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Abstract
Understanding the inequity in spatial accessibility to COVID-19 vaccination sites is 
beneficial for the government to optimize vaccine resources. Nevertheless, the result 
of evaluating spatial accessibility to COVID-19 vaccination sites may be directly 
affected by the lack of fine-scale and accurate population distribution information in 
both urban and rural areas. In addition, the choice of travel modes related to differ-
ent age groups has not been incorporated into existing methods well. Consequently, 
this study proposes a framework to evaluate spatial accessibility to COVID-19 vac-
cination sites based on fine-scale population distributions and heterogeneous travel 
modes. A divide-and-conquer strategy is first presented to estimate the fine-scale 
populations in both urban and rural areas. A hybrid time distance considering het-
erogeneous travel modes and a population-weighted proximity indicator are then 
defined to evaluate spatial accessibility for each age group. The experimental results 
from Xiangtan, China, show that (1) the divide-and-conquer strategy can effectively 
predict the urban and rural populations. (2) Similar clustering patterns of spatial 
accessibility are observed for each age group. (3) Inequities have been confirmed at 
the county level. The main findings in this study can provide valuable information 
supporting the spatial optimization of existing COVID-19 vaccination sites.

Keywords COVID-19 · Vaccination · Spatial analysis · Spatial accessibility · 
Inequity

Introduction

The COVID-19 pandemic has posed an extremely serious and unprecedented chal-
lenge for governments worldwide (Anderson et  al., 2020). During the early stage 
of the pandemic, nonpharmaceutical interventions such as school closures, travel 
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restrictions, and public lockdowns were commonly used to slow or pause the spread 
of the disease (Qi et al., 2022). Due to various socioeconomic factors and policies 
across different countries or regions, it is difficult to strictly and continuously imple-
ment such interventions, which greatly affects the efficiency of global epidemic pre-
vention and control (Duhon et  al., 2021; Kaufman et  al., 2021). Fortunately, with 
international vaccine development efforts, COVID-19 vaccines have been devel-
oped, and vaccination has been proven to be a highly effective tool to fight the global 
COVID-19 pandemic (Bucyibaruta et al., 2022). Nevertheless, because of the une-
ven distribution of COVID-19 vaccination sites, variation in spatial accessibility to 
vaccination sites always exists for different groups (Liu et al., 2022). Understanding 
the inequity in spatial accessibility to vaccination sites is beneficial for governments 
to optimize vaccine resources.

Spatial accessibility refers to the ability of residents to reach their destination 
or infrastructure and indicates the convenience of socioeconomic activities (Kwan 
et  al., 2003; Tao et  al., 2020b). Here, the destination or infrastructure is COVID-
19 vaccination sites; that is, spatial accessibility to COVID-19 vaccination sites 
describes residents’ ability to reach COVID-19 vaccination sites. A series of stud-
ies have been carried out to analyse spatial accessibility to vaccination sites, which 
can be distinguished from two aspects: one is the spatial scale, and the other is the 
measurement method of spatial accessibility. Spatial scales, the sizes or resolutions 
of spatial analysis units, heavily depend on the granularity of the initial observations 
or statistical values (Deng et al., 2017). Official census data are commonly employed 
to analyse spatial accessibility to COVID-19 vaccination sites (Qi et al., 2022; Tao 
et al., 2020a, b). Due to public privacy protection, census data are aggregated and 
released at the subdistrict or street scale (Bakillah et  al., 2014), while the spatial 
analysis unit generally corresponds to the census tract level. However, it is difficult 
to accurately obtain the geographical location of residents according to census data. 
Global population products, such as the Gridded Population of the World (GPW), 
provide detailed population distribution information at a fine scale (Doxsey-Whit-
field et al., 2015). These products based on the global scale are suitable for global or 
regional analysis, but due to local accuracy deviation, they are not suitable for local 
or fine-scale analysis (Yang et al., 2023). For this purpose, accurately obtaining fine-
scale population distributions from census data is still challenging.

Recently, multiple sources of geographical data, such as mobile phone data, 
social media data, satellite-derived nighttime image data, and points of interest 
(POIs), have been proven to provide effective support for accurately predicting pop-
ulation distributions (Yao et al., 2017; Zeng et al., 2011). The theoretical assump-
tion is that population density can be indirectly described by human activity inten-
sity, and places with high activity intensity usually correspond to those with high 
population density. Based on these different types of geographical data, statistical 
regression or machine learning methods have been widely used to realize census 
data spatialization (Liu et al., 2018; Zhou et al., 2020). The essence of both statis-
tical regression and machine learning methods tends to approximate the relation-
ships between the population density and its associated variables of human activity. 
However, due to the differences in lifestyle and production modes, the spatial distri-
bution of urban and rural populations presents different characteristics. The urban 
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population is mainly concentrated in urban built-up areas, while the rural popula-
tion is relatively scattered. The geographical environment and facilities in urban and 
rural areas are also different. Geographical data for recording human activity, such 
as POIs and social media data, may be seriously lacking in rural areas (Liu et al., 
2020). Obviously, because of the different characteristics representing human activ-
ity, existing methods for predicting the fine-scale population in urban areas cannot 
be used to analyse the population in rural areas. It is difficult to comprehensively 
evaluate the inequity in spatial accessibility to vaccination sites based only on the 
urban population and without considering the rural population. Therefore, how to 
generate the fine-scale population distribution of urban and rural areas is an urgent 
problem that needs to be solved.

Like other infrastructures, the measurement method of spatial accessibility to 
vaccination sites can be roughly divided into two categories, namely, distance-based 
indicators and spatial interaction methods (Kwan et  al., 2003; Xiao et  al., 2022). 
Distance-based indicators aim to measure spatial accessibility by the distance (such 
as space, time, and cost) between the residents’ location and the vaccination sites. 
For instance, Guhlincozzi and Lotfata (2021) used the street-network distance to 
evaluate spatial accessibility to vaccination sites in the metropolitan area of Chi-
cago, Illinois, United States. The street-network distance can measure the actual 
moving distance of a resident and is more reasonable than the Euclidean distance. 
Overall, it is easy to implement spatial accessibility by distance-based indicators, 
but they cannot effectively describe the relationships between spatial supply and 
demand. Spatial interaction methods tend to consider the spatial variation in vac-
cine supply and demand based on travel distance. These methods mainly include the 
gravity-based method and the two-step floating catchment area (2SFCA) method. 
For instance, Liu et al. (2022) explored racial/ethnic inequity in spatial accessibility 
to COVID-19 vaccination sites using a gravity-based model. Qi et al. (2022) used 
the 2SFCA method to investigate spatial accessibility to COVID-19 vaccination 
sites in two counties in the United States. Although spatial supply and demand can 
be addressed by these spatial interaction methods, how to measure and match the 
supply and demand needs to be further discussed.

Actually, both distance-based indicators and spatial interaction methods have 
their own advantages and limitations, and neither can completely replace the other. 
The kind of method that should be chosen depends on the application scenario. Spe-
cifically, during the initial vaccination stage, due to the limitation of vaccine produc-
tion capacity, there is an imbalance between the supply and demand of vaccines. In 
this scenario, where the spatially varying supply and demand of vaccines should be 
considered, spatial interaction models are more suitable than distance-based indi-
cators. However, with the rapid improvement of vaccine production capacity, the 
vaccine supply is sufficient in many countries or regions. In this scenario, distance-
based indicators are more effective than spatial interaction methods.

Whether the supply and demand of vaccines should be considered in the method 
for measuring spatial accessibility to COVID-19 vaccination sites or not, the dis-
tances between the locations of residents and vaccination sites should be deter-
mined by both methods. A variety of distance measurement strategies have been 
proposed. Street-network distance, a commonly used strategy, is easy to implement 
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(Qi et al., 2022), and it may be applicable for people with disabilities and older peo-
ple who general use a single travel mode (Guhlincozzi & Lotfata, 2021). However, 
when different travel modes are involved, the single street-network distance cannot 
reveal the impact of travel modes on spatial accessibility. To overcome this limi-
tation, Tao et al. (2020a, b) proposed that two primary travel modes, i.e., walking 
and driving, should be incorporated into the 2SFCA method, and car-accessible and 
car-less populations were distinguished to determine different distance thresholds 
and demand capacities for different travel modes. In fact, the choice of travel mode 
mainly depends on the travel distance or time between the origin and destination. 
The closer the origin and destination are, the more likely the walking mode will 
be chosen, and conversely, the more likely the driving mode will be selected. The 
choice of travel mode is also related to different age groups. How to incorporate het-
erogeneous travel modes into the spatial accessibility to COVID-19 vaccination sites 
is another urgent issue to be explored.

Consequently, the purpose of this study is to evaluate spatial accessibility to 
COVID-19 vaccination sites based on fine-scale population distributions and hetero-
geneous travel modes. The main objectives are (1) to propose a divide-and-conquer 
strategy to predict the fine-scale population distributions in urban and rural areas 
to determine the fine-scale demand capacity of COVID-19 vaccination sites; (2) to 
construct a distance-based indicator with the integration of heterogeneous travel 
modes to evaluate spatial accessibility to COVID-19 vaccination sites; and (3) to 
explore the inequity in spatial accessibility to COVID-19 vaccination sites in the 
study area.

The structure of this paper is organized as follows. In Section "Study area and 
Datasets", the study area and datasets are first introduced. The methods for predict-
ing fine-scale population distributions and evaluating spatial accessibility are pro-
vided in Section "Methods". In Section "Results", the experimental results in the 
study area are described. The discussion and conclusion are provided in Sections 
"Discussion" and "Conclusions", respectively.

Study area and Datasets

Study Area

The study area, Xiangtan, is located in the east-central part of Hunan Province, 
China. The prefecture-level city consists of two districts (Yuhu and Yuetang) and 
three county-level cities (Xiangtan, Shaoshan, and Xiangxiang counties). The study 
area covers a total of 5,005.8  km2. The Seventh National Census of China reported 
that the permanent population in Xiangtan was 2,726,181, 50.74% male and 49.26% 
female, in 2020. The urban population was 1,754,969, while the rural population 
was 971,212. The spatial locations of the study area are shown in Fig. 1. Existing 
research has proven that the spatial distribution of medical services in the study area 
is unreasonable at the county level (Li et al., 2018); therefore, this research aims to 
evaluate spatial accessibility to COVID-19 vaccination sites at a fine spatial scale.
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Datasets and Preprocessing

The datasets used in this study mainly consist of nine types of data, which are 
listed as follows: (1) Census data of 70 units at the street scale in Xiangtan 
from the census statistical yearbook, including the population, the age structure 
information of each street, and the type of each street (urban or rural areas); (2) 
COVID-19 vaccination site data, including names and locations, which were 
derived from the Xiangtan Center for Disease Control and Prevention. The spa-
tial distribution of COVID-19 vaccination sites is shown in Fig.  1; (3) Digital 
elevation model (DEM) data with a spatial resolution of 30  m from the Com-
puter Network Information Center of the Chinese Academy of Sciences; (4) Fun-
damental geographical information, namely, the geometric information of the 
study area, which was obtained from National Geomatics Center of China; (5) 
High-resolution remote sensing images from the Gaofen-2 satellite with a spatial 
resolution of 5 m, provided from China Centre for Resources Satellite Data and 
Application; (6) Land use data (e.g., construction land, garden land, grassland, 
forestland, cultivated land, and other categories) with a spatial resolution of 30 m 
obtained from the Computer Network Information Center of the Chinese Acad-
emy of Sciences; (7) Nighttime light remote sensing images of Luojia1-01 with 
a spatial resolution of 130 m; (8) Points of interest (POIs) data (public services 
points, business points, industrial points, residential points, and transportation 
points) with approximately 200,000 records that were obtained from Baidu maps; 
(9) Road network data obtained from OpenStreetMap; (10) Survey about travel 

Fig. 1  Map of the study area
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mode selection derived from a questionnaire (“age”, “how long are you willing to 
walk to get vaccinated?”), and approximately 100 samples were obtained for each 
age group (children, middle-aged people, and older people); (11) Urban statistical 
yearbook, including the total population and the numbers of the three age groups 
(children less than 16 years of age, middle-aged people from 16 to 60 years of 
age, and older people of more than 60 years of age) for each street, which was 
published by the Hunan Provincial Bureau of Statistics; and (12) Walking trajec-
tories of different age groups, with a total sample size of 100. The details of these 
multisource datasets are listed in Table 1.

This study involves two types of basic analytical units: street units and grid 
units. Street units are known and obtained from fundamental geographical infor-
mation data, but the resolution of grid units needs to be specified. The resolution 
of the grid units was set to 1 km, and the multiscale issue was not discussed in 
depth. In most existing studies about population spatialization, the street units 
were regarded as the initial units for building the relationships between popula-
tion density and the covariables. Then, the built model was used to predict the 
population density of each grid unit. During data preprocessing, the covariable 
data were aggregated into street and grid units. The areas of these five types of 
land use, the numbers of the five POI categories, the average slope, the road net-
work density, and the nighttime light intensity were calculated for each type of 
spatial unit based on the datasets. Hence, the covariables or input features are 
composed of the areas of the five types of land use, the average nighttime light 
intensity, the average slope, the numbers of the five POI categories, and the road 
network density.

Table 1  Multisource datasets used in this study

Name Year Spatial scale
(Data type)

Source

Census 2020 Street scale http:// xttj. xiang tan. gov. cn/
COVID-19 vaccination sites 2021 (points) http:// www. xtcdc. org. cn/
DEM 2017 30 m (grid) http:// www. gsclo ud. cn
Fundamental geographical information 2015 (Vector map) http:// www. ngcc. cn/ ngcc/
Land use 2018 30 m (grid) https:// www. resdc. cn
High-resolution remote sensing images 2018 5 m (grid) https:// www. cresda. com/ zgzyw 

xyyzx/ index. html
Nighttime light remote sensing images 2018 130 m (grid) http:// 59. 175. 109. 173: 8888
POIs 2021 (Points) http:// map. baidu. com
Road network 2021 (Networks) https:// www. opens treet map. org
Survey about travel modes selection 2021 (Table) Survey based on questionnaire
Urban statistical yearbook 2018 (Table) http:// tjj. hunan. gov. cn/ tjsj/ tjnj/
Walking trajectories of different age groups 2021 (Trajectory) Manual observation

http://xttj.xiangtan.gov.cn/
http://www.xtcdc.org.cn/
http://www.gscloud.cn
http://www.ngcc.cn/ngcc/
https://www.resdc.cn
https://www.cresda.com/zgzywxyyzx/index.html
https://www.cresda.com/zgzywxyyzx/index.html
http://59.175.109.173:8888
http://map.baidu.com
https://www.openstreetmap.org
http://tjj.hunan.gov.cn/tjsj/tjnj/
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Methods

The framework for evaluating spatial accessibility to COVID-19 vaccination sites 
based on fine-scale population distributions and heterogeneous travel modes is com-
posed of three levels, namely, the task level, the method level, and the data level, 
as shown in Fig. 2. The task level mainly involves two aspects: one is to predict the 
fine-scale population, and the other is to measure spatial accessibility to COVID-
19 vaccination sites. To accomplish these two tasks, a divide-and-conquer strategy 
and a distance-based indicator considering heterogeneous travel modes are devel-
oped based on the datasets described in Section "Study area and Datasets". The data 
needed for each level and method are shown in Fig. 2, and the principles of these 
two methods are introduced in detail in Sections "A Divide-and-Conquer Strategy 
for Predicting Fine-Scale Population Distributions" and "A Distance-based Indicator 
Considering Heterogeneous Travel Modes for Measuring Spatial Accessibility".

A Divide‑and‑Conquer Strategy for Predicting Fine‑Scale Population Distributions

As described in Section "Introduction", urban and rural populations always exhibit 
different distribution patterns, so different data and models are required to model the 
urban and rural population distributions at a fine scale. Consequently, a divide-and-
conquer strategy is proposed to predict the fine-scale population distribution. The 
study area is first divided into two parts: urban and rural areas. For urban areas, a 
two-level random forest model is employed to predict the fine-scale population dis-
tribution (Yang et al., 2023). For rural areas, U-Net convolutional neural networks 
are first used to extract building image objects from high-resolution remote sensing 
images (Kim et al., 2019), and the areas of building image objects are then defined 
as an allocation index to allocate the population.

Recently, machine learning methods have been widely used to predict the pop-
ulation distribution based on new forms of ancillary data, such as POIs and night-
time light remote sensing images (Jia & Gaughan, 2016). Compared with spatial 
statistical methods, these methods can adaptively learn any nonlinear relation-
ships, especially the random forest model, which has been proven to be outstand-
ing in describing the associations between population density and covariables. In 
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Fig. 2  Framework for evaluating spatial accessibility in this study
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this research, a variant of the random forest model, namely, the two-level random 
forest model, was selected to predict the population distribution in the urban area 
(Yang et al., 2023).

The two-level random forest model is developed by incorporating error com-
pensation. As shown in Fig.  3, the first-level random forest model f 1

RF
() is first 

used to directly model the relationships between the population density and the 
covariables at the street scale. The expression can be written as

 is the actual population density at street s, X(s) is a vector representing the covari-
able values, and ��(s) is the error between the actual population density and the pre-
dicted values from the first-level random model.

Because of the existence of spatial dependency, the error from the first-level 
random forest model may still be related to the covariables. Therefore, the second 
random forest model f 2

RF
()  is further selected to model the relationship between 

the error term and the covariables. This error can be expressed as

where ���(s) is the error between the error ��(s) from Eq. (1) and its corresponding 
predicted value from f 2

RF
() at street s. That is, the second random forest model aims 

to predict the error term from the first random forest model. The two-level random 
forest model with the integration of the error compensation can enhance the predic-
tion accuracy by making full use of the characteristics of spatial data. A detailed 
introduction to the two-level random forest model can be found in the related litera-
ture (Yang et al., 2023; Zheng et al., 2016).

(1)Pop(s) = f 1
RF
(X(s)) + ��(s),

(2)��(s) = f 2
RF
(X(s)) + ���(s),

Fig. 3  Flowchart of the two-level random forest model
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In contrast, the spatial distribution of the rural population is relatively simple, and 
the population is usually positively correlated with the number of buildings, whose 
functions are mainly used for living. Therefore, it is reasonable to estimate the popula-
tion density in rural areas based on the areas of the buildings. High-resolution remote 
sensing images have become a useful tool for detecting land use/land cover due to their 
low cost, synoptic view, and repetitive data acquisition (Wei & Yang, 2020). Extract-
ing building objects from high-resolution remote sensing images is not a difficult task, 
especially with the rapid development of deep learning technology. Among many deep 
learning algorithms, the U-Net convolutional neural network, with the advantages of 
fewer training samples and higher segmentation accuracy, are chosen in this research to 
obtain the spatial distribution of building image objects (Kim et al., 2019).

The U-Net convolutional neural network, which are achieved by extending a fully 
convolutional neural network, consist of two parts: an encoder and a decoder (Ron-
neberger et  al., 2015). The encoder consists of four identical encoding blocks. Each 
block contains two convolutional layers with 3 × 3 kernels and a maximum pooling 
layer with 2 × 2 kernels (downsampling). The activation function is ReLU, the feature 
map size is halved, and the number of channels is doubled after each downsampling 
operation. The decoder also consists of four identical decoder blocks. Each block con-
tains two convolutional layers with 3 × 3 kernels and a deconvolutional layer with 2 × 2 
kernels (upsampling), and the result of the deconvolution is stitched with the feature 
map from the corresponding downsampling, followed by two convolutional operations 
with 3 × 3 kernels. The activation function is the same as that of ReLU, with the size 
of the feature map doubled and the number of channels halved after each upsampling 
operation. In the last layer of upsampling, a convolutional layer with a 1 × 1 kernel is 
used to map the feature vectors to the output layer of the network. The structure of the 
U-Net convolutional neural network is shown in Fig. 4 (Pan et al., 2020).

Therefore, the population number N(l) of spatial unit l in street unit r of rural areas 
can be calculated as

where Pop(r) is the total number of street unit r containing the spatial unit l that is 
recorded in the census, and area(r) and area(l) are the total areas of the building 

(3)N(l) = area(l) ×
Pop(r)

area(r)
,

1 64 64

128128

256 256

512 512

1024

1024 512

512 256

256 128

128 64 64 2

conv 3 3 cope and cropmax pool 2 2 up-conv 2 2 conv 1 1

Fig. 4  Structure of the U-Net convolutional neural network
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image objects of the street unit r and spatial unit l, respectively. The population 
numbers of different age groups in each grid can be estimated by the proportion of 
different age groups in each street unit.

Cross-validation was also used to evaluate the prediction results. Assuming 
that the populations of two different street units l1 and l2 are Pop

(
r1
)
 and Pop

(
r2
)
 , 

respectively, the predicted values of Pop
(
r2
)
 can be written as:

where area
(
r1
)
 and area

(
r2
)
 are the total areas of the building image objects. Based 

on the known value Pop
(
r2
)
 and the predicted value P̂op

(
r2
)
 , the prediction accu-

racy for predicting the rural population can be obtained.

A Distance‑based Indicator Considering Heterogeneous Travel Modes 
for Measuring Spatial Accessibility

As mentioned above, spatial accessibility refers to the ability of residents to reach 
COVID-19 vaccination sites. Because different age groups have heterogeneous 
travel modes, a reasonable indicator to measure spatial accessibility should account 
for the comprehensive ability of different age groups to reach COVID-19 vaccina-
tion sites. Consequently, a hybrid time distance considering heterogeneous travel 
modes is presented to measure the spatial accessibility of each age group, and a 
population-weighted proximity indicator is then developed to evaluate the overall 
accessibility.

Travel modes mainly depend on the travel distance or time between the origin and 
destination. The greater the distance between the origin and destination is, the more 
likely the driving mode is to be chosen. The closer the distance is, the more likely 
the walking mode is to be chosen. Assuming that a distance threshold d for each 
individual is defined as the parameter for choosing the travel mode to COVID-19 
vaccination sites, that is, when the actual distance is less than the distance threshold, 
an individual tends to choose the walking mode; otherwise, they choose the driving 
mode (only two primary travel modes, driving and walking, were considered in this 
study). Obviously, the distance threshold is a random variable, which is related to an 
individual’s age, sex, occupation, etc. In this study, it is assumed that the distance 
threshold only varies across different age groups (e.g., children, middle-aged people, 
and older people) and follows a Gaussian distribution for each age group. Therefore, 
the conditional probability density g(d|i) of the distance threshold d for age group 
i (i = 1, 2, and 3 represent children, middle-aged people, and older people, respec-
tively) can be expressed as

(4)P̂op
(
r2
)
= area

(
r2
)
×

Pop
(
r1
)

area
(
r1
) ,

(5)g(d�i) = 1

�(i)
√
2�

e
−

1

2
(
d−�(i)

�(i)
)
2

,
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where �(i) and �(i) represent the mean and standard deviation of the distance thresh-
old for each group, respectively. A survey about travel mode selection was used to 
validate the distribution functions and to estimate the parameters in this research.

For an individual in age group i, assume that the probability p(l|i) for selecting 
the driving mode is dependent on the network distance l; then, a hybrid time dis-
tance HTD(l|i) (i = 1, 2, and 3) with the integration of heterogeneous travel modes 
can be defined as:

where u(i) and v(i) represent the mean speeds of the driving and walking modes for 
different age groups, respectively. By considering that Eq. (5) essentially describes 
the conditional probability of travel mode selection, p(l|i) can be estimated as 
follows:

The hybrid time distance only describes the ability of each group to reach 
COVID-19 vaccination sites. To describe the overall accessibility of residents from 
a certain origin, the population number of different groups should be combined with 
the hybrid time distance. Therefore, based on the hybrid time distance, a population-
weighed proximity indicator is further proposed to measure the overall accessibility 
of each demand point to COVID vaccination sites. The population-weighed proxim-
ity indicator PWP(loc) at location loc can be defined as

where Pop(loc, i) is the total number of group i. Usually, d(loc) represents the near-
est network distance between spatial locations loc and all the COVID-19 vaccina-
tion sites. It is worth noting that for a unit without road coverage, its nearest unit 
with road coverage is first searched based on the Euclidean distance, and the net-
work distance between the unit and the vaccination site is then calculated by the 
sum of the Euclidean distance from the unit to its nearest unit and the network dis-
tance from the nearest unit to the vaccination sites. Compared with the hybrid time 
distance HTD(d, i) , PWP(loc) can represent the impact of the age group on spatial 
accessibility.

(6)HTD(l|i) = p(l|i) l

u(i)
+ (1 − p(l|i)) l

v(i)
,

(7)p(l�i) = ∫
l

−∞

1

�(i)
√
2�

e
−

1

2
(
x−u(i)

�(i)
)
2

dx.

(8)PWP(loc) =
�3

i=1

�
Pop(loc, i)

∑3

i=1
Pop(loc, i)

× HTD(d(loc)�i)

�
,
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Results

The Spatial Distribution of Population at a Fine Scale

First, based on the census statistical yearbook, the study area was divided into 
urban and rural areas at the street scale. For the spatial distribution of the urban 
population, the two-level random forest model was used to directly model the 
relationships between the population density and the covariables at the street 
scale. The covariables include the five land categories, the average nighttime 
light intensity, the average slope, the numbers of the five POI categories, and the 
road network density. Considering that the sample size of urban streets is only 
27, which is too small and is difficult to effectively support random forest model-
ling at the street scale, all samples from urban and rural streets were selected to 
construct the two-level random forest model. Hence, the sample size is 70, which 
is the same as the number of street units. Tenfold cross-validation was applied 
to evaluate the performance of the prediction model. The sizes of the training 
and testing data are 63 and 7, respectively. To validate the effectiveness of the 
two-level random forest model, artificial neural networks (ANNs), support vector 
regression (SVR), and their corresponding two-level ANNs (TL-ANNs) and two-
level SVR (TL-SVRs) were selected to conduct comparative analysis (Deng et al., 
2017; Yang et al., 2018).

The root mean square error (RMSE) and the coefficient of determination (R2) 
were selected to evaluate the prediction accuracy. The statistical results are shown 
in Table 2. For one-level machine learning models, the R2 of 0.83 obtained using 
RF is larger than those of the ANNs and SVRs, which are 0.80 and 0.77, respec-
tively. It can also be found that the R2 values obtained from two-level machine 
learning models (TL-ANNs, TL-SVR, TL-RF) are 0.83, 0.82, and 0.87, respec-
tively, which are larger than those achieved using the one-level machine learning 
models. More importantly, the R2 of TL-RF is the largest among all the com-
parison models. Similar evaluation results can be found by using the RMSE. The 
RMSEs for TL-ANNs, TL-SVR, and TL-RF are 14,663, 15,339, and 12,901, 
respectively, and these values are smaller than those of their corresponding one-
level models. Among all the models, the minimum error was achieved by the 
TL-RF model. The above results indicate that the TL-RF model can accurately 
model the relationships between the population density and the covariables at the 

Table 2  Comparison of the 
prediction accuracy of different 
methods

Method R2 RMSE

ANN 0.80 16,260
TL-ANN 0.83 14,663
SVR 0.77 18,308
TL-SVR 0.82 15,339
RF 0.83 15,411
TL-RF 0.87 12,901
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street scale. The built TL-RF model was then used to predict the spatial distribu-
tion of the urban population of each grid unit with the corresponding covariables.

For the spatial distribution of the rural population, the U-Net convolutional neural 
networks were used to extract the building image objects. This process was directly 
implemented in the software ENVI 5.6. The ROIs (regions of interest) tool was first 
used to generate building image samples or objects. As shown in Fig. 5, the build-
ing image object was labelled as a polygon in red. The total number of samples is 
3,000, and the training samples and test samples account for 80% and 20% of the 
total number of samples, respectively. The kappa coefficient was chosen to evalu-
ate the classification accuracy. The value of the kappa coefficient was 0.93, which 
indicated that the U-Net convolutional neural networks could effectively extract the 
building image objects. The final result of building image objects extracted from the 
whole rural area is shown in Fig. 6. In addition, the areas of building image objects 
and the population number were calculated for each grid unit. According to Eq. (4), 
the R2 and RMSE of the cross-validation results are 0.80 and 9,035, respectively, 
indicating that this method is effective in estimating the rural population. According 
to the age structure of each age group, the numbers of each age group were calcu-
lated. Figure 7 shows the spatial distribution of the total population and three age 
groups in the whole study area.

The Evaluation of Spatial Accessibility

For each age group, 100 samples were collected to obtain the choice of the travel 
modes. The histogram and statistical results of the distance threshold for choos-
ing different travel modes are shown in Fig. 8. The mean distance threshold for the 
children is 14.4 min, followed by the older people (21.3 min) and the middle-aged 
people (29.4 min). Meanwhile, the standard deviations shows the same order. The 
minimum value obtained for the children is 6.5 min, followed by the older people 

Fig. 5  Building image samples 
are in red
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(8.7 min) and the middle-aged people (14.7 min). This indicates that the children 
tend to be driven and that the middle-aged people can tolerate long walks in the 
study area.

Quantile‒quantile plots (QQ plots) were used to verify whether the distance 
threshold distributions of different groups followed a Gaussian distribution. As 

Fig. 6  Spatial distribution of 
building image objects

Fig. 7  Fine-scale population distributions of different groups: a the total population, b the children, c the 
middle-aged people, and (d) the older people
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shown in Fig. 9, the scatter plots in the three subfigures are approximately distrib-
uted near the y = x line, which means that the three groups of samples approximately 
follow a normal distribution. Based on Eq. (5), the conditional probability density 
of the distance threshold for each group can be estimated. Next, according to the 
walking trajectory data, the mean speeds by driving or walking modes for differ-
ent age groups were calculated. As shown in Table  3, the mean speeds of walk-
ing u(i) for the children, middle-aged people, and older people are 2.74, 3.89, and 
3.28 km/h, respectively. The mean speed of driving modes v(i) for all groups is the 
same (40 km/h), which was obtained by the speed limit on the regional roads.

Based on the hybrid time distance and the population-weighted proximity indi-
cator, the final results of spatial accessibility were calculated for each age group 
and the total population at each grid, respectively. Figure 10 shows the spatial dis-
tribution of accessibility. From Figs. 10(a) to (c), it can be found that the spatial 
distribution of accessibility for each group presents almost the same clustering 
patterns. Although the travel modes of these three groups are inconsistent, this 

Fig. 8  Histograms of the distance thresholds for selecting different travel modes for different groups: a 
The children; b the middle-aged people; and (c) the older people

Fig. 9  QQ plots of the distance thresholds for different groups: a The children; b the middle-aged people; 
and (c) the older people

Table 3  Characteristics of travel 
mode for different age groups

Mean speed of different 
travel modes

Group

Children Middle-aged Older

u(i) (km/h) 2.74 3.89 3.28
v(i) (km/h) 40 40 40
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difference does not obviously change the spatial distribution of accessibility. The 
areas with low values of spatial accessibility are mainly located around the vac-
cination sites, while the areas with high values of spatial accessibility are located 
far away from the vaccination sites. This pattern is also shown in Fig. 10(d), which 
describes the weighted accessibility for the total population. Because of the same 
pattern of spatial accessibility for each group, the population-weighted results 
based on Eq. (8) also show the same pattern.

The statistical results of accessibility for each group travel mode are shown 
in Table  4. For the whole study area, the mean and standard deviation of spa-
tial accessibility are 12.09 and 6.65 min, respectively, which are almost the same 
as the values for each group. Overall, there is no significant difference in spatial 
accessibility for different groups in the whole area study. However, according to 
regional statistical data, spatial heterogeneity for the accessibility of each group 
and the total population is shown. As shown in Table 4, for the children, Xiangxi-
ang County has the largest spatial accessibility (13.05 min), followed by Shaoshan 
County (12.66  min), Xiangtan County (12.17  min), Yuhu District (10.27  min), 
and Yuetang District (6.07  min). For the middle-aged and the older groups, the 
order of the mean values of spatial accessibility is similar to that for the children. 
The area with the largest mean value is Xiangxiang County, and that with the low-
est mean value is Yuetang District. According to the population-weighted result, 
Xiangxiang County and Yuetang District correspond to the maximum and mini-
mum values of the overall accessibility, respectively. This shows that residents in 

Fig. 10  Spatial distributions of accessibility for different groups: a children, b middle-aged, c older, and 
(d) the total population
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Yuetang County more easily reach vaccination sites, and residents in Xiangxiang 
County generally need more time to access vaccination sites.

Meanwhile, the standard deviation represents the variability in an area and 
describes the spatial fairness of vaccination sites. For the spatial accessibility of the 
children, the maximum standard deviation is 8.34 min in Shaoshan County, the min-
imum standard deviation is 3.09 min in Yuetang District, and the other three areas 
have similar standard deviations. The standard deviations of spatial accessibility of 
the other two groups have similar patterns. Similar results can also be found in terms 
of the accessibility for the total population. The corresponding standard deviations 
of Shaoshan County and Yuetang District are the largest and smallest, with values 
of 7.85 and 2.76 min, respectively. The standard deviations of Xiangxiang County 
(7.12 min), Xiangtan County (6.03 min), and Yuhu District (6.00 min) are consid-
ered intermediate, and the standard deviation of the overall accessibility in Xiangxi-
ang County is slightly larger than that of the other two counties. This means that 
Shaoshan County is the most unbalanced area of accessibility, and Yuetang District 
is the most balanced area.

Discussion

In this study, a new framework based on fine-scale population distributions and het-
erogeneous travel modes is proposed to evaluate the spatial distribution of accessi-
bility to COVID-19 vaccination sites. Two critical tasks are involved in this frame-
work: one is to obtain the population distribution at a fine scale, and the other is to 
construct a population-weighted proximity indicator with the integration of hetero-
geneous travel modes of different age groups. Xiangtan city, China, is selected as the 
study area. The major findings can be summarized as follows.

First, the divide-and-conquer strategy presented in this research has been proven 
to be effective in estimating the urban and rural population. Specifically, the two-
level random forest model is used to predict the urban population, and the R2 and 
RMSE from this model are 0.87 and 12,901, respectively. The R2 (RMSE) from the 
two-level random forest model is larger (smaller) than those from the comparison 
models, which demonstrates that the two-level random forest model outperforms the 
comparison models, and a more accurate distribution of the urban population has 
been obtained. Considering the positive correlation between population and build-
ing area in rural areas, U-Net convolutional neural networks are used to extract the 
building objects from high-resolution remote sensing images, and the fine-scale 
population in the rural area is predicted according to the building area. The R2 and 
RMSE are 0.80 and 9,035, respectively, which indicates that U-Net convolutional 
neural networks can indirectly obtain a more accurate population distribution in 
rural areas.

Second, the spatial distribution of accessibility to COVID-19 vaccination sites 
for different age groups exhibits a similar pattern. Travel modes are considered to 
be a critical factor in evaluating spatial accessibility. In this study, it is assumed that 
travel modes vary across different age groups. Based on a survey about travel mode 
choice, walking trajectory, and road network, the probability and characteristics of 
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travel modes of different age groups are estimated, and a hybrid time distance is 
then defined to measure spatial accessibility for each age group. Figure 4 shows that 
the spatial distribution of the hybrid time distance is similar in different age groups. 
The areas with low values are mainly located around the vaccination sites, and those 
with high values are far from the vaccination sites. As shown in Fig. 10 and Table 4, 
the probability and characteristics of travel modes vary with different age groups, 
but this difference does not significantly affect the spatial distribution of accessibil-
ity to COVID-19 vaccination sites, and only some local areas show inconsistency.

Third, at the county level, inequity in spatial accessibility to COVID-19 vaccina-
tion sites has been confirmed in the study area. The hybrid time distance is the only 
measure of spatial accessibility for each age group. Therefore, this study further pro-
poses the population-weighted proximate indicator to evaluate the overall accessibil-
ity at a certain grid. By aggregating the grid into county scales, the inequity in the 
overall accessibility is reflected in two levels: intercounty and intracounty. At the 
intercounty level, it generally takes less time for residents in Yutang District to reach 
COVID-19 vaccination sites, while it usually takes longer for those in Xiangxiang 
County. At the intracounty level, Shaoshan County has the largest standard deviation 
of overall accessibility, so it faces serious inequities. The Yuetang District has the 
smallest variation in overall accessibility, which means relative equities in spatial 
accessibility to COVID-19 vaccination sites.

The spatial allocation of medical resources is a significant component of the pre-
vention and control of the COVID-19 epidemic. The ultimate objective for evaluat-
ing spatial accessibility is to provide public health policy-makers with fundamental 
decision information on the spatial optimization of vaccination sites. According to 
the spatial distribution of accessibility to COVID-19 vaccination sites, the inequity 
in spatial accessibility to COVID-19 vaccination sites in the study area has been 
confirmed. Two special areas, namely, Yuetang District and Xiangxiang County, are 
identified as having the maximum and minimum accessibility, respectively, and the 
variations in accessibility in Yuetang District and Shaoshan County also correspond 
to the minimum and maximum values, respectively. Thus, Shaoshan County should 
pay more attention to its relatively low mean and highest variance of spatial accessi-
bility. Improving regional transportation or increasing vaccination sites may be key 
strategies to reduce accessibility inequities.

The population-weighted proximity indicator used to measure spatial accessibil-
ity is only applicable to the travel time distance from the resident’s location (a grid 
unit) to the nearest vaccination cites. Although population distribution informa-
tion has been considered in the proposed indicator, the demand capacity, namely, 
the total population number, is neglected. To further understand the time cost of 
the resident, spatial accessibility with the consideration of the population number or 
the demand capacity is computed. The spatial distribution of the total cost at each 
grid is shown in Fig. 11. The areas with high values of the total cost exhibit obvi-
ous characteristics of the aggregation distribution, which are mainly distributed in 
the urban areas. Rural areas generally correspond to a relatively low total cost. The 
spatial distribution of the total cost is similar to that of the total population shown 
in Fig. 7. Because the total cost comes from the product of spatial accessibility and 
the population in each grid and the magnitude of the population is much higher than 
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that of spatial accessibility, the final total cost is mainly dependent on the total pop-
ulation. Hence, the population distribution should be the most important factor in 
determining the spatial locations of vaccination sites.

On the basis of the “15-min city” (Pinto & Akhavan, 2022) and the threshold 
population density classification (Fujibe, 2012), the grid is divided into four cat-
egories: low accessibility (> 15 min) and low population density (≤ 100 per square 
kilometre), low accessibility (> 15  min) and high population density (> 100 per 
square kilometre), high accessibility (≤ 15 min) and low population density (≤ 100 
per square kilometre), and high accessibility (≤ 15 min) and high population density 
(> 100 per square kilometre). The classification results are shown in Fig.  12. The 
spatial distributions of these four patterns also show aggregation characteristics. The 
areas with high accessibility and high population density are the largest, those with 
low accessibility and low population density are the lowest, and the areas of the 
other two types are between them. Actually, the areas with low accessibility and 
high population density marked in red colour in Fig. 12 need to be areas of focus, as 
it takes more time for a large population to reach vaccination sites. These red areas 

Fig. 11  Spatial distribution of 
the total cost

Fig. 12  Classification of acces-
sibility and population
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are mainly located in Xiangxiang and Xiangtan counties. For these areas, effective 
measures should be taken to improve spatial accessibility to vaccination sites. For 
example, temporary vaccination sites can be added in these areas.

Several limitations need to be pointed out. First, this study did not deeply discuss 
the prediction of population for different age groups at the grid-unit level. On the 
basis of the fine-scale population distribution, the numbers of different age groups 
in each grid were estimated from the proportions of different age groups in the street 
units containing the grid, which have been recorded in the demographic yearbook. 
Therefore, it is assumed that the age structure of the population at each grid in each 
street is consistent. Due to the lack of age-related data at fine spatial scales in this 
research, the above assumption is difficult to test. Therefore, how to estimate the age 
structure at a fine scale is an important part of future work.

Second, the inaccurate road network from OpenStreetMap may lead to inaccurate 
spatial accessibility results. As one of the most successful products of volunteered 
geographic information, OpenStreetMap is mainly contributed by volunteers, most 
of whom are not professionals or are untrained (Muttaqien et al., 2018). Therefore, 
the spatial data quality relevant to the attribute and positional accuracy of OSM data 
is a critical factor that influences the results of spatial accessibility, which should be 
further considered in the future.

Third, due to the limitation of data, this study only considers two types of travel 
modes and simplifies the complex travel modes. At present, bike-sharing is a very 
important travel mode in cities that was not included in the travel time analysis. 
Because of the diversity of driving modes, such as taxis, buses, and cars, how these 
different modes impact the travel time from the resident’s location to the vaccination 
sites is also unknown. Additionally, travel mode selection is only related to the travel 
time and is not involved in cost or group preference. It may be more reasonable to 
combine different factors to determine the selection of travel modes, which should 
be discussed in future work.

Conclusions

The purpose of this study is to evaluate spatial accessibility to COVID-19 vacci-
nation sites based on fine-scale population distributions and heterogeneous travel 
modes. To achieve this objective, the divide-and-conquer strategy is first proposed 
to predict the fine-scale populations of urban and rural areas. This strategy for pre-
dicting the spatial distribution of population can enrich the theory and methods of 
spatial analysis to address spatial heterogeneity. With the integration of heterogene-
ous travel modes of different age groups, a hybrid time distance and a population-
weighted proximity indicator are then defined to measure spatial accessibility to 
COVID-19 vaccination sites for each age group and the total population. The pro-
posed hybrid time and related indicator can be transferred to relevant studies such as 
time geography or human behaviour patterns. Meanwhile, because population distri-
butions or transportation patterns are key elements in evaluating spatial accessibil-
ity, this framework can be used not only to evaluate the accessibility of vaccination 



 W. Yang et al.

1 3

sites but also to analyse the spatial accessibility of other facilities or services, such 
as commercial and sports facilities.

Xiangtan city, China, was chosen as the study area. It can be found that by using 
the divide-and-conquer strategy, a relatively high accuracy of the population data-
set at a fine scale could be generated for the study area. The fine-scale population 
dataset can support relevant research, including urban planning and commercial site 
selection. On the basis of the spatial distribution of the population, the result of spa-
tial accessibility indicates that the spatial distribution of accessibility to COVID-19 
vaccination sites for different age groups exhibits a similar pattern, and inequities in 
spatial accessibility to COVID-19 vaccination sites have been confirmed. In particu-
lar, areas with low accessibility and high population density were identified, which 
can provide policy-makers and planners of public health with important information 
on optimizing the spatial patterns of existing COVID-19 vaccination sites.
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