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Abstract
The identification of seriously infected areas across a city, region, or country can 
inform policies and assist in resources allocation. Concentration of coronavirus 
infection can be identified through applying cluster detection methods to coronavi-
rus cases over space. To enhance the identification of seriously infected areas by rel-
evant studies, this study focused on coronavirus infection by small area across a city 
during the second wave. Specifically, we firstly explored spatiotemporal patterns of 
new coronavirus cases. Subsequently, we detected spatial clusters of new corona-
virus cases by small area. Empirically, we used the London-wide small-area cor-
onavirus infection data aggregately collected. Methodologically, we applied a fast 
Bayesian model-based detection method newly developed to new coronavirus cases 
by small area. As empirical evidence on the association of socioeconomic factors 
and coronavirus spread have been found, spatial patterns of coronavirus infection 
are arguably associated with socioeconomic and built environmental characteristics. 
Therefore, we further investigated the socioeconomic and built environmental char-
acteristics of the clusters detected. As a result, the most significant clusters of new 
cases during the second wave are likely to occur around the airports. And, lower 
income or lower healthcare accessibility is associated with concentration of corona-
virus infection across London.
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Introduction

To contain the spread of coronavirus, governments implemented stay-at-home 
policies and social distancing measures. The closure of public places (e.g., pubs, 
bars, schools, etc.) and working from home prevent the spread of coronavirus 
among people. The identification of seriously infected areas across a city, region, 
or country can inform policies and assist in resources allocation. Concentration of 
Coronavirus infection can be identified through applying cluster detection meth-
ods to coronavirus cases over space. With the outbreak of global coronavirus pan-
demic, georeferenced coronavirus cases are being reported on a regular basis. To 
protect patient privacy, coronavirus cases are not released at the individual level. 
Instead, coronavirus cases are aggregated into areal units (e.g., neighborhoods/
districts, towns/cities, provinces/states, countries, etc.) before being released. 
Recently, aggregate-level coronavirus cases by small areas are available in some 
countries or regions. Therefore, small-area coronavirus cases enable researchers 
to better explore spatial patterns of coronavirus infection and model spread of 
coronavirus over space and time. On the one hand, some studies performed spa-
tial analysis of coronavirus cases across a country (e.g., Adekunle et  al., 2020; 
Guliyev, 2020; Huang et  al., 2020; Mollalo et  al., 2020). They explored spatial 
variations of coronavirus infection rate in relation to socioeconomic and envi-
ronmental factors across China (e.g., Guliyev, 2020; Huang et al., 2020), United 
States (e.g., Mollalo et al., 2020), and Africa (e.g., Adekunle et al., 2020). And, 
city-wide studies of coronavirus cases and deaths by small areas have been con-
ducted as well (e.g., Cordes & Castro, 2020; Harris, 2020). On the other hand, 
some scholars modelled the dynamic spread of coronavirus according to travel 
patterns of people across China (Zheng et  al., 2020), Italy (Gatto et  al., 2020), 
and U.S. (Velásquez & Lara, 2020). As most of the relevant studies used the coro-
navirus case data collected between February and April when mass testing was 
not available, their findings are of some potential bias.

Moreover, the identification of areas seriously infected by coronavirus had 
been conducted by some studies (Desjardins et al., 2020; Hohl et al., 2020). Hohl 
et  al. (2020) and Desjardins et  al. (2020) had applied a spatio-temporal clus-
ter detection method (i.e., Kulldorff’s prospective space–time scan statistic) to 
county-level coronavirus infection across U.S. To enhance the identification of 
seriously infected areas, we further focused on coronavirus infection by small area 
across a city during the second wave. Specifically, we firstly explored spatiotem-
poral patterns of new coronavirus cases. Subsequently, we detected spatial clus-
ters of new coronavirus cases by small area. Empirically, we used the London-
wide small-area coronavirus infection data aggregately collected. And, the data 
collected since June is of higher quality than those collected before June. Since 
mass testing is available for London since June, number of confirmed cases after 
June is more reliable than that before June. Methodologically, we applied a fast 
Bayesian model-based detection method newly developed (Gómez-Rubio et  al., 
2018) to new coronavirus cases by small area due to its advantages: mode-based 
approach accounting for covariates and the application of a fast approximation 
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method (integrated nested Laplace approximation) instead of conventional one 
(Markov chain Monte Carlo methods). Gómez-Rubio et al. (2018) extend previ-
ous work (e.g., Jung, 2009) to cope with new problems and provide a new way of 
assessing cluster significance and importance by means of a more general model 
selection criteria. As empirical evidence on the association of socioeconomic fac-
tors and coronavirus spread have been found (e.g., Adekunle et al., 2020; Cordes 
& Castro, 2020), we could speculate that spatial clusters of coronavirus infection 
might be associated with socioeconomic and built environmental characteristics. 
Therefore, we further investigated the socioeconomic and built environmental 
characteristics of the clusters detected. Compared to relevant studies (Desjardins 
et al., 2020; Hohl et al., 2020), this study made new contributions as follow: (1) 
usage of more reliable data collected when mass testing is available; (2) applying 
a new and faster cluster detection method which can further incorporate covari-
ates into the cluster detection; and (3) a city-wide study of coronavirus infection 
by small area.

Materials and Methods

Research Data

The coronavirus case count by small area is available for the UK (https://​coron​avi-
rus.​data.​gov.​uk/​detai​ls/​cases). The data offer monthly number of new coronavirus 
cases by Middle Layer Super Output Areas (MSOAs). Figure 1 maps 4-month new 
coronavirus cases across London at the Middle Layer Super Output Area (MSOA) 
level. Besides, there are 983 MSOAs across London. Total number of new coronavi-
rus cases in London is 2004, 8140, 37,408 and 74,975 for March, April, September 
and October respectively. We further used the Gini coefficient to measure spatial 
inequality in MSOA-level new case count. Accordingly, the population-weighted 
Gini coefficient values of MSOA-level new case count are 0.402, 0.319, 0.455, and 
0.251 for March, April, September and October respectively. Since September has 
the highest Gini coefficient value, new coronavirus cases are most likely to cluster 
around some specific areas.

In this study, the latest demographic data by MSOA are used as covariates in the 
cluster detection. Specifically, population by MSOA is available for 2019 (https://​
www.​ons.​gov.​uk/​peopl​epopu​latio​nandc​ommun​ity/​popul​ation​andmi​grati​on/​popul​
ation​estim​ates/​datas​ets/​middl​esupe​routp​utare​amidy​earpo​pulat​iones​timat​es), and 
annual household income by MSOA is available for 2015/2016 (https://​data.​london.​
gov.​uk/​datas​et/​ons-​model-​based-​income-​estim​ates--​msoa). The locations of hos-
pitals, police stations and schools are acquired from the Ordnance Survey (https://​
www.​ordna​ncesu​rvey.​co.​uk/​busin​ess-​gover​nment/​produ​cts/​points-​of-​inter​est); while 
the land use data for 2018 was downloaded from the Copernicus (https://​land.​coper​
nicus.​eu/​local/​urban-​atlas).

Figure 2 maps 2015/2016 annual household income (unit: British Pound) across 
London at the Middle Layer Super Output Area (MSOA) level.
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Exploring Spatiotemporal Patterns of Coronavirus Infection

Exploring Spatial and Temporal Variations of Coronavirus Infection

In this study, we first explored spatial and temporal variations of coronavirus 
infection respectively.

Exploring Spatial Shift of Highly Infected Areas

In this study, we subsequently explored spatial shift of highly infected areas by 
investigating local spatial association of coronavirus infection rate before the 
wave and coronavirus infection rate during the wave. Accordingly, bivariate local 
Moran’s I test is used to quantify the local spatial association between two vari-
ables. Specifically, a positive association (a positive Moran’s I value) means high 
(low) values of one variable is surrounded by high (low) values of the other vari-
able; whilst a negative association (a negative Moran’s I value) means high (low) 
values of one variable is surrounded by low (high) values of the other variable. 

a) March (total number: 6,680)   b) April (total number: 16,482)  

c) September (total number: 8,140) d) October (total number: 37,408) 

Fig. 1   New coronavirus cases across London at the Middle Layer Super Output Area (MSOA) level 
(March, April, September and October in 2020)
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Besides, the bivariate local Moran’s I testing was implemented in GeoDa (http://​
geoda​center.​github.​io/​index.​html).

Detecting Spatial Clusters of Coronavirus Infection

Fast Bayesian Model‑Based Cluster Detection

Based on the model-based approaches of Jung (2009) for the detection of spa-
tial disease clusters to space and time (Gómez-Rubio et al., 2019), Gómez-Rubio 
et  al. (2018) propose a new approach that uses dummy variables in a regres-
sion model to group regions into clusters. The importance of the clusters is then 
assessed based on a likelihood calculation that measures the extent to which the 
clusters capture the variability in the outcome (Gómez-Rubio et  al., 2018). To 
address a huge computational burden due to the usage of Bayesian hierarchical 
models fit by means of Markov chain Monte Carlo (MCMC) methods, Gómez-
Rubio et  al. (2018) use a fast approximation method (integrated nested Laplace 
approximation) proposed by Rue et al. (2009) to fit the model, and provide a rea-
sonable estimate of the coefficient of the cluster variables and compute the devi-
ance information criterion (DIC) in model selection. Theoretically, the problem 
of cluster detection is regarded as a problem of variable selection, where covar-
iates include a number of dummy variables that represent all possible clusters 

Fig. 2   Annual household income (unit: British Pound) across London at the Middle Layer Super Output 
Area (MSOA) level (2015/2016)
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(Gómez-Rubio et al., 2018). Hence, when fitting individual model to test for dif-
ferent clusters, this approach, based on integrated nested Laplace approximation 
(INLA), will be faster than fitting the same models with MCMC (Gómez-Rubio 
et al., 2018).

For the sake of brevity, we present the model as follows (Gómez-Rubio et al., 
2019): “

where μi,t is the mean of area i at time t, and Ei,t is the expected number of cases in 
area i at time t. c(j)

i,t
 is a cluster dummy variable for spatio-temporal cluster j, and �j 

is the coefficient of the cluster dummy variable.” Moreover, the expected number of 
cases Ei,t is computed through fitting a Poisson regression (generalised linear model) 
with offset log(Ei,t) on the covariates (Gómez-Rubio et al., 2018).

Covariates

Table  1 lists the covariates at the MSOA level, including socioeconomic char-
acteristics (i.e., income, hospital accessibility, police station accessibility, school 
accessibility, population density) and built environment characteristics (i.e., land 
use composition and land use mix). Since a large portion of MSOAs have no hos-
pitals and police stations, this study selected distance-based measures instead of 
density-based or count-based measures to quantify accessibility to hospital or 
police station. Table  2 shows the statistical description for all the covariates in 
this study.

(1)log(�i,t) = log(Ei,t) + �jc
(j)

i,t

Table 1   Covariates considered in this study

Type Variable Full name

Socioeconomic charac-
teristics

AHI Annual household income (unit: 1,000 £)
Dis_Hos Distance to nearest hospital (unit: km)
Dis_PS Distance to nearest police station (unit: km)
Den_Sch Density of schools (unit: number of schools per km2)
Den_Pop Density of population (unit: 1000 persons per km2)

Built environmental 
characteristics

Res_Per Residential percent (%)
CIT_Per Commercial, industrial & transportation percent (%)
Rec_Per Recreational percent (%)
LUX Land use mix (Entropy index)
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Implementation

In this study, the cluster detection was implementable in R. Specifically, the 
model-based cluster detection method used is supported by an R package named 
“DClusterm” (Gómez-Rubio et al., 2019).

Empirical Results

Spatiotemporal Patterns of Coronavirus Infection

We first explored spatiotemporal patterns of coronavirus infection in London.

Identifying the Second Wave

Figure  3a shows city-level daily number of new coronavirus cases in London. 
London is experiencing the first wave and the second wave in April and Novem-
ber respectively according to daily number of new cases confirmed in London. As 
mass testing was not available until June 2020, the number of new coronavirus 
cases was likely to be undercounted. At the same time, testing count during the 
second wave is dramatically higher than that during the first wave (see Fig. 3b). 
Therefore, the reported amount of new coronavirus cases during the second is 
more reliable than that during the first wave. From September, a number of inter-
national students who were infected arrived in London. Since most of the stu-
dents live in student dormitories, coronavirus virus is likely to transmit among 
students in dormitories. And, students are also likely to gather in pubs and travel 
around the city. Not only students but also residents are at increasing risk of being 
infected since the start of new semester.

Table 2   Statistical description 
for all the covariates in this 
study

Variable Mean SD

AHI 51.38 10.77
Dis_Hos 1.69 1.01
Dis_PS 2 1.34
Den_Sch 2.83 2.65
Den_Pop 9.03 5.33
Res_Per 57.99 17.51
CIT_Per 22.66 11.59
Rec_Per 14.7 13.53
LUX 4.15 1.1
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Spatial Patterns of New Coronavirus Cases During the Second Wave

Figure 4 maps the coronavirus infection rate (unit: new cases per 1000 persons) 
across London at the Middle Layer Super Output Area (MSOA) level in Novem-
ber. The Outer London areas are more seriously infected than the Inner London 
areas.

a) daily number of new coronavirus cases in London (Source: London Datastore,
https://data.london.gov.uk/dataset/coronavirus--covid-19--cases)

b) weekly number of people receiving a PCR test and positivity (Source: GOV.UK,
https://coronavirus.data.gov.uk/details/testing)

Fig. 3   Coronavirus cases and tests conducted in London during 2020
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Fig. 4   Coronavirus infection rate (unit: new cases per 1000 persons) across London at the Middle Layer 
Super Output Area (MSOA) level during November of 2020

Fig. 5   Clusters and outliers of coronavirus infection rate in October and November across London (Octo-
ber and November, 2020)
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Spatial Shift of Highly Infected Areas

We performed the bivariate local Moran’s I test of ‘COVID-19 infection rate 
in October’ and ‘COVID-19 infection rate in November’. The bivariate local 
Moran’s I testing result is shown in Fig. 5. Figure 5 maps the clusters and out-
liers of ‘COVID-19 infection rate in October’ and ‘COVID-19 infection rate in 
November’. In Fig.  5, all the clusters and outliers are statistically significant at 
the 0.05 level. Clusters and outliers indicate the existence of positive and negative 
local spatial association respectively. Specifically, ‘High–High’ and ‘Low–Low’ 
represent two types of clusters; whilst ‘Low–High’ and ‘High–Low’ represent two 
types of outliers. In Fig. 5, ‘High–High’ means an area (MSOA) with a high value 
of ‘COVID-19 infection rate in October’ is surrounded by areas (MSOAs) with a 
high value of ‘COVID-19 infection rate in November’; ‘Low–Low’ means an area 
(MSOA) with a low value of ‘COVID-19 infection rate in October’ is surrounded 
by areas (MSOAs) with a low value of ‘COVID-19 infection rate in November’; 
‘Low–High’ means an area (LAD) with a low value of ‘COVID-19 infection rate 
in October’ is surrounded by areas (MSOAs) with a high value of ‘COVID-19 
infection rate in November’; and ‘High–Low’ means an area (MSOA) with a high 
value of ‘COVID-19 infection rate in October’ is surrounded by areas (MSOAs) 
with a low value of ‘COVID-19 infection rate in November’. Particularly, outliers 
indicate the shift of highly infected areas from October to November. Specifically, 
‘High–Low’ areas are located around the urban centre; whilst ‘Low–High’ areas 
are located around the outskirts. This shows some of the highly infected areas 
shift from the central and southern London to the eastern and western London 
between October and November.

Cluster Detection (Spatial Clusters of New Cases)

In this subsection, we detected spatial clusters of new cases across London dur-
ing the second wave (i.e., November). We applied the fast Bayesian model-based 
cluster detection method to the 983 observations (983 MSOAs) with no covari-
ates and after adjusting for covariates respectively.

Table 3   Statistically significant clusters of coronavirus infection

Cluster Size At-risk population At-risk popula-
tion percent

DIC p-value Risk

1 92 852,230 9.51 1086.356  < 0.001 0.470
2 38 361,260 4.03 233.220  < 0.001 0.349
3 17 172,906 1.93 177.882  < 0.001 0.429
4 34 273,618 3.05 106.227  < 0.001 0.277
5 15 140,653 1.57 32.745  < 0.001 0.219
… … … … … … …
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Cluster Detection with No Covariates

First of all, we implemented the model-based cluster detection method with no 
covariates. Standardised expected number of new cases Ei,t was computed fitting a 
Poisson regression (generalised linear model) with offset log(Ei,t) (see Eq. (1)). As 
a result, 24 statistically significant clusters were detected with a p-value of below 
0.05. After ranking these clusters according to the DIC, top 5 clusters are list in 

Fig. 6   Five most significant clusters of coronavirus infection across London during November of 2020

Table 4   Estimation results for 
the generalised linear model 
(GLM) (N = 983)

Significance codes: ‘***’: 0.001; ‘**’: 0.01; ‘*’: 0.05; ‘.’: 0.1; ‘ ’: 1

Covariate Coefficient

Intercept 1.01 ***
AHI − 0.011 ***
Dis_Hos 0.033 ***
Dis_PS − 0.021 ***
Den_Sch 0.0001
Den_Pop − 0.011 ***
Res_Per − 0.004 ***
CIT_Per − 0.004 ***
Rec_Per − 0.004 ***
LUX − 0.007 .
AIC 13,958 
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Table 3 and mapped in Fig. 6. Those 5 clusters totally have 20% of the population 
of London. And those 5 clusters are all located around the Outer London rather than 
the Inner London (central London).

Cluster Detection After Adjusting for Covariates

Subsequently, we implemented the model-based cluster detection method after 
adjusting for covariates. Covariate standardised expected number of coronavirus 
cases Ei,t was computed fitting a Poisson regression (generalised linear model) 

Table 5   Statistically significant clusters of coronavirus infection after adjusting for one covariate (i.e., 
annual household income)

Cluster Size At-risk population At-risk popula-
tion percent

DIC p-value Risk

1 94 878,685 9.80 729.713  < 0.001 0.376
2 27 266,431 2.97 228.369  < 0.001 0.413
3 40 365,366 4.08 110.268  < 0.001 0.237
4 18 155,709 1.74 96.783  < 0.001 0.341
5 7 69,220 0.77 19.014  < 0.001 0.229
… … … … … … …

Fig. 7   Five most significant clusters of coronavirus infection after adjusting ‘annual household income’ 
across London during November of 2020
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with offset log(Ei,t) on one covariate: AHI (annual household income). The gen-
eralised linear model (GLM) estimated is shown in Table 4. Expectedly, AHI is 
statistically significantly and negatively associated with observed number of cor-
onavirus cases (response); and Dis_Hos is statistically significantly and positively 
associated. Unexpectedly, apart from Den_Sch and LUX, the remaining covari-
ates (i.e., Den_Pop, Res_Per, CIT_Per and Rec_Per) are statistically significantly 
and negatively associated with observed number of coronavirus cases.

Eventually, 28 statistically significant clusters were detected with a p-value of 
below 0.05. After ranking these clusters according to the DIC, top 5 clusters are 
list in Table 5 and mapped in Fig. 7. The difference between the top 5 clusters 
detected with and without the covariate is not large. This means that the occur-
rence of those top 5 clusters is insufficiently explained by the covariates. Com-
pared to the other clusters, Cluster 4 and Cluster 5 experience a dramatic decrease 
in size and at-risk population (i.e., a decrease by over 40%) before and after 
adjusting for covariates (see Figs. 6 and 7 as well as Tables 3 and 5). This indi-
cates that Cluster 4 and Cluster 5 is partly attributable to the socioeconomic and 
built environmental characteristics.

Discussion

London always has the highest coronavirus infection rate in the UK whilst the 
UK is one of the most seriously infected countries worldwide. London is densely 
populated and a top destination of international travellers. Particularly, after the 
summer most of the international students need to fly to London before going to 
their final destinations by train, bus, or car. Increasing coronavirus viruses were 
transmitted by students to London since the start of fall semester in September. 
This is arguably one key cause of the second wave.

The top 3 clusters are insufficiently attributable to socioeconomic and built 
environmental characteristics. Additionally, after comparing Figs.  1b and 7, we 
can find that the top 5 clusters are located around the areas that had been highly 
infected during the first wave (April 2020). Arguably, the top 5 clusters are partly 
attributable to the locals infected during the first wave. However, given the lack 
of individual-level coronavirus contact-tracing data it is nearly impossible to pre-
cisely assess how much contribution is made by locals or travellers.

Although clusters of coronavirus infection during the second wave are insuf-
ficiently attributable to socioeconomic characteristics, the findings in this study 
suggest that socioeconomically disadvantaged areas (i.e., areas with a lower 
income or a lower healthcare accessibility) are more likely to suffer a high risk 
of coronavirus or alike pandemics. Resource allocation by government should 
prioritise socioeconomically disadvantaged areas. And, stricter measures should 
be implemented in socioeconomically disadvantaged areas to reduce spatial dis-
parities in coronavirus infection across London. Besides, effective tracking tools 
(e.g., coronavirus contact-tracing apps) are needed to better curb the spread of 
coronavirus in those areas.
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Conclusion

In this study, we detected clusters of new coronavirus cases around London during the 
second wave. We applied a fast Bayesian model-based cluster detection method to small-
area number of new cases in November. As a result, the most significant clusters of new 
cases during the second wave are likely to occur in low-income areas with a low level of 
hospital access or a low level of police station access around the airports. The empirical 
study suggests a policy implication that socioeconomically disadvantaged areas are more 
likely to suffer a high risk of coronavirus or alike pandemics. Besides, the fast Bayesian 
model-based detection method is efficient and robust.

However, there are some limitations in this study. Firstly, we did not undertake spati-
otemporal cluster detection due to data sparsity. Secondly, we did not compare the highly 
infected areas between November and April when is the first wave. Since mass testing 
was available since June, the number of confirmed cases is not appropriately comparable 
between November (mass testing available) and April (mass testing unavailable). It might 
be of much interest to compare concentration of coronavirus infection between the two 
waves. Thirdly, in the explanation of the occurrence of coronavirus clusters, we take no 
account of mobility patterns, such as the number of daily trips or time spent out of home, 
due to the lack of data. Fourthly, given the lack of accurate categorisation in the POI data 
used, schools were not further classified into primary schools, secondary schools, univer-
sities/colleges and others. Otherwise, the association of schools and coronavirus infec-
tion might differ from primary school to university/college since the latter has a substan-
tially higher proportion of students who had international travel. Finally, unexpectedly, 
this study found that all the three main land use categories (i.e., residential land, recrea-
tional land, and commercial, industrial & transportation land) are likely to curb coronavi-
rus infection and land use mix is not statistically significantly associated with coronavirus 
infection.

In the future, we will improve this study by addressing those limitations. Firstly, we 
would undertake spatiotemporal cluster detection at a lower geography level to address 
the data sparsity issue. Secondly, we would compare spatial clusters of coronavirus infec-
tion between the two waves once the number of coronavirus cases before the availability 
of mass testing could be adjusted through some models in future. The results would be 
compared with those in this paper to discuss the nfluence of time gap in some data on 
the model estimation results. Thirdly, we would attempt to acquire mobility data from 
social media or mobile phone data in future. We would investigate the how mobility pat-
terns contribute to the clusters of coronavirus infection. Fourthly, we would focus more on 
accessibility to university/college than accessibility to school in general once the locations 
of accurately categorised schools are acquirable in the future. Finally, more studies are 
needed to further investigate the association of land use characteristics and coronavirus 
infection.
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