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Abstract
This paper aims to provide policy-relevant findings that can contribute to the resil-
ience of rural regions by discovering the main individual-level factors related to 
unemployment in those areas through the use of a set of machine learning tech-
niques. Unemployment status is predicted using tree-based classification models: 
namely, classification tree, bootstrap aggregation, random forest, gradient boosting, 
and stochastic gradient boosting. The results are further analyzed using inferential 
techniques such as SHAP value analysis. Results suggest that access to training pro-
grammes can mitigate the labor market inequalities caused by differences in educa-
tion levels, gender, age, alongside with parental education levels. The results also 
show how such inequalities are even larger for various subgroups detected by the 
employed algorithms.

Keywords  Machine learning · Rurality · Unemployment · Youth · SHAP values

Introduction

Rural labor markets are perpetually in transformation, resulting from the incessant 
and rapid evolution of their industrial compositions (Lindsay et al., 2003). Conse-
quently, the ways of approaching the issue of rural unemployment, and the remedies 
proposed, have been context-sensitive. There were times when unemployment in 
rural areas was attributed to drastic changes in seasonality patterns of agricultural 
activities arising from advances in technology and the availability of capital (Gash, 
1935). More recent views on the other hand, have drawn attention to network effects, 
individual employability assets (e.g. basic and key skills, personal characteristics), 
use of ICT, business size, and accessibility constraints posed by the remoteness from 
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urban markets (Lindsay et  al., 2003; McQuaid & Lindsay, 2003; McQuaid et  al., 
2004; Halden et al., 2005; Jones, 2004). Further interest on disadvantages of rural 
populations was rekindled in the recent years due to political outcomes related to 
rural populism which is rooted in the urban-rural disparities and the marginaliza-
tion of rural populations (Wuthnow, 2018; Bernard et al., 2019). However, not all 
rural areas are equally subject to the negative effects of the urban-rural divide. For 
instance, while advanced urbanization benefited rural labor markets that are adja-
cent to cities, remote rural populations were left behind (Bock, 2018; Bernard et al., 
2019). The urban-rural divide has become even more relevant, particularly due to 
the pandemic conditions. For example, a recent study by Türk (2021) shows that the 
digital divide between the rural and urban areas has created unequal access to dis-
tance education opportunities during the COVID-19 pandemic.

Apart from leading to direct negative social effects, rural unemployment also trig-
gers problems indirectly by pushing individuals from rural to urban areas (Zenou, 
2011; Lyu et al., 2019). This phenomenon is particularly pronounced in the case of 
young individuals that face unemployment in rural locations (Cartmel and Furlong, 
2000; Jones, 2004; van Twuijver et al., 2020). The attractiveness of urban areas are 
also a factor for the outmigration of women from rural areas, as the agglomeration of 
industry in large urban areas often creates favorable conditions for female employ-
ment (Özgüzel, 2020; Alonso-Villar & Del Río, 2008). Especially in the global 
North, such population movements are frequently related to the insufficiency of pub-
lic and private services and may lead to depopulation and permanent unemployment 
(Kühn, 2014; Bock et al., 2016; Bock, 2018; van Twuijver et al., 2020). The down-
ward spiral created by the loss of the young labor force often transforms rural loca-
tions into concentrations of older people, leading to further challenges in attracting 
specialist workers (Steiner et al., 2021) Emigration from rural areas, while draining 
out rural economies, may in turn lead to problems related to congestion in urban 
areas. On the other hand, while bringing about a multitude of social consequences, 
unemployment itself is subject to a wide array of socioeconomic factors that range 
from the macroeconomic scale to the personal level. Against the background of such 
a broad spectrum of influences, machine learning (ML) algorithms have emerged 
as techniques that can provide a deeper understanding of sophisticated relationships 
(Athey, 2018; Harding & Hersh, 2018; Mullainathan & Spiess, 2017; Varian, 2014).

Applications of ML models even on the general topic of unemployment are 
rare. Some examples are the studies by Xu et al. (2013), Cook and Hall (2017), and 
Kreiner and Duca (2019) who use techniques such as neural networks and support 
vector machines, among other methods, for predicting unemployment in the USA. A 
similar approach is taken by Katris (2019) who used ML methods to predict unem-
ployment rates in a set of European countries, Gogas et al. (2021) who forecast the 
Euro area unemployment, and the study by Chakraborty et  al. (2020) where a set 
of ML approaches is employed to predict the unemployment rates in seven coun-
tries. In an individual-level study, Montanez and Hurst (2020) used smart meter data 
to predict personal employment status for a set of individuals in Ireland. The pre-
sent study on the other hand, uses five different ML applications for investigating 
the mechanisms behind rural unemployment. To be more precise, rural unemploy-
ment is predicted through the use of stochastic and non-stochastic gradient boosting 
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machines, random forest and bootstrap aggregated algorithms in addition to a simple 
classification tree that serves as a root model for them. The findings of these models 
are further analyzed using an adaptation of Shapley values from cooperative game 
theory, alongside with partial dependence and clustering techniques. The single tree, 
bagging, and random forest models can be considered as providing relatively more 
descriptive results in relation to the research question, while the interpretable tech-
niques that we subsequently employ constitute the empirical side of this paper. The 
aforementioned algorithms allow us to profile the individuals in rural areas who are 
unemployed, through the algorithmic assessment and selection from a large set of 
predictors. Furthermore, this study introduces alternatives to traditional approaches 
(e.g. econometric methods) frequently used in regional economic research, and 
contributes to the presently scarce ML applications in the field. Through the use of 
these techniques, the study aims to explore the individual-level reasons behind rural 
unemployment, assess the size and direction of the effects related to unemployment, 
and identify specific subgroups of individuals that are particularly vulnerable to job 
loss. The study also aims to algorithmically search and discover additional patterns 
in the data that may be of interest in addressing challenges relating to unemployment 
in rural locations.

The rest of this study is structured as follows. “The Data” provides a description 
of the data. “Binary Recursive Partitioning” constructs a classification (decision) 
tree and discusses its findings. “Bagging Prediction and Random Forest” expands 
the analytic work to ensemble models and explains the results of a bagging predic-
tion together with the findings of a random forest implementation. “Non-stochastic 
and Stochastic Gradient Boosting Machine Applications” elaborates on the results 
of additive sequential tree models; that is to say, the gradient boosting algorithms 
(both stochastic and non-stochastic). “Interpretable Machine Learning Applications 
on the Gradient Boosting Results” implements a series of interpretable ML tech-
niques on the results for the purpose of providing more detailed observation-specific 
results. “Concluding Remarks” discusses the conclusions of the study.

The Data

Measuring overall unemployment in rural locations – in comparison to urban areas 
– is relatively problematic, as major rural occupations are often not entitled to unem-
ployment compensation claims which are often used to estimate official rates (Lasley 
& Korsching, 1984). The representativeness of rural data may be further hampered 
by other uncertainties that pertain to the measurement official unemployment rates, 
such as the discouraged worker effect. Furthermore, the commonly used designa-
tion “actively searching for a job” used when classifying the unemployed may result 
in loss information, as employment opportunities are often shared through informal 
networks (Lasley & Korsching, 1984). As a result, understanding the circumstances 
that affect rural unemployment in particular necessitates data at the individual level.

The European Social Survey (ESS) series directed by the European Research 
Infrastructure Consortium (ERIC) collects micro-level data on individual employ-
ment status among other themes. This study uses the eighth round of the ESS survey 
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program (ESS8, 2016). In ESS8, interviewees were asked about their employment 
status. Two of the options presented were related to being unemployed where the 
respondent could specify whether they are “unemployed and actively looking for 
job” or “unemployed, but not actively looking for job.” In order to account for the 
discouraged workers, we merged these two options such that all individuals who 
have given any one of these two answers are categorized as unemployed. As a result, 
the dependent variable is constructed through a binary classification if individuals 
into the “Unemployed” and “Employed” categories. The data set has been subse-
quently limited to include only the individuals aged 15 to 64 (i.e. the working age 
population based on the OECD (2020) definition). Retired individuals are excluded 
from the dataset.

As a means to reduce heterogeneity in the sample that may exist due to signifi-
cant dissimilarities of institutional structures unobserved in the data, the sample has 
been restricted to the EU countries that are included in ESS8, Norway, and the UK. 
Subsequently, the sample is further subsetted so that only the respondents located in 
rural areas are included.

The full ESS8 data set includes a multitude of variables (i.e. features) with com-
paratively very sparse observations, leading to costly limitations on the number of 
individuals that can be included in the analysis. A great number of survey questions, 
which are unfeasible to list within the text of this paper, can be grouped under gen-
eral categories such as: political views, opinions regarding social freedoms, views 
on religion, experiences regarding discrimination, concerns regarding the environ-
ment and climate, alongside of the features selected by the models in the present 
study. Features with missing values greater than 10% have been excluded from the 
analysis, as collectively they rendered the dataset unusable, causing the prediction 
models to drop almost all rows. The ESS8 data also comprises many administrative 
features (e.g. interview duration, edition, production date, etc.), in addition to rows 
corresponding to refusals to respond. Such observations were also removed. Lastly, 
for each categorical predictor, all classifications were encoded as binary features.

The above outlined subsetting stages have reduced the full ESS8 data to a sample 
comprised of 4,622 observations and 958 features. However, as one would expect, 
only a small portion of these observations (about 8%) were in the “Unemployed” 
category. This large imbalance can cause the ML algorithms to be biased towards 
predicting many individuals as “Employed.” This issue has been counteracted by 
including – instead of the total available number – a random sample consisting of 
10% of the employed individuals in the data set, resulting in both a reduction in 
imbalance and an increase in computational efficiency.1 The resulting sample con-
sists of 762 observations and 958 predictors.

Despite the reduction in the full data, the ML models applied in this study analyse 
a large number of variables. We therefore define only the features that are chosen by 
the ML algorithms. The full ESS8 data set, accompanied by the code book for all 
variables is downloadable in the website of the ESS. For comparability, the sample 

1  Searching for the best tuning parameters to be used in the ML algorithms, through running grid 
searches using average home computers, can take several days.
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used in our analysis is available for download.2 In the following sections, a set of 
ML models are employed in order to extract information from the aforementioned 
dataset. In addition to models oriented towards prediction, we also apply model-
agnostic interpretable ML techniques to further elaborate on the result, explore hid-
ded effects, and identify disadvantages faced by subgroups of individuals that may 
be in need of specific policy approaches.

Binary Recursive Partitioning

With the aim of setting a point of departure for the ML models applied in the pre-
sent study, we begin by fitting a classification tree through the application of a 
binary recursive partitioning algorithm on the training data, based upon the Classifi-
cation and Regression Trees (CART) method by Breiman et  al. (1984).3,4 In the 
classification tree, the criterion of impurity for a node j is given by a Gini score 
Gj =

∑K

k=1
pjk(1 − pjk) and pjk =

1

Nj

∑
i∈Dj

1(yi = k) where yi is the observed outcome 
for the i’th individual in the training data (i = 1,...,N), k is the class index, and Dj is 
the set of all individuals that are in the j’th node, and Nj is the number of observa-
tions in j (James et al., 2013; Friedman, 2001).5 At each split, a splitting variable zm 
from the feature space Z = z1,...,zM and m = (1,...,M) alongside with its split value c 
are chosen such that the sum of weighted Gini scores of the nodes produced by the 
binary partitioning are minimized:

where j1 and j2 are the two daughter nodes of j, and N is the number of observa-
tions (Friedman, 2001; James et al., 2013; Breiman et al., 1984). The partitioning 
described in Eq. 1 is not performed if the split does not yield data regions with a 

(1)min
m,c

[
Nj1

(m, c)

N
Gj1

(m, c) +
Nj2

(m, c)

N
Gj2

(m, c)

]

2  For replication purposes, the dataset and the code can be downloaded from the folowing links: https://​
drive.​google.​com/​file/d/​1G14A​Hu12c​8ngLE​RsbyL​7P-​pBT7y​18pxP/​view?​usp=​shari​ng and https://​drive.​
google.​com/​file/d/​1TDTz​HJCNe​Ntj4h​yrcYf​7u0LY​qwhkT​1Df/​view?​usp=​shari​ng. The complete ESS8 
data set and the code book including all feature definitions is available at: https://​www.​europ​eanso​cials​
urvey.​org/​data/​multi​level/​guide/​bulk.​html.
3  The training data corresponds to the randomly sampled 70% of the complete data, and the test data 
consists of the remaining thirty percent.
4  The R functions used in this study are: randomForest by Liaw and Wiener (2002) for random for-
est and the associated proximity matrix, gbm by Ridgeway (2004) for the gradient boosting machine, 
Xgboost by Chen et al. (2015) for the stochastic gradient boosting machine, train by Kuhn (2008) 
for the bootstrap aggregated model, rpart by Atkinson and Therneau (2000) for binary recursive par-
titioning, rpart.plot by Milborrow (2019) for visualizing the classification tree, pdp by Greenwell 
(2017) for the individual conditional expectation graphs, shapforxgboost by Liu and Just (2020), 
and ggplot2 by Wickham (2011) for graphs.
5  Since the dependent variable has a two-class structure, Gj is equal to 2pj1(1 − pj1).

https://drive.google.com/file/d/1G14AHu12c8ngLERsbyL7P-pBT7y18pxP/view?usp=sharing
https://drive.google.com/file/d/1G14AHu12c8ngLERsbyL7P-pBT7y18pxP/view?usp=sharing
https://drive.google.com/file/d/1TDTzHJCNeNtj4hyrcYf7u0LYqwhkT1Df/view?usp=sharing
https://drive.google.com/file/d/1TDTzHJCNeNtj4hyrcYf7u0LYqwhkT1Df/view?usp=sharing
https://www.europeansocialsurvey.org/data/multilevel/guide/bulk.html
https://www.europeansocialsurvey.org/data/multilevel/guide/bulk.html
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total Gini score that is lower that the Gini value for the observations in Dj (James 
et al., 2013; Friedman, 2001; Breiman et al., 1984).6

A full tree produced in this manner may overfit the data and lead to poor out-of 
sample predictions (James et al., 2013). To cope with this problem, the complexity 
of a classification tree is penalized through the application of a K-fold cross-valida-
tion process.7 Based on the descriptions by Friedman (2001) and James et al. (2013) 
and Sutton (2005) this process can be summarized along the following lines: also 
referred to as “cost complexity pruning” or “weakest link pruning” the complexity 
reduction process is initiated by the generation of an unrestricted classification tree 
R and a series of nested subtrees r ⊆ R where the complexity level of each r is rep-
resented by the parameter γ ≥ 0. Greater values of γ indicate lower tree complexity 
such that in fact each subtree of R is in turn also nested in the immediate more com-
plex subtree. Following the random partitioning of the training data into Q equally 
sized folds (q = 1,...,Q), the prediction is performed Q times by using each q inter-
nally as the validation set in each q’th round. The parameter of complexity γ corre-
sponding to the lowest weighted aggregate misclassification error contingent on γ|r| 
(the penalizing term) is determined for each r where |r| is the number of the leaves 
of the classification tree (i.e. the number of terminal tree nodes j̄):

where Eq(γ) expresses the error of subtree r in predicting the observations in fold 
q using all other Q − 1 folds adjusted by the complexity of r, k∗

j̄
 is the class that is in 

majority in the terminal node j̄ , 1 denotes the indicator function, and j̄ = {1, ..., |r|} . 
Next, the complexity-adjusted subtree errors are averaged for each level of γ over the 
Q predictions performed on the left-out folds. The γ value indexing the r’th subtree 
with the lowest complexity-adjusted error is:

Finally, from among the initially generated subtrees using the full training data, 
the subtree r∗ ⊆ R with a corresponding complexity value γ = γ* is used as the final 
tree model. (Friedman, 2001; Sutton, 2005; James et  al., 2013).8 In addition, the 
maximum depth of a node, and the minimum size of a node are determined through 
a grid search process.9 As a consequence, a tree with a maximum node depth and a 

(2)
Eq(𝛾) =

∑�r�
j̄
ej̄

Nj̄

N
+ 𝛾�r�

where ej̄ =
1

Nj̄

∑
i∈Dj̄

1(yi ≠ k∗
j̄
)

(3)�∗ = argmin
�

�
1

Q

∑L

q=1
Eq(�)

�

8  It is possible that the cross-validation may indicate that the optimal tree is the unrestricted R (i.e. γ|r| 
= 0 in Eq. 2). Therefore, the set of subtrees is expressed as “ r∗ ⊆ R ” as opposed to “r*⊂ R” (James et al., 
2013).
9  The depth and size parameters were iterated by increments of 1 in a range of two to twenty.

6  If z is a categorical feature, c separates the variable into classes or sets of classes.
7  In order to avoid confusion with the class index which is also denoted by k, we index the number of 
data folds in the cross-validation step by q. The term “internal” is used to distinguish a given fold q from 
the test data which is left out earlier.
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minimum node size of 5, and a γ parameter of 0.02 is grown. The test data accuracy 
of the resulting classification tree is 61%.

The predictors selected by the binary recursive partitioning algorithm are defined 
in Table 1, and the classification tree is shown in Fig. 1. For each terminal node, the 
share of the predicted category is displayed. The single tree is dominated by predic-
tors related to education. Individuals in rural areas who have taken steps to improve 
their skills and knowledge – such as by attending courses and training programs 
(represented by the variable atncrse) – are predicted to be employed. Alongside 
attendance to such activities, results imply that the skills and knowledge needed for 
employment may be transferred through personal relationships; an individual is pre-
dicted to be employed if the level of education of her/his father (eiscedf) is at 
least “upper secondary.” This is not an implausible finding; Lindsay et  al. (2003) 
note in their interview-based study that the work record of an individual’s father 
– which may also be linked to his level of education – can be a very important deter-
minant of employment status in remote rural labor markets. For the group of indi-
viduals whose fathers are less educated (i.e. eiscedf< 3) only those with mini-
mum nine years of education who hold at least an advanced vocational degree are 
predicted as employed.

While the above initial findings related to training and education may seem triv-
ial, they are particularly relevant in the rural context. Chandler (1989) and Cartmel 
and Furlong (2000) had highlighted the insufficiency of training facilities, specifi-
cally for young individuals, in selected rural locations in England and Scotland 
respectively. Bock (2004) on the other hand, shows how women in particular are 
affected by the inadequacy of training opportunities in rural Europe. The ML tech-
niques presented in the following sections, particularly the interpretable ML meth-
ods, discover and assess the effect directions and sizes of a larger set of features and 
examine the interactions between them.

Bagging Prediction and Random Forest

The sole tree presented in Fig. 1 is merely one possible representation of the mul-
titude of classification trees used either in an ensemble or a sequential manner by 
the more sophisticated ML algorithms employed in the present study. This process, 
however, can yield very dissimilar trees when the underlying data set is modified 
(e.g. by resampling the training and test samples), and leave out important predic-
tors if there is a high degree of correlation among the features (Athey and Imbens, 
2019; James et  al., 2013). In a bagging prediction, developed by Breiman (1996) 
and also called the bootstrap aggregation algorithm, multiple classification trees are 
combined. This is done by drawing, with replacement, a large number of random 
samples from the training data and constructing a corresponding classification tree 
t for each of those T samples (1,...,T). The bagging prediction for individual i is the 
majority vote of the ensemble made of T classification trees. The optimum num-
ber of trees (T) is determined by using the estimate for the classification test error, 
calculated through the prediction of out-of- bag (OOB) observations corresponding 
to each t (James et al., 2013). We have identified the number of trees that yield the 
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lowest classification test error as 16 after making bagging predictions that consist of 
minimum 10, and maximum 500 classification trees. The accuracy of this bagged 
model is 63.5%.

The bootstrap aggregation method can be also used to calculate the variable 
importance values. The overall decrease in node impurity resulting from the usage 
of a given predictor as the splitting feature, presented in Eq. 4, is averaged over the T 
trees and scaled into an interval ranging from 1 to 100 (James et al., 2013):

where Gj is the Gini value of the parent node. The most important 20 predic-
tors identified by the bootstrap aggregation algorithm and their definitions are pre-
sented in Fig. 2a and Table 2 respectively (the variables already defined in “Binary 
Recursive Partitioning” are not included). The findings of the bagged prediction 
is discussed in combination with the results of the below outlined random forest 
application.

The random forest algorithm developed by Breiman (2001) instills extra random-
ness into each tree – in addition to the random sampling employed by bagging – for 
the purpose of reducing the correlation between the trees in the ensemble (James 
et al., 2013; Friedman, 2001). When the splitting of a node is attempted in a ran-
dom forest tree, the set of variables considered is restricted to a random subset L ⊂ 
Z, and |L| is generally taken as 

√
�Z� in the classification context (Friedman, 2001; 

Breiman, 2001). Our random forest algorithm (with 500 trees) performs with an 
accuracy level of 65%. The variable importance degrees are presented next to those 
of the bagging prediction in Fig. 2b. While random forest and bagged predictions 
confirm the importance of training and education related factors, both models high-
light the role of age in predicting rural unemployment. For the bootstrap aggregation 
algorithm, the age of an individual has been the predictor that provides the high-
est reduction in node impurity. The random forest application on the other hand, 
also reports age as one of the top predictors. In general, the two ensemble learning 
methods provide further information on several other features that were not selected 
by the classification tree. For instance, a person’s opinions on the importance of 

(4)ΔG = Gj −
[
Nj1

N
Gj1 +

Nj2

N
Gj2

]

atncrse < 2

eiscedf >= 3

eduyrs >= 9

eisced >= 5

 >= 2

 < 3

 < 9

 < 5

Emp
0.73

Emp
0.65

Emp
0.63

Unemp
0.60

Unemp
0.84

Fig. 1   Individual Classification Tree
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being creative, the number of people in the household, and being residents of Italy 
or Spain are also important predictors. Regarding the findings on Italy and Spain, 
partial dependence plots suggest that individuals in the rural areas of these countries 
are more likely to be unemployed.10

Further information can be harnessed from the random forest results by gener-
ating a matrix of proximities between observations and plotting these proximities 
in reduced dimensional forms (Friedman, 2001; Breiman and Cutler, 2020). The 
employment status of the individuals that are excluded from a given classification 
tree t within the random forest (i.e. those that are the OOB observations for tree t 
as outlined earlier) are predicted by t, and each time in an iteration t the predicted 
outcomes of two OOB observations i and l (l = 1,...N, i≠l)11 fall into the same ter-
minal region Dl̄,t , the element ail of the initially zero N × N matrix A is increased 
by 1 (Friedman, 2001; Breiman & Cutler, 2020; Aldrich & Auret, 2013). A is sub-
sequently divided by the number of trees in the random forest |T| and expressed in 
terms of dissimilarities in the form of a matrix P= 1 −A (Aldrich & Auret, 2013). 

(a) Bootstrap Aggregation
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Fig. 2   Variable Importance Plots

10  The partial dependence plots for these variables are not reported in this study and can be provided if 
requested.
11  The second observation is indexed by l instead of the convenient j for avoiding confusion with the tree 
nodes j.
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The visualization of the information contained in P in lower dimensions (typically 
three or two) is done through metric multidimensional scaling (Friedman, 2001). 
The resulting “random forest proximity plots” are presented in Fig. 3a and b in two 
and three dimensions respectively. In the proximity plots, the darker circles indi-
cate the unemployed individuals vis-à-vis the lighter colored which indicate the 
employed persons. The larger a circle, the older is the corresponding individual. 

(a) Two Dimensions

(b) Three Dimensions

Fig. 3   Proximity Plots: Random Forest
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Visualizing proximities between observations as outlined above also allows for the 
detection of clusters (Friedman, 2001; Aldrich & Auret, 2013). Both proximity plots 
suggest that the random forest algorithm has been able to separate the two categories 
to a certain extent; clusters of unemployed individuals are hinted on the left-hand-
sides of both plots.

Non‑stochastic and Stochastic Gradient Boosting Machine 
Applications

The ensemble methods presented in the previous section uncovered useful informa-
tion on rural unemployment using information from large collections of separately 
grown trees. Sequential models on the other hand, allow the classification trees to 
learn from past prediction errors. Two sequential models that we apply in this study 
are the gradient boosting machine (GBM) developed by Friedman et  al. (2001), 
and its extension, the stochastic gradient boosting machine (GBMS), established by 
Friedman (2002). The gradient boosting algorithms differ from the random forest 
and bootstrap aggregation models by growing the trees sequentially and attributing 
greater weights on individuals whose employment status were previously misclassi-
fied. Following Friedman (2001) and Friedman (2002) and Friedman et al. (2001), 
we construct a sequence of gradient boosted trees and compute the final predictions 
by implementing the following procedure: Firstly, the negative likelihood of the 
loss function L(yi,f(Z)) is minimized with respect to the logarithm of odds of being 
unemployed f(Z), and the resulting value is used as the approximation of the initial 
ŷi,t for all i individuals collectively:

To allow a gradient boosted tree t belonging to sequence 1,...,T to partially cor-
rect the errors made by its preceding counterpart t − 1, the errors of the latter is 
expressed in the form of pseudo-residuals 𝜖it for each person i in the training data:

Subsequently, a regression tree is fitted to predict the pseudo-residuals.12 The tree 
generates terminal nodes j̄ comprised of the residuals of all i individuals Zi ∈ Dj̄ . 
The output of a terminal node 𝜖j̄r is given by Friedman (2001) and Friedman et al. 
(2001):

(5)ŷi,1 = argmin
f (Z)

∑N

i=1
L(yi, f (Z))

(6)�it = −

[
�L(yi, f (Zi))

�f (Zi)

]

f=ft−1

for i = 1, ...,N

12  As opposed to a classification tree, the binary criteria used in the recursive partitioning steps per-
formed by a regression tree is often a loss function with a squared error form instead of node impurity. 
Regression trees, not covered in the present study, are formulated by Breiman et  al. (1984) within the 
CART structure alongside with classification trees.
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Using the predicted errors of the previous tree, the subsequent tree then learns, to 
some degree, from the predictions ft− 1 made in the previous iteration, and revises the 
predictions for individual i accordingly:

where the degree of learning, also referred to as the learning rate, is denoted by α, 
such that 𝛼𝜖j̄r is the improvement made by tree t on the predictions of tree t − 1, and 1 
is the characteristic function (Friedman et al., 2001; Friedman, 2001). The adjustment 
done by tree t is itself limited (0 < α < 1) as improvements of a given tree may also be 
subject to errors. In fact, a low α combined with a large number of sequential trees is 
shown to improve predictions (Friedman, 2001; Friedman et al., 2001). We implement 
the GBMS model using the programming enhancements provided in the Extreme Gra-
dient Boosting Machine algorithm (Xgboost) developed by Chen et al. (2015) which 
enables the user to introduce further regularization (such as pruning) of the classifica-
tion trees as outlined in “Binary Recursive Partitioning”. Xgboost also makes it pos-
sible for the GBM to incorporate additional stochasticity through the selection of a ran-
dom sample when constructing each tree in addition to selecting a random subset of 
variables X ⊂ Z at each binary split in each tree in the sequence, similar to the random 
forest approach.

In order to cope with potential overfitting caused by too complex trees, Friedman 
(2002) suggests the usage of a learning rate (i.e. shrinkage parameter) of 0.005, a ran-
dom sample proportion of 50%, and maximum number of leaves (terminal nodes) of 
6. In addition, we limit the predictors considered at each split to a subsample corre-
sponding to 50% of the full set of features, set the minimum Nj̄ to 5, and the maximum 
iteration number to 5000. The resulting GBM and GBMS algorithms are 66.2% and 
61.4% accurate in predicting the employment status of the individuals in the test data. 
Figure 2c and d present the variable importance levels assessed by the two models. 
The sequential learning results are fairly consistent with those of the earlier applied 
ensemble tree algorithms. The variables pertaining to education related variables and 
age are selected as top predictors by both the GBMS and the GBM. However, the vari-
able importance values presented in the previous sections provide information only on 
the importance of a feature for achieving the best possible predictions, and they do not 
provide information on how age, education, or any of the remaining features are related 
to employment status. In this regard, we elaborate on the relationship between a feature 
and the predicted employment status using partial dependences (Friedman, 2001) and 
Shapley value methods in the next section.

(7)𝜖j̄r = argmin
𝜖

∑
zi∈Dj̄r

L(yi, ft−1(Zi) + 𝜖)

(8)ŷit = ft−1(Zi) + 𝛼𝜖j̄r1(Zi ∈ Aj̄r)
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Interpretable Machine Learning Applications on the Gradient 
Boosting Results

Interpretable ML methods allow us to retrospectively understand how a variable is 
related to the outcome after the predictions are generated. We examine our results 
using partial dependences, conditional expectations, and Shapley values. The first 
of these approaches, the partial dependence plots, are constructed for typically two 
variables at most by grouping the features of interest ZC and the remaining variables 
ZS separately in the training data and computing:

where the Zi,S are values of variables in ZS that remain constant, and predictions 
fC(ZC) are redone for each feature value in ZC and averaged over individuals i (Fried-
man, 2001; Aldrich and Auret, 2013). While useful as a basic look at relationships 
between input variables and the outcome, this approach can result in implausible 
implications for features strongly correlated with variables in ZS (Friedman, 2001; 
Molnar, 2019). An additional shortcoming of the partial dependence approach is 
that the partial effects are averaged, and therefore, individual patterns cannot be 
observed (Molnar, 2019). As formulated by Goldstein et  al. (2015), the disaggre-
gation of the global partial dependence for a feature and plotting the conditional 
expectations for each observation i yields Individual Conditional Expectation (ICE) 
plots where the heterogeneity across the individuals in the training data can be visu-
alized (Goldstein et al., 2015; Molnar, 2019). However, stacked ICE curves for all 
individuals i in the training data will have separate intercepts. The expression can 
become visually more informative with regards to the heterogeneity of the effect of 
the variable of interest for different individuals upon centering all the ICE curves fi,C 
at a particular anchor point z*, and therefore, removing the variation in levels caused 
by the different Zi,S values by plotting the centered individual conditional expecta-
tions f centered

i,C
 (Goldstein et al., 2015; Molnar, 2019):

Figure 2 displays the centered individual conditional expectation (ICE) graph 
based on the GBMS model for the feature agea, alongside with the two-way 
partial dependence plot (PDP) for agea and eduyrs.13 Figure 4a indicates that 
the probability of being unemployed is on average lower for middle-aged per-
sons (shown by the red partial dependence curve), compared to the individuals 
aged between 16-22 which is within the range defined by the OECD (2020) for 
youth unemployment (15-24). The probability of unemployment further drops for 
the individuals between the ages of about 50 and 60. The black ICE curves on 
the other hand, imply considerable heterogeneity. This observation is an expected 

(9)fC(ZC) =
1

N

∑N

i=1
f (ZC, Zi,S)

(10)f centered
i,C

= fi,C − f (z∗, Zi,S)

13  Partial dependence plots are developed by Friedman (2001), and the individual conditional expecta-
tion plot is developed by Goldstein et al. (2015).
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outcome; our ML models precisely address this situation among other issues, by 
allowing for all possible interactions in the data. The bright yellow pixels in the 
two-way PDP in Fig. 4b represent high probabilities of employment, and are con-
centrated mostly around the areas that correspond to middle-aged individuals (up 
to around age 60) and to durations of education that are, approximately, higher 
then 10 years.

The Shapley Additive Explanation (SHAP) method is a novel approach 
adapted into the machine learning framework by Lundberg and Lee (2017) based 
on the use of Shapley values from cooperative game theory developed by Shap-
ley (1953). The SHAP approach is able to summarize both the sizes and the 
directions of the effects of each feature for each data instance. In this regard, the 
framework presented by Lundberg and Lee (2017) can be summarized as follows: 

(a) Age

(b) Age and Years of Education

Fig. 4   Individual Conditional Expectation Plots: Stochastic Gradient Boosting
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the contribution of the value v of a given variable zm to the deviation of the pre-
dicted outcome from the average, for the i’th individual, is denoted by ϕv and 
computed as

where S is a subset of variable values from the features for observation i which 
are to be held constant, while multiple GBM predictions for i are calculated by 
replacing the features except those in S by randomly drawn observations from the 
training data, and subsequently calculating the deviation of the expected value for 
individual i from the average prediction (Lundberg & Lee, 2017; Molnar, 2019).14 
More specifically, this step is performed by the function g as follows:

whereas in the term g(S ∪{v}) in Eq. 11 the actual feature value for observation i 
is preserved alongside with those in S, and the step is repeated for all possible com-
binations that can produce a subset S ⊆ Z�{v} and averaged over all the combina-
tions (Molnar, 2019). As Štrumbelj and Kononenko (2013) and Molnar (2019) point 
out, calculating multiple predictions with v versus with a randomly drawn v for all 
combinations |S|!(|Z|−|S|−1)!|Z|!  is computationally very inefficient. An approximation of 
the SHAP value for individual i is formulated by Štrumbelj and Kononenko (2013) 
and is presented in Eq. 13:

where the outcome for the i’th individual ( f ∗(ŷ(i)b
+v
) ) is predicted by replacing 

a random subset of the variable values for this person while preserving its specific 
true feature value v (hence the subscript + v). The prediction is repeated, but this 
time the value of the variable of interest, v, is also replaced by the corresponding 
value of the randomly drawn observation l, and this predicted outcome f ∗(ŷ(i)b

−v
) 

is subtracted from the prediction that preserves the true v. The difference between 
the predicted outcomes for person i with and without v is computed in this rand-
omized fashion B times (b = 1,...,B) and the average 𝜙̄v is calculated (Molnar, 2019; 
Štrumbelj & Kononenko, 2013). All SHAP outcomes in the present study computed 
using the R package SHAPforxgboost (Liu & Just, 2020) which also calculates 
the global SHAP importance levels for every feature and observation by aggregating 
the absolute SHAP values for a given feature v for all i and the variables in Fig. 5 are 
ordered based on their SHAP importance levels computed as (Molnar, 2019):

(11)𝜙v =
∑

S⊆Z�{v}

|S|!(|Z| − |S| − 1)!

|Z|!
[
g(S ∪ {v}) − g(S)

]

(12)g(S) = ∫ f (Z)dPz∉S − E(f (Z))

(13)𝜙̄v =
1

B

∑B

b=1

[
f ∗(ŷ(i)b

+v
) − f ∗(ŷ(i)b

−v
)
]

14  The cardinality of Z as denoted in Eq. 11 is an alternative way to express the total number of features 
M as defined in “Binary Recursive Partitioning” (|Z| = M).
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Figure 5 visualizes the resulting SHAP values of each feature and person. Each 
individual in the training dataset is represented by a color-filled circle where 
darker circles indicate a higher v (for binary values only two colors are used). 
The x-axis values indicate the SHAP values. As in all previous importance plots, 
we report the features with the highest importance scores. In addition to the fea-
tures selected by the earlier presented models, the SHAP procedure identifies 
dvrcdeva, a binary feature indicating whether the respondent has ever divorced 
or had a civil union dissolved, as a relevant variable. Consistent with the earlier 
findings, the SHAP results suggest that age is a major determinant of rural unem-
ployment. A cluster of light colored circles to the far right in the row for agea 
(the first row in Fig.  5) indicate that young age has contributed strongly to the 
prediction of uneemployment for those individuals. The SHAP plot also shows 
that individuals with children at home (chldhm) – represented by light colored 
circles – are less likely to be unemployed. However, it is possible that this fea-
ture captures the effect of age, as middle-age individuals whom we predict to be 
mostly employed are more likely to have children at home compared to younger 
or older persons. The findings also suggest that individuals who work in the pri-
vate sector (those represented as dark circles in the pfirm row) are more vulner-
able to job loss compared to people who are working in the private sector or are 
self-employed. We also observe that the highest level of education of a person’s 
father (eiscedf) contributes to the prediction of lower-than-average unemploy-
ment probabilities in accordance with our previous results. The SHAP values also 
underline the disadvantages faced by women in rural labor markets, as gender has 

(14)Φv =
∑n

i=1
|�i,v|

Fig. 5   SHAP Values - Extreme Gradient Boosting Machine
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contributed positively to the prediction of unemployment for female respondents. 
One of our main variables of interest that was highlighted by the previous mod-
els is atncrse which indicates whether the respondent took steps to improve 
her/his knowledge and skills by attending a course, lecture, or a conference. The 
SHAP values show that attending such activities lowered the probability of being 
unemployed (circles marked with light colors).

Instead of assessing the above mentioned major effects in isolation, we examine 
SHAP interaction plots in Fig. 6 (Molnar, 2019; Liu & Just, 2020).15 In panel (a) of 
Fig. 6 the persons who have not attended a course, lecture, or a conference are rep-
resented as dark circles while those who did are marked in light colors. We observe 
that the SHAP value of this variable is positive if the person did not attend such 
an activity (adds to the prediction of a person’s status as unemployed) and nega-
tive otherwise. A slight divergence between the two groups is suggested to exist as 
age increases, indicating that such additional/complementary training activities are 
more important for older individuals with regard to their employment probabilities. 
In panel (b), we see that high levels of education (dark colors) yield negative SHAP 
values, where low levels yield positive SHAP values (i.e. increase the prediction of 
unemployment). Intermediate levels of education, on the other hand, do not seem to 
have strong effects. The impact of the level of education depends on age, as the dis-
crepancies are larger for middle aged individuals, whereas they are less pronounced 
for younger and older groups.

Fig. 6   SHAP Interaction Plots - Extreme Gradient Boosting Machine

15  A low degree of jitter is used in the plots for better readability.
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In panel (c), persons who work in private firms are represented with dark colors, 
and those who work in the public sector, or are self-employed are shown in light 
colors. We observe that people who are employed in private firms are particularly 
vulnerable to unemployment, and that this vulnerability is a higher concern for mid-
dle-aged persons. We also observe a similar result for gender, as shown in panel (d) 
where dark colored circles represent females and light colors represent males. The 
plot suggests that being female makes a big difference as the SHAP values of women 
are all above zero. This difference begins to narrow to some extent for persons older 
than 50 years old. People without children are attributed higher SHAP values (panel 
(e)), but as earlier noted, this finding may also be capturing the effect of the vari-
able age. Finally, panel (f) shows how a persons own education interacts with the 
father’s education level which was observed to be an important feature yielding high 
SHAP values. Persons with low levels of father’s education (light colors) have posi-
tive SHAP values, but this disadvantage in the labor market is mitigated to some 
extent as the person’s own education level increases.

Finally, the SHAP force plot (Molnar, 2019; Liu & Just, 2020) presented in Fig. 7 
shows that the top 20 variables with the highest SHAP importance levels account for 
most of the variation in the SHAP value calculations for each individual (observa-
tion) represented by a bar. The additive contribution to the individual specific SHAP 
value of all remaining features for a given person is grouped under the category 
“rest_variables” and shown in bright yellow. The force plot suggests that reporting 
the top 20 variables has been a reasonable approach in our models.

Concluding Remarks

As an issue that is hard to detect, poverty and unemployment in rural areas attracts 
relatively less political interest in Europe (Chandler, 1989; Bernard et  al., 2019). 
This being said, unemployment in rural Europe has often been identified as a 

Fig. 7   SHAP Force Plot - Extreme Gradient Boosting Machine
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persistent problem particularly for young individuals (Philip & Shucksmith, 2003; 
Unay-Gailhard, 2016).

This study provided new evidence with regard to the recent state of rural unem-
ployment in Europe by using up-to-date statistical learning methods. In particular, 
the research question has focused on understanding who are the individuals facing 
difficulties in finding jobs in rural locations, and why they are unemployed while 
others are not. The results suggest that issues related to lack of adequate training 
and education opportunities, and youth unemployment in rural areas – highlighted 
over the decades in many studies – still persist. In addition to features related to age 
and education, the algorithms have selected other predictors related to a person’s 
character and household attributes. Further, in depth empirical assessments of the 
findings showed that persons who come from lower educated families (as shown 
by the father’s education variable), face difficulties in becoming competitive in the 
labor market, and even for those who have high levels of education themselves this 
disadvantage is not reduced sufficiently. This result may be related to personal net-
works and connections which may be weak for even educated persons in rural areas 
if their fathers, due to low education, were excluded from such circles. Therefore, 
policies that aim to increase the inclusiveness of children of disadvantaged families, 
by increasing their chances to match with available jobs in the rural labor markets 
may present benefits.

We have also observed that while attending complementary training activities 
are particularly helpful for reducing a person’s probability to be unemployed, some 
evidence suggests that elderly people may benefit the most from such activities. 
Whereas the general level of education affects employment status, the effect is much 
more noticeable for persons roughly above the age 30 and below 50 years old. This 
implies that education does not necessarily provide a way out of unemployment for 
persons younger that 30 years old, and that the benefit of having a higher level of 
education is limited for younger persons. The employment discrepancies become 
particularly pronounced in the case of women, who face clear disadvantages. Estab-
lishing or enhancing job placement assistance programs for young persons and 
women in rural areas may potentially generate welfare-increasing outcomes. We 
also observe that job security is a concern particularly for persons working in private 
firms as they are more prone to become unemployed compared to other groups (this 
finding is especially relevant for middle-aged persons). Therefore, legal improve-
ments aimed to increase job security levels in rural markets may provide further 
ameliorations to the living standards of the rural workforce. Finally, some country-
level effects are found (such as for the cases of Italy and Spain) which call for thor-
ough case studies on the rural labor markets in these countries.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
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