feeding policies can be evaluated when design-
ing the system and the final choice results from a trade-off 
among different performance criteria. For instance, kitting 
policy entails supplying assembly stations with unit loads 
that contain only the parts needed for one or few finished 
products (e.g., Sali and Sahin 2016). The adoption of this 
policy is an effective way to reduce inventories on the shop 
floor and time wasted by assembly operators walking and 
searching for parts, compared to the case in which the unit 
loads received from suppliers are delivered to the stations 
(Limère et al. 2012). On the downside, kitting gives rise to 
an increased material handling effort, mainly due to picking 
activities (Hanson and Medbo 2019).

Some contributions in academic literature have intro-
duced approaches to select the best policy for a given assem-
bly system, starting with Bozer and McGinnis (1992). More 
recent works have shifted the focus to hybrid feeding poli-
cies, i.e., the use of multiple feeding policies in the same 
assembly system, showing improvements in the overall 
system performance (e.g., Limère et al. 2012; Usta et al. 
2017). In this direction, the Assembly Line Feeding Problem 
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(ALFP) has been defined as the “unambiguous assignment 
of every part to a single line feeding policy” (Schmid and 
Limère 2019).

So far, the ALFP has been addressed in literature either 
by developing optimization models (e.g., Caputo et al. 2018; 
Baller et al. 2020; Schmid et al. 2021) or by categorizing 
parts and assigning these categories to policies based on 
the value of some characteristics of both the parts and the 
assembly system (e.g., Caputo and Pelagagge 2011; Usta 
et al. 2017). Both the approaches present some drawbacks. 
For the first approach, they lie in the large amount of data 
and in the specific skills and software required to build and 
run the optimization models, which are often NP-hard (e.g., 
Faccio et al. 2018; Schmid et al. 2021). For the second 
approach, they lie in the quality of the achieved solution, 
that could be far from the optimal one (Sali and Sahin 2016).

Recently, a few studies have introduced approaches based 
on the combined use of optimization and machine learning 
(ML), committing to predict the optimal solution (Abbasi 
et al. 2020; Bengio et al. 2020) with a lower data collection 
effort compared to optimization approaches (Larsen et al. 
2018). So far, combined optimization-ML approaches have 
been applied in the fields of energy systems (Fischetti and 
Fraccaro 2019) and transportation management (Larsen 
et al. 2018; Abbasi et al. 2020), but they raise the atten-
tion towards the opportunity to support data-driven deci-
sion making in many more fields. As regards production 
systems, the available literature includes several contri-
butions in which ML techniques are applied (Kang et al. 
2020; Bertolini et al. 2021), but never in combination with 
optimization. However, a number of issues should be better 
tackled in order to foster further research on combined opti-
mization-ML approaches. The solution quality compared 
to optimization has been evaluated only by Abbasi et al. 
(2020). Moreover, the feasibility of the solution predicted 
through the ML model is an open challenge in the research 
on combined optimization-ML approaches (Bengio et al. 
2020), as well as the required data collection effort (Larsen 
et al. 2018). Furthermore, previous contributions focus on 
specific problems, neither formalizing the steps required 
for the implementation of such methods nor offering any 
general methodological guidelines.

Given these premises, this paper explores the applica-
tion of ML to deal with the ALFP, aiming at improving 
the trade-off between efficiency (i.e., amount of data and 
resources needed to solve the ALFP) and solution quality 
(i.e., closeness to the optimal solution) of the approaches 
currently available in literature. First, we present a com-
bined optimization-ML approach leveraging the end-to-end 
learning method (Bengio et al. 2020), according to which an 
optimization model is applied only to a sample of parts and 
its output is used to train a supervised ML model. The ML 
model training leads to the identification of a few relevant 

factors explaining the optimal ALFP solution and a set of 
simple rules for assigning new parts to feeding policies 
without any expertise in the optimization and ML fields. 
Secondly, we test the proposed approach using data from an 
industrial case, so as to show how this approach performs in 
comparison to optimization in terms of solution feasibility, 
solution quality, and data collection effort. Therefore, the 
paper has a two-fold contribution. On one hand, it enriches 
the previous literature on both part feeding policies selec-
tion and ML approaches applied to production systems. On 
the other hand, it investigates and discusses whether the 
proposed approach represents an effective method to select 
feeding policies in contexts where data availability is critical 
or data collection is very time-consuming.

The remainder of the paper is organized as follows: 
Sect. 2 reports a literature review on the approaches to solve 
the ALFP as well as on previous applications of the end-
to-end learning method. Section 3 describes the proposed 
approach, while Sect. 4 presents its application. Section 5 
shows the comparison between our approach and those 
existing in literature and discusses the related managerial 
implications. Finally, Sect. 6 includes conclusions and future 
research directions.

2  Literature review

2.1  Approaches to solve the ALFP

A wide variety of terms have been used in literature to refer 
to alternative part feeding policies. Schmid and Limère 
(2019) formally define the ALFP and identify five main 
types of policies, namely line stocking, boxed-supply, 
sequencing, stationary kitting, and travelling kitting. Over 
the years, several approaches have been proposed in litera-
ture to solve the ALFP choosing among these policies. As 
shown in Fig. 1, all the approaches revolve around two main 
elements: performance measures to evaluate the effect of 
the ALFP solution on system performance, and factors that 
affect the policy selection. We classify them as inductive 
or deductive. Inductive approaches start from the definition 
of performance measures, based on which an optimization 
model is built to find the optimal ALFP solution; in a sub-
sequent phase, a parametric analysis is carried out to assess 
the impact of some selected factors on the optimal solution. 
According to deductive approaches, instead, components 
are categorized into groups and each group is assigned to a 
feeding policy based on the value of one or multiple factors; 
afterwards, performance measures are computed by means 
of a descriptive model.

The performance measures considered in the reviewed 
literature (Table 1) refer to the overall cost or time related 
to part feeding operations. The overall cost is computed as 
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the sum of different items, encompassing the costs directly 
accountable to part feeding processes (i.e. supermarket 
replenishment, unit load preparation, transportation from 
storage areas to assembly stations, and picking of parts 
at the stations) and the investments required for the part 
feeding equipment (e.g. Caputo et al. 2018), as well as the 

opportunity cost of inventories (e.g. Sali and Sahin 2016) 
or occupied space (e.g. Usta et al. 2017) at the border of 
the assembly line. In some cases, also other costs are taken 
into account, including the stock-out cost (Faccio 2014) and 
the costs incurred in planning and control activities (Usta 
et al. 2017). The total handling time is given by the sum 

Fig. 1  ALFP solution approaches

Table 1  Performance measures considered in the reviewed literature

a Aggregated into an overall personnel cost
b Considering variable operator walking distances based on the amount of stock at the border of the line
c Storage cost at the central warehouse

Reference by 
publication year

Inventory 
holding 
cost

Space 
occupation 
cost

Supermarket 
replenishment 
cost

Unit load 
preparation 
cost

Transport cost Picking 
cost at the 
line

Investments Other costs Total 
handling 
time

Inductive approach
Limère et al. 

(2012)
X X X X

Caputo et al. 
(2015)

X X X X X X

Limère et al. 
(2015)

X X X Xb

Sali and Sahin 
(2016)

X X X Xb

Caputo et al. 
(2018)

X X Xa Xa Xa Xa X

Baller et al. 
(2020)

X X X Xb

Schmid et al. 
(2021)

X X X Xb

Deductive approach
Battini et al. 

(2009)
X X

Caputo and Pela-
gagge (2011)

X X Xa Xa X

Faccio (2014) X Xa Xa X
Usta et al. (2017) Xc X X X X X
Faccio et al. 

(2018)
X
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of the handling time at the supermarket for picking and kit 
preparation activities, the internal transportation time, and 
the handling time at the assembly line (Battini et al. 2009; 
Faccio et al. 2018).

According to Fig. 1, Table 2 gives an overview of the factors 
considered in the reviewed literature, to perform the parametric 
analysis for inductive approaches or to select policies for deduc-
tive approaches. The part-related factors include size, weight, 
value, demand, and number of variants of a part; sometimes, 
also the Bill of Materials (BOM) coefficient, supply unit load 
type, and stations where the part is used are taken into considera-
tion. The assembly-system related factors refer to characteristics 
of the finished products (e.g., average lot size, number of parts 
per product), of the assembly stations (e.g., number of stations 
in the line, storage space available at the border of the station), 
of the cost structure (e.g., picking efficiency, unit inventory 
holding cost), as well as other features such as the size of the 
unit loads delivered to assembly stations or the type of transport 
equipment.

Considering the inductive approaches, several optimiza-
tion models have been proposed, differing by the objective 
function, constraints, and number of alternative feeding poli-
cies. For instance, the mixed integer programming model 
by Sali and Sahin (2016) allows to choose, for each part, 
between kitting, line stocking, and sequencing, and aims at 
cost minimization considering storage space constraints at 
the border of assembly stations, capacity constraints of tug-
ger trains, takt time constraints as well as volume and weight 
limits for kits. The cost minimization model by Schmid et al. 
(2021), instead, takes into account all the five feeding poli-
cies and simultaneously addresses the ALFP and the allo-
cation of each part to a storage location at the border of 
the assembly line; besides volume and weight constraints 
for kits, this model accounts for storage space constraints, 
allowing space borrowing among different assembly sta-
tions. Most of these models are NP-hard and cannot be 
solved in reasonable time with commercial integer program-
ming solvers; for instance, Faccio (2014) points out that his 
model leads to a large-scale combinatorial optimization 
model which is hard to be solved in practice, while Schmid 
et al. (2021) show that their model can be solved efficiently 
only through a solving framework exploiting cuts.

As concerns the deductive approaches, different pro-
cedures have been introduced. For instance, the approach 
by Faccio et al. (2018) requires to both group parts into 
classes and assign each class to a feeding policy based on 
the value of the “part picking space index”, defined as the 
ratio between the number of parts per container and the con-
tainer volume, multiplied by the daily demand for the part. 
The total handling time is computed afterwards through a 
descriptive model, in order to compare the ALFP solution 
with a scenario in which the same policy is used for all the 
parts. Another example is the approach presented by Usta 

et al. (2017): parts are grouped into three classes through a 
hierarchical clustering technique considering the value of 
two factors (part size and occupied area) and then each clus-
ter is associated to either line stocking or kitting according to 
qualitative considerations on the size and weight of parts and 
to the opinions of experts working in the company. Then, 
the activity-based costing approach is adopted to compute 
the overall costs stemming from the ALFP solution. In the 
reviewed approaches classified as deductive, the factors on 
which the ALFP solution is based are selected in a subjective 
way. The only exception is the one by Faccio (2014). In his 
approach, several scenarios are defined, differing in terms of 
BOMs, production mix, and picking productivity in the kit 
preparation activity and then, for each scenario, a simulation 
is carried out to identify, out of a discrete sample of ran-
domly generated ALFP solutions, the one that leads to mini-
mum costs; the two factors showing the highest statistical 
correlation with the minimum-cost solutions are selected, 
parts are clustered into nine groups through a Pareto ABC 
cross-matrix, and each group is assigned to a feeding policy. 
As shown by the authors, the two selected factors are not suf-
ficient to clearly link all the part groups to a feeding policy, 
thus requiring the decision maker to rely on qualitative cri-
teria. Moreover, the solutions found through simulation do 
not necessarily correspond to the optimal ones.

2.2  End‑to‑end learning method

The first applications of the end-to-end learning method can 
be traced back to the 1980s and 1990s, when neural net-
works were adopted to address different types of combinato-
rial optimization problems such as the travelling salesman 
problem (e.g. Hopfield and Tank 1985), the knapsack prob-
lems (e.g. Ohlsson et al. 1993), and the general assignment 
problems (e.g. Gong et al. 1995). These early applications 
were sometimes characterized by low reproducibility and 
their results were not satisfactory if compared to alternative 
heuristic approaches, especially considering the high CPU 
times due to the limited available computing power (Smith 
1999). Recently, a renewal of interest in this research stream 
has been favored by the exponential growth in computing 
power and data availability. Recent contributions encompass 
both new attempts to leverage ML models to solve the travel-
ling salesman problem (e.g., Vinyals et al. 2015; Bello et al. 
2016) and successful applications of the end-to-end learning 
method in the fields of energy systems and transportation. 
For instance, Fischetti and Fraccaro (2019) propose to use 
a supervised ML model to estimate the optimal production 
value of offshore wind parks when selecting new sites. They 
show that their approach allows to speed up the solution pro-
cess with respect to the use of an optimization model alone, 
but, at the same time, it provides better results than the quali-
tative approach usually applied by practitioners. Larsen et al. 
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(2018) deal with a deep learning model that predicts optimal 
tactical solutions to the stochastic load planning problem of 
intermodal containers on double-stack trains. Besides the 
benefits regarding speed and accuracy of the obtained solu-
tion, the authors point out the low requirements in terms of 
computing power and needed data: they show that, unlike 
optimization models, the end-to-end learning method suc-
ceeds in solving the problem under imperfect information. 
Abbasi et al. (2020) apply this method to the stochastic opti-
mization problem of blood transshipment in a network of 
hospitals, aimed at minimizing overall costs. Since com-
mercial solvers and expertise in the optimization field are 
often not available in these contexts, the authors propose to 
run the optimization only for a limited number of days, with 
the support of an external partner, aiming to gather a data 
sample for the training of a supervised ML model that can be 
later applied to support daily transshipment decisions. They 
consider different ML techniques (i.e., k-nearest neighbor, 
classification and regression tree, random forest, multilayer 
perceptron artificial neural network) and they apply a heu-
ristic algorithm to turn the solution obtained through the ML 
model into a feasible one, concluding that the end-to-end 
learning method always allows to achieve total costs which 
are close to the optimal ones, also compared to the empirical 
approach currently used by the hospitals.

3  Combined optimization‑ML approach 
for the ALFP

In this section, we describe an approach that exploits ML 
techniques to learn the optimal ALFP solution and define 
simple rules for the selection of part feeding policies in an 
assembly system.

We consider the problem of selecting feeding policies 
aiming at the optimization of overall cost or time perfor-
mance and we refer to the general setting described by 
Schmid and Limère (2019), where an assembly line, made 
of several stations, is fed with multiple parts. We assume 
that information about the assembled products is known in 
advance and that the design of the assembly line, includ-
ing line balancing, has already been carried out. A part is 
intended as any component or sub-assembly required for the 
assembly of finished products. Each part must be supplied to 

a station according to one of five possible feeding policies: 
line stocking, boxed-supply, sequencing, stationary kitting, 
or travelling kitting. If the same part is used in more than 
one station, it can be supplied to different stations according 
to different policies.

As shown in Fig. 2, our approach is made of four steps. 
In the first two steps, an optimization model is applied to a 
sample of parts and its output is used to train a supervised 
ML model, according to the end-to-end learning method. 
In the following steps, the ML model is used to select the 
optimal feeding policy for new parts.

In Step 1, an optimization model is run to assign a sample 
of parts to feeding policies. As discussed in Sect. 2, several 
models have been presented in previous literature and they 
are all suitable to be used within this approach. Without loss 
of generality, the optimization model can be expressed as the 
minimization of an objective function y = f(X), subject to a 
number of constraints. The objective function corresponds 
to the cost or time performance measure selected for the spe-
cific application and its value depends on the tensor X = x111, 
…, xNMS, where N is the number of parts included in the 
optimization, M is the number of feeding policies, S is the 
number of stations, and xijs is a Boolean variable equal to 1 if 
part i is supplied to station s according to policy j and equal 
to 0 otherwise. In general, the constraints include: resource 
constraints (e.g., restrictions on the storage space available 
at the border of the line or on the capacity of transport equip-
ment), time constraints (i.e., restrictions on the time avail-
able for part feeding activities), ergonomics constraints (i.e., 
limitations on the ergonomics stress for a single operation 
or during a shift), and consistency constraints (e.g., defini-
tion of Boolean or integer variables). The required input 
data are all the parameters needed to run the optimization 
model. The output is the optimal allocation of parts to feed-
ing policies, X*.

In Step 2, the optimization output is used to train the 
supervised ML model, thus identifying the relevant factors 
and the classification rules for feeding policies selection. 
In the input dataset, each part included in Step 1 represents 
an instance, described by a target variable and by a set of 
explanatory attributes. The target variable is the optimal 
feeding policy found in Step 1. The explanatory attrib-
utes correspond to part and assembly system character-
istics: while it is possible to include in the dataset all the 

Fig. 2  Combined optimization-ML approach for the ALFP
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available data (e.g., all the parameters used in Step 1), we 
suggest selecting only significant ones based on the knowl-
edge of the specific problem, thus avoiding the risk of low 
interpretability and accuracy due to an overly complex 
ML model (Fischetti and Fraccaro 2019). We also suggest 
performing a transformation of some explanatory attrib-
utes (e.g., Fischetti and Fraccaro 2019; Vercellis 2009). 
In some cases, this transformation could consist only in 
standardizing the values of certain attributes or chang-
ing their unit of measure; for instance, in contexts where 
the volumes of parts and unit loads vary in very broad 
ranges, it is useful to measure the parts volume in terms 
of equivalent number of unit loads. In other cases, new 
attributes can be created, resulting from the combination 
of the original ones, to provide the ML model with more 
relevant information. For instance, this option is useful 
to let the ML model better learn the optimization model 
constraints; an example is shown in Sect. 4.

In the training phase, the ML model learns the rules that 
relate each part to a feeding policy based on the explanatory 
attributes. Given the presence of both numerical (e.g., part 
weight) and categorical (e.g., type of unit load) attributes, a 
classification model is needed for our purpose rather than a 
regression one. Among the different types of classification 
models, decision trees (DTs) are particularly suitable for our 
aim. In fact, unlike other models that act as a “black box”, 
DTs ensure a good interpretability of the classification rules, 
which are organized in the form of a tree structure and can 
be easily understood and applied also by people who are not 
experts in the ML field (Kotsiantis 2013). Such classification 
rules are made of a set of relations of the form y > b, y < b, 
or y = b, where y is a generic explanatory attribute and b is 
a threshold value selected for that attribute.

The DT consists of a tree structure whose leaf nodes rep-
resent the feeding policies and whose branches represent 
the classification rules that can be followed, proceeding in 
a top-down fashion, to assign each part to a feeding policy. 
During the DT training phase, the nodes are progressively 
split, starting from a root node including all the instances. As 
regards splitting rules, we suggest building a univariate tree 
in which the attribute used for each split is chosen through 
a statistical test of independence, so as to reduce bias in 
the attribute selection in the presence of both categorical 
and numerical attributes (Loh and Shih 1997). Instead, the 
choice of the partitioning criterion should aim at minimizing 
the impurity of child nodes (Kotsiantis et al. 2007).

The training of the ML model is an iterative process, dur-
ing which alternative choices, concerning attributes selec-
tion, attributes transformation, and splitting criteria setting, 
should be evaluated in terms of accuracy. In the training 
phase, the accuracy can be assessed through the cross valida-
tion error, thus reducing the effect of the test set selection on 
the model performance evaluation (Vercellis 2009).

After building a full-grown tree, pruning criteria are 
applied to improve accuracy and interpretability by merg-
ing leaves on the same branch. The chosen pruning level 
can be set as the one that minimizes the cross validation 
error or as the highest level for which the cross validation 
error does not exceed the minimum error plus a number of 
standard deviations. This last option is useful to improve 
the tree interpretability and prevent it from overfitting the 
training set, but a low number of standard deviations (e.g., 
one or two) is suggested to keep a good accuracy. As a result 
of pruning, only the attributes that contribute the most to 
explain the ALFP solution are left in the DT. At the end of 
the pruning procedure, each leaf node is labelled with a part 
feeding policy, chosen based on the majority of the training 
instances in the node.

Once developed, the DT can be applied to estimate 
the optimal ALFP solution through two successive steps 
(Fig. 2). In Step 3, the classification rules, learnt in Step 2, 
are applied to assign new parts to feeding policies. Only data 
concerning the attributes found to be relevant after the DT 
training must be collected to get this solution. The output of 
Step 3 is an initial ALFP solution, given in input to Step 4.

In Step 4, a check is performed to verify whether the 
initial solution satisfies the constraints included in the 
optimization model. The feasibility of the ML model solu-
tion is one of the challenges in the research on combined 
optimization-ML approaches (Bengio et al. 2020) and, so 
far, only heuristic algorithms have been used to turn the 
solution obtained through the ML model into a feasible one 
(Abbasi et al. 2020). Therefore, in Step 4 a heuristic algo-
rithm is employed, consisting of an iterative procedure that 
prescribes to progressively change the assignment of parts 
to feeding policies until the constraints are satisfied. At each 
iteration, the assignment of one part is changed by replacing 
the initial policy with a new one that contributes to satisfy 
the constraint. In order to make this procedure more efficient 
and to avoid excessive deviations from the initial solution, 
parts can be sorted according to the value of one or more 
parameters. For instance, in case the capacity constraint of 
tugger trains is not satisfied, parts are progressively moved 
from the boxed-supply policy to the line stocking one (pro-
vided that the latter does not require tugger trains for parts 
transportation). In this case, parts can be sorted by decreas-
ing share of tugger train capacity they take up.

The model development steps (Steps 1 and 2) are required 
to be performed only once and considering a sample of parts. 
Such sample can correspond either to the whole assembly 
system or to a subsystem, representative of the whole sys-
tem in terms of possible values of the explanatory attrib-
utes. For instance, in case an assembly plant is composed of 
several assembly lines, similar in terms of operating condi-
tions (e.g., layout, automation level) and product models, 
only one or few lines could be considered for the model 
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development. The last two steps, instead, can be applied to 
solve the ALFP in the remaining subsystems, if any, as well 
as in the future, every time new product models or part vari-
ants are introduced.

4  Application of the proposed approach

In this section, we show an application of the approach intro-
duced in Sect. 3. In order to make our results comparable 
with previous literature, we consider the setting and optimi-
zation model provided in Limère et al. (2015).

4.1  Problem description and parameters

The application concerns a European truck manufacturing 
company which is selecting a feeding policy for each part 
family in a plant producing medium duty trucks. A part fam-
ily is made of two or more variants of the same part, iden-
tical in terms of physical characteristics and BOM coeffi-
cients, thus differing only for the demand and the number of 
finished product models in which the specific variant is used. 
The plant layout, schematically depicted in Fig. 3, consists 
of two central warehouses (a high bay warehouse for pallets 

and a small bay warehouse for smaller boxes), a supermarket 
area, and a number of assembly stations.

Two part feeding policies are used: line stocking and sta-
tionary kitting (called kitting in the following). If line stock-
ing is adopted, the homogeneous unit loads (ULs) received 
from suppliers or upstream production stages (called origi-
nal ULs in the following) are delivered to the assembly sta-
tions directly from the central warehouses. If the original UL 
is a pallet or a big container, the internal transportation is 
performed by means of forklift trucks and the replenishment 
is controlled through a reorder-point system. If the original 
UL is a box or a small container, tugger trains are employed 
for the internal milk run transportation and the replenish-
ment is controlled through a two-bin inventory system. 
When reaching the border of the assembly stations, original 
ULs are stored on the shop floor until they have been com-
pletely used up. While pallets cannot be stacked, four boxes 
can be stored in the same column at the border of a station.

In case kitting is chosen, stationary kits are prepared in 
the supermarket area before being transported to the border 
of the assembly stations. The supermarket is a warehouse 
storing both pallets and boxes, replenished from the central 
warehouses. Pickers walk the supermarket aisles and pre-
pare kits according to a picker-to-part configuration. A kit 
is made of a set of parts used at an assembly station for the 

Fig. 3  Plant layout Pallet Warehouse

Small Box Warehouse

Supermarket

WS1WS2WS3WS4WS5
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assembly of one truck. A kit container consists of a rack with 
multiple levels: thus, a fixed number of kits are included in 
each kit container and they are prepared in batches inside the 
supermarket. Kits are transported to the assembly stations 
by means of tugger trains, according to milk run tours. Since 
one kit is used per takt time, kit containers are replenished 
at constant time intervals.

For this research, we consider the dataset used by Limère 
et al. (2015), made of 8,905 parts and corresponding to five 
mixed-model assembly lines similar to each other in terms 
of layout and product models they assemble. All the general 
parameters are reported in Table 3.

4.2  ML model training

In Step 1, we run the optimization model by Limère et al. 
(2015) to obtain the optimal feeding policies for a sample 
of parts. Given that the five assembly lines are similar 
to each other, we apply the optimization model only to a 
representative subsystem made of two lines (called Line 
1 and Line 2 in the following), corresponding to 3,641 
parts. The mixed integer linear programming model aims 
at assigning each part family to either line stocking or 
kitting in order to minimize the overall costs, computed 
as the sum of four cost items: supermarket replenishment, 
internal transportation, kit preparation, and picking at the 

line. Storage space constraints at the border of each station 
are included in the model, as well as consistency con-
straints (i.e., definition of Boolean variables, constraints 
to linearize the problem and to ensure that all variants in 
a family are assigned to the same policy, kit volume and 
weight capacity restrictions).

In Step 2, we first prepare the input dataset for training 
the DT. This dataset consists of the list of the part families 
considered in Step 1 reporting, for each family, the target 
variable (i.e., the optimal feeding policy) and the explana-
tory attributes. The complete list of attributes is shown in 
Table 4. The majority of them (10 out of 12) are considered 
in previous literature (Table 2), while the remaining 2 result 
from an attribute transformation: the storage space occupied 
by the part family at the border of the station if the family 
is assigned to line stocking (Space_fam in the following), 
obtained as the combination of the original UL length and 
the part family cardinality; the storage space occupied at the 
border of the station if all the families supplied to the sta-
tion are assigned to line stocking (Space_stat in the follow-
ing), obtained as the combination of the original UL length 
and the cardinality of the station. Such new attributes are 
included to improve the DT capability to learn the storage 
space constraint: the higher their values, the lower the share 
of part families that can be assigned to line stocking in order 
to satisfy the constraint.

Table 3  General problem parameters ( Adapted from Limère et al. 2015)

Parameter Value

Average walking speed of an operator [m/s] 1
Average distance for the supermarket operator to pick parts from an original UL [m] 1.5
Average time to search for the required part from an original UL [s] 1.08
Fixed component of the kit preparation time [s] 10
Batch size for preparing kits 5
Distance of a milk run tour for boxes [m] 1,640
Capacity of the milk run tours for boxes (number of boxes per tour) 60
Expected capacity utilization of the milk run tours for boxes 50%
Distance of the milk run tour for kits [m] 1,640
Capacity of the milk run tours for kits (number of kits per tour) 70
Expected capacity utilization of the milk run tours for kits 80%
Average velocity of the material handling equipment for milk run tours [m/s] 0.67
Average velocity of the forklift trucks [m/s] 0.8
Fixed cost for the replenishment of one box in the supermarket [€/box] 0.2
Fixed cost for the replenishment of one pallet in the supermarket [€/pallet] 1.2
Weight constraint on one kit (maximum weight per kit) [kg] 50
Average distance for the line operator to pick from a kit [m] 1.5
Length of a pallet along the border of an assembly station [m] 1
Length of a stack of boxes box along the border of an assembly station [m] 0.8
Length of a kit container along the border of an assembly station [m] 0.8
Storage space available at the border of one assembly station [m] 8
Hourly cost of labor [€/h] 30
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We train the DT through the software MATLAB. We 
measure the accuracy according to a k-fold cross valida-
tion method: after trying different values of the parameter 
k, we set it to 500, which is a number of folds high enough 
to achieve a stable DT, not affected by the choice of train-
ing and test sets. As for the splitting criteria, we choose 
the explanatory attribute used for each split according to 
a statistical test of independence. We run chi-square tests 
of independence both between each attribute and the target 
variable (curvature test) and between each pair of attributes 
and the target variable (interaction test). Interaction tests are 
useful since they allow to account for relevant correlations 
between the attributes created through transformation and 
the attributes combined to create them. In case the lowest 
significant p-value results from a curvature test, we use the 
related attribute for the split; otherwise, looking at the pair 
of attributes in the interaction test with the lowest p-value, 
we choose the one that maximizes the impurity gain after the 
split; finally, in case all the p-values are not significant (i.e., 
higher than 0.05), the node is not further split. With regard 
to the partitioning criterion, we compare three alternatives 
(Gini index, entropy index, twoing rule) and we select the 
Gini index since it leads to the lowest cross validation error 
in the final tree. After building a full-grown tree, we assess 
all possible pruning levels and select the highest one for 
which the cross validation error (k = 500) does not exceed 
the minimum error plus one standard deviation. The final 
ML model is reported in Fig. 4, that shows the classification 
rules and the relevant attributes.

The first splitting rule prescribes to adopt line stocking if 
the overall space occupied by all the parts used at a station 
is lower than the available one; otherwise, the second rule 
leads to different classifications depending on the volume 

of each part. The following rules involve 6 more attributes, 
adding up to a total of 8 relevant attributes out of the 12 used 
for the training (Table 4). The two transformed attributes, 
Space_stat and Space_fam, are both included, confirming 
that attribute transformation can help explain the optimal 
ALFP solution.

4.3  ML model application

In Step 3, we use the developed DT to select feeding poli-
cies for the parts used by the remaining three assembly 
lines (called Line 3, Line 4, and Line 5 in the following and 
corresponding to 5,264 parts), considering the 8 relevant 
attributes found in Step 2. At the end of Step 3, we obtain an 
initial solution where 53% of the part families are assigned 
to line stocking and the remaining ones to kitting.

In Step 4, we check the feasibility of the initial solution. 
The workstations not meeting the storage space constraint 
are 3.56% of the total, indicating that the DT has success-
fully learnt most of the constraints. Although most of these 
infeasibilities could be solved with space borrowing (Schmid 
et al. 2021), we apply the heuristic algorithm reported in the 
Appendix. As a result, we get a feasible solution, close to the 
previous one, where 52% of the part families are assigned to 
line stocking and 48% to kitting.

5  Performance assessment and discussion

In this section, we explore the trade-off between efficiency 
and quality of the ALFP solution. In Sect. 5.1, we com-
pare our approach with the optimization model presented in 
Limère et al. (2015). Then, we show the effect of a reduction 

Table 4  Explanatory and relevant attributes

Explanatory attributes used for the training phase Relevant attributes 
included in the DT

Unit weight
Unit volume (maximum number of units of the part a kit can hold) X
Maximum number of units per pick X
BOM coefficient (number of parts per finished product) X
Type of original UL (pallet or box)
Number of part units per original UL X
Cardinality of the part family (number of part variants belonging to the family) X
Yearly demand of the part family
Percentage of product models for which the part family is required
Cardinality of the station to which the part family is supplied (overall number of parts supplied to the station) X
Storage space occupied by the part family at the border of the station if the part family is assigned to line stocking (Space_

fam)
X

Storage space occupied at the border of the station if all the part families supplied to the station are assigned to line stocking 
(Space_stat)

X
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in the data collection effort. We study how the solution 
changes when decreasing the number of relevant attributes 
used to solve the ALFP (Sect. 5.2), the size of the subsystem 
used to train the ML model (Sects. 5.3), or both (Sect. 5.4). 
We perform these analyses considering the parts supplied to 
Lines 3, 4, and 5, not used for the ML model training. Based 
on the results of these analyses, we discuss the effective-
ness of the proposed approach and how it compares with the 
methods presented in previous literature (Sect. 5.5).

5.1  Comparison with the optimal solution

We compare the ALFP solution resulting from our approach 
with the optimal one, both in terms of accuracy and costs. 
We measure accuracy as the percentage of part families 
assigned to the same policy by the ML and optimization 

models. As regards costs, we consider the percentage dif-
ference between the yearly costs corresponding to the ALFP 
solution obtained through the ML model and the optimal 
yearly costs. To compute these costs, we use the objective 
function described in Sect. 4.2.

First, we consider the initial solution (i.e., Step 3 output): 
Table 5 reports the results for each assembly line. Overall, 
the optimization and ML models give the same outcome in 
terms of feeding policy assignments for 83.1% of the part 
families. The 16.9% classification error is split between fam-
ilies wrongly assigned to kitting by the DT (9.2%), which 
are expected to generate extra costs mainly due to picking 
activities in the supermarket, and families wrongly assigned 
to line stocking (7.7%), which tend to reduce overall costs 
but contribute to cause space constraints infeasibilities. The 
difference between ML and optimization models is even 

Fig. 4  Final DT

Table 5  Comparison between ML (initial solution) and optimization

Assembly line Accuracy Yearly costs (Optimization 
model)

Yearly costs
(ML model, Step 3)

Cost percent-
age differ-
ence

Line 3 84.0% 371,866 € 398,004 € 7.0%
Line 4 82.6% 397,297 € 426,461 € 7.3%
Line 5 82.4% 455,856 € 475,564 € 4.3%
Total 83.1% 1,225,019 € 1,300,029 € 6.1%
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lower looking at costs: the average costs obtained through 
the DT are 6.1% higher than the optimal ones.

Table 6 reports the results concerning the feasible solu-
tion. It shows that the accuracy slightly improves thanks to 
the application of the heuristic algorithm to the stations not 
satisfying the storage space constraint, where some parts, 
initially wrongly assigned to line stocking, are assigned to 
kitting. An opposing effect is registered with regard to costs, 
which are 7.4% higher than the optimal ones. This result 
can be considered acceptable also if compared with previ-
ous literature, where the only available benchmark shows a 
20.5% cost increase if a DT is used to estimate the optimal 
solution (Abbasi et al. 2020).

5.2  Effect of the number of relevant attributes

With refer to the feasible solution, we study how the num-
ber of relevant attributes used to solve the ALFP affects 
the solution quality when the combined optimization-ML 
approach is adopted. Starting from the DT depicted in Fig. 4, 
we progressively increase the pruning level. At each step, 
we remove the attributes placed closer to the tree leaves, 
which are the ones showing the lowest correlation with the 
optimal assignment of parts to feeding policies, up to the 
point when only the two most relevant attributes are left. 

As reported in Table 7, with each additional pruning level 
one or more attributes are removed from the DT, meaning 
that the related data does not have to be collected for the 
5,264 parts used in Lines 3, 4, and 5. Table 7 also shows 
that reducing the amount of data which has to be gathered to 
apply the ML model leads to higher overall costs. However, 
costs are quite robust to the decrease in the data collection 
effort. For instance, when using 5 attributes instead of 8, 
the amount of data needed to solve the ALFP is reduced by 
37.5% while costs increase by 1.8%. Even in the case when 
only 2 relevant attributes are considered, costs are only 5.2% 
higher than in the case with no additional pruning.

5.3  Effect of the training dataset size

With refer to the feasible solution, we study how the model 
performance changes when reducing the training dataset 
size. We compare the training dataset considered so far, 
made of the part families used by Lines 1 and 2, with two 
alternative ones. The first one includes the part families used 
by one assembly line only (Line 1). The second one includes 
half of the part families used by Line 1, randomly chosen.

As shown in Table 8, when training the ML model 
with data concerning Line 1 only (thus, almost halving 
the data collection effort compared to the first setting), 

Table 6  Comparison between ML (feasible solution) and optimization

Assembly line Accuracy Yearly costs (Optimization 
model)

Yearly costs
(ML model, Step 4)

Cost percent-
age differ-
ence

Line 3 84.4% 371,866 € 398,762 € 7.2%
Line 4 82.5% 397,297 € 430,019 € 8.2%
Line 5 83.8% 455,856 € 486,897 € 6.8%
Total 83.6% 1,225,019 € 1,315,678 € 7.4%

Table 7  Model performance varying the number of relevant attributes

*Product between the number of parts and the number of relevant attributes

Number of 
relevant attrib-
utes

Relevant attributes Additional pruning levels Accuracy Total yearly costs Amount of data (ML 
model application)*

8 Unit volume, Maximum no. of units per pick, 
BOM coefficient, Number of part units per 
original UL, Family cardinality, Station 
cardinality, Space_fam, Space_stat

(no additional pruning) 83.1% 1,315,678 € 42,112

5 Unit volume, Maximum no. of units per pick, 
BOM coefficient, Space_fam, Space_stat

1 82.4% 1,338,787 € 26,320

4 Unit volume, BOM coefficient, Space_fam, 
Space_stat

2 80.4% 1,367,528 € 21,056

3 Unit volume, Space_fam, Space_stat 3 80.9% 1,392,591 € 15,792
2 Unit volume, Space_stat 4 81.1% 1,384,697 € 10,528
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performance remains almost unchanged in terms of both 
accuracy and costs. Instead, in case a subset of the parts 
used by Line 1 is used to train the ML model, we observe 
a decrease in the accuracy and a significant increase in 
overall costs, which become 14.4% higher than the opti-
mal ones.

These results confirm that the performance of the ML 
model in solving the ALFP remains almost unchanged as 
long as the subsystem used to develop the model is repre-
sentative of the whole system in terms of possible values of 
the explanatory attributes; in this case, being the five lines 
very similar in terms of layout and assembled models, it is 
sufficient to use only one of them as representative subsys-
tem. On the contrary, the performance worsens if this condi-
tion is no longer satisfied.

5.4  Joint effect of the number of relevant attributes 
and training dataset size

With refer to the feasible solution, we study how the model 
performance changes if the number of relevant attributes and 
the training dataset size are jointly reduced. We consider the 
same training dataset sizes investigated in Sect. 5.3 and, for 
each one, we compare the case in which all relevant attrib-
utes resulting from the ML model training are used to solve 
the ALFP, with the case in which only the two most relevant 
attributes are used.

Table 9 reports the accuracy and total yearly costs for 
each of the considered combinations of training dataset size 
and number of relevant attributes.

Obviously, the case with maximum training dataset size 
and number of relevant attributes leads to the best perfor-
mance. Then, whatever the considered training dataset size, 
a decrease in the number of relevant attributes allows to 
solve the ALFP with a significantly lower data collection 
effort, without heavily worsening overall performance. The 
variation in the accuracy is below 2% when considering 
only two relevant attributes. The increase in overall costs 
is between 3.3% and 5.2%, but this performance measure 
is also explained by the fact that, in this particular setting, 
the classification error is mostly related to parts wrongly 
assigned by the ML model to kitting policy, which is more 
costly than line stocking.

This analysis also confirms that the training dataset size 
can be reduced without significantly affecting performance, 
as long as the subsystem corresponding to the training data-
set is representative of the whole system in terms of possible 
values of the explanatory attributes. As shown in Table 9, 
when considering two attributes, the same performance is 
achieved by training the ML model with either the data cor-
responding to Lines 1 and 2 or the data corresponding to 
just Line 1: this happens because the ML model training 
leads to the identification of the same two most relevant 
attributes in both cases. Instead, the two most relevant attrib-
utes selected during the training change when only half of 

Table 8  Model performance varying the training dataset size

*Product between the number of parts and the number of explanatory attributes

Training dataset size Amount of data (ML model train-
ing)*

Accuracy Total yearly costs

Part families used by Lines 1, 2 40,051 83.1% 1,315,678 €
Part families used by Line 1 19,965 82.4% 1,326,807 €
Half of the part families used by Line 1 10,725 77.1% 1,401,631 €

Table 9  Model performance varying the number of relevant attributes and the training dataset size

Training dataset size All relevant attributes Two relevant attributes

Part families used by
Lines 1, 2

Accuracy: 83.1%
Total yearly costs: 1,315,678 €
Amount of data (training): 40,051
Amount of data (application): 42,112

Accuracy: 81.1%
Total yearly costs: 1,384,697 €
Amount of data (training): 40,051
Amount of data (application): 10,528

Part families used by
Line 1

Accuracy: 82.4%
Total yearly costs: 1,326,807 €
Amount of data (training): 19,965
Amount of data (application): 42,112

Accuracy: 81.1%
Total yearly costs: 1,384,697 €
Amount of data (training): 19,965
Amount of data (application): 10,528

Half of
the part families used by
Line 1

Accuracy: 77.1%
Total yearly costs: 1,401,631 €
Amount of data (training): 10,725
Amount of data (application): 42,112

Accuracy: 79.6%
Total yearly costs: 1,449,019 €
Amount of data (training): 10,725
Amount of data (application): 10,528
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the parts provided to Line 1 are used to train the model, 
confirming that this smaller dataset does not enable the ML 
model to successfully learn the optimal assignment of parts 
to feeding policies.

5.5  Discussion

As shown in the literature review (Sect. 2.1), the existing 
methods to solve the ALFP imply a trade-off between solu-
tion quality and efficiency. Inductive approaches allow find-
ing the best combination of policies looking at their effect on 
system performance, but their application might be difficult 
as they require a large amount of data and specific skills and 
software. Conversely, deductive approaches, based on parts 
categorization, are easy to adopt as they entail a low data 
collection effort and they are intuitive and ‘ready-to-use’ 
when new product models or part variants are introduced. 
However, their main drawback lies in the fact that they do 
not ensure to achieve a performance close to the optimal one.

The application reported in Sect. 4 confirms that the 
approach proposed in this paper represents a new effective 
way to select part feeding policies in an assembly system, 
improving the trade-off emerged in previous literature. On 
the one hand, similarly to the methods based on parts cat-
egorization, in the proposed approach parts are assigned 
to feeding policies according to simple and intuitive rules, 
based on a few attributes of the parts and the assembly sys-
tem. Therefore, shop floor managers can quickly update the 
ALFP solution every time new parts or product models are 

introduced, without the support from experts in the optimi-
zation or ML domains. On the other hand, the use of ML 
ensures that the attributes on which the solution is based are 
the relevant ones, explaining the optimal assignment of parts 
to feeding policies. As a consequence, the achieved solution 
is close to the optimal one in terms of both accuracy and 
costs (16.9% and 7.4% difference, respectively, in the case 
considered in this paper).

Moreover, the proposed approach can be easily adapted to 
be applied to industrial cases across several industries where 
manual assembly operations are carried out on a line, such 
as consumer electronics, household appliances, healthcare 
equipment, industrial and agricultural machinery. Unlike the 
approaches presented in literature, according to which the 
ALFP solution is based on a pre-defined set of performance 
measures to be optimized (as shown in Table 1 in the Lit-
erature Review Section) or on a pre-defined set of factors (as 
shown in Table 2 in the Literature Review Section), the one 
proposed in this paper is extremely flexible because it works 
with any optimization model and considering any factors, 
chosen depending on their relevance and availability in the 
considered industrial case.

Finally, as regards the data collection effort, the pro-
posed approach can be placed in between the two classes 
of methods presented in literature. In fact, the optimization 
model parameters must be gathered, when training the ML 
model, only for a subsystem. For the remaining portion of 
the assembly system, as well as when new parts are intro-
duced, the only data needed to select feeding policies are the 

Fig. 5  Algorithm Algorithm 

1: for each station where space constraints are not satisfied do 

2:  for each part family do 

3:  compute the number of kits KS necessary for the part family, if it was assigned to kitting 

4:  end for 

5:  while the space constraint is not satisfied do 

6:  sort the part families in decreasing order of cardinality 

7:  for each part family assigned to line stocking, whose original UL is a pallet do 

8:  
if the overall space occupied at the border of the station decreases by assigning the part 
family to kitting then 

9:  assign the part family to kitting 

10:  end if 
11:  end for 

12:  sort the part families in order of increasing value of B = part family cardinality / KS   

13:  for each part family assigned to kitting do 

14:  
if the overall space occupied at the border of the station decreases by assigning the part 
family to line stocking then 

15:  assign the part family to line stocking 

16:  end if 
17:  end for 

18:  end while 

19: end for 
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ones concerning a few relevant attributes, whose number can 
be set according to data availability in the specific context 
(see Sects. 5.2 and 5.4). Therefore, in case of scarce data 
availability a key issue lies in the choice of the subsystem 
used for the ML model training, which should be performed 
in close collaboration with the plant managers. In fact, as 
shown in Sects. 5.3 and 5.4, a poorly selected subsystem 
could turn out not to be representative of the whole system 
in terms of possible values of the explanatory attributes, thus 
hindering the ML model performance.

6  Conclusions

6.1  Contribution

In this paper, we explore the application of ML to part feed-
ing policies selection in assembly systems. We present a 
new approach to solve the ALFP, based on the end-to-end 
learning method, according to which parts are assigned to 
feeding policies through a supervised ML model trained 
using the output of an optimization model. We show how 
this approach can be concretely applied and how it performs 
compared to optimization approaches. Finally, we discuss 
how performance changes when varying the quantity of data 
used in the ML model training and application.

From an academic point of view, this paper enriches 
the previous literature both on part feeding policies selec-
tion and on the application of ML techniques in production 
systems. Indeed, we introduce a new approach to solve the 
ALFP that is general in the sense that it can be implemented 
in any assembly system, considering any number of feeding 
policies. We show how this approach enables to improve 
the trade-off between the effort required to solve the ALFP 
and the quality of the solution, by pairing the advantages of 
the methods currently available in literature. Moreover, we 
broaden the application field of ML techniques in produc-
tion systems, by both considering the ALFP and introducing 
a new type of approach, based on the end-to-end learning 
method, applied so far only in different research areas and 
by very few contributions. At last, we contribute to advance 
the knowledge on combined optimization-ML approaches 
since we formalize, for the first time in literature, the steps 
required for the application of such approaches and address 
issues such as the feasibility of the ML model solution and 
its comparison with the optimal solution, which are still 
understudied.

From a managerial point of view, the approach proposed 
in this paper represents an effective method to select feed-
ing policies in contexts where data availability is criti-
cal or data collection is very time-consuming. As shown 
through the application to the industrial case, the ML model 

performance is robust to the number of attributes used to 
select feeding policies. Moreover, the size of the subsystem 
used for the ML model training can be reduced as long as 
it remains representative of the overall assembly system. 
Besides being robust to the amount of available data, the 
proposed approach allows managers to estimate the optimal 
ALFP solution in short time and with low effort, using intui-
tive classification rules which are similar to the ones already 
applied in most assembly systems. Most of the effort, in 
terms of time, skills, and computing power, is concentrated 
in the ML model development steps, which must be per-
formed only once and possibly with the support of consult-
ants or research institutes, as suggested by Abbasi et al. 
(2020) with refer to a different end-to-end learning approach.

6.2  Limitations and future research

Being a first attempt to explore the adoption of ML to solve 
the ALFP, this study presents some limitations, which gener-
ate opportunities for further research. First of all, the devel-
oped approach is applied to only one industrial case. Future 
research should demonstrate performance in different con-
texts. For instance, it could account for assembly systems 
where more than two feeding policies are adopted, thus con-
sidering a different optimization model and a wider set of fac-
tors. Moreover, while this study has shown that the sample of 
parts used to train the ML model has a relevant impact on the 
model performance, the presented numerical analysis about 
the size of the representative training dataset is specific to the 
case under investigation. Therefore, future research should 
carry out a more in-depth investigation of this matter, aim-
ing to define general criteria for sample selection. Next, we 
evaluate a single ML technique, the DT, chosen mainly due to 
its good interpretability. Future research could investigate the 
application of different techniques characterized by a higher 
accuracy, such as random forests and neural networks, paying 
attention to the trade-off between the increased accuracy and 
the lower interpretability (Kotsiantis 2013). In addition, while 
this study carries out a comparison between the proposed 
approach and an optimization-based one, a future develop-
ment could be the comparison and integration of the proposed 
approach with those currently used by practitioners. A further 
limitation concerns the fact that the approach has been devel-
oped considering a setting in which the preliminary design of 
the assembly system, including its balancing, has already been 
carried out. An interesting direction for future research is the 
extension of this approach to support the integrated assembly 
line balancing and feeding problems (Sternatz 2015; Schmid 
and Limère 2019). Finally, since ML is often considered as 
one of the main enablers for the evolution of a traditional 
manufacturing system into a 4.0 system (Culot et al. 2020; 
Bertolini et al. 2021), this work is connected to the research 
on Industry 4.0, which aims at improving the efficiency and 
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flexibility of production processes thanks to the collection, 
sharing, and analysis of data (Ghobakhloo 2018; Garay-
Rondero et al. 2019; Oztemel and Gursev 2020). However, 
this study does not explore the interplay between ML and 
other Industry 4.0 enabling technologies (Culot et al. 2020). 
In future research, the proposed approach could be integrated 
with technologies supporting real-time data collection and 
information sharing. For instance, it could be adapted into a 
more operational decision tool within a hyper-connected sys-
tem, where feeding policies could be dynamically assigned to 
parts based on real-time data fed to the ML model, concerning 
the shop floor status (e.g., machines failures or disruptions 
which make one of the feeding policies not viable for a certain 
period of time) and the actual demand level.

Appendix

Heuristic algorithm to solve storage space constraint 
infeasibilities.
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