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Abstract
Land use and transport shape our cities. The central place of integrated land use
transport strategy in improving urban sustainability has been a widespread
acceptance. The purpose of this research is to investigate the relationship be-
tween land use/land cover types and transport characteristics. Traffic zones, as
the spatial analysis unit, are generated by partitioning parcels with single land
use/land cover type. Driving accessibility, cycling accessibility and walking
accessibility are proposed to quantify the transport characteristics of traffic
zones. Taking Eindhoven, the Netherlands as study area, the three accessibility
patterns differ but all show strong positive spatial autocorrelation. Clustering
method is adopted to synthesize accessibility indicators and group traffic zones
with similar transport characteristics into clusters. An contingency table analysis
indicates that land use/land cover types are significantly associated with clusters,
on which the validation and quantification of experience in the relationship of
land use/land cover and transport are based: residential area and commercial area
mainly concentrate in high accessible clusters (6 and 7); industrial area and open
space tend to favor clusters (4 and 6) with adequate driving accessibility; the
high percentage of natural area in medium accessible clusters (4 and 5), espe-
cially in less accessible clusters (1, 2 and 3) corroborates the low demands of
natural area on mobility service. Clustering map and accessibility patterns can
identify the gaps in coverage of mobility service and in efficiency of land use/
land cover pattern. The applicability of these tools is demonstrated by two cases.
Recommendations for urban planning are obtained from this study considering
both land use and transport aspects.
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Introduction

As issues (e.g. traffic congestion and environmental degradation) emerging from
urbanization and urban sprawl have attracted considerable attention, there is a
growing consensus that integrating land use and transport is a vital pathway to
urban sustainable development (Bertolini et al. 2005; Kenworthy and Laube 1996;
Lautso et al. 2004; Weiss et al. 2018). The physical components of urban spatial
structure, or more specially land use, are connected by transport systems, which
facilitate the functioning of cities by passengers and freight movements. The
implementation of both urban functions and transport construction need substantial
land requirement and consumption. Since urban land is a scarce resource and must
be used efficiently (Lambin and Meyfroidt 2011), urban development, both in land
use and transport, should be planned and managed rather than develop spontane-
ously (Tian et al. 2017). The integration of land use and transport thereby is
necessitated in urban planning and management. The definition and representation
of land use systems and transport systems vary in research purpose and scale. Land
use/land cover pattern can reflect the spatial characteristics of land use practices and
location-specific transport capacity can be measured by accessibility, which refers
to the ease with which anyplace of a certain area can be reached by individuals at a
particular location using the mobility service of specific transport systems. The
relationship between land use/land cover types and accessibility can provide new
insights into the synergy of land use and transport planning at regional scale.

The relationship between land use and transport is complex and dynamic with
various interactive effects (Litman and Steele 2017), which results in the breadth of
land use transport literature. There is a long tradition in research of integrated land use
and transport modelling and land use transport interaction (LUTI) model has come to
significant fruition (Acheampong and Silva 2015). However, on account of a series of
challenges such as model transparency, operability, parameter validity, computational
performance, LUTI model has not progressed in practice as far as it is expected
(Waddell 2011). With the enhancement of quality and availability in land use data, a
trend towards empirical studies on this relationship has arisen. These researches can
generally be divided into: pedestrian bike infrastructure and land use (Cervero and
Duncan 2003; Duncan et al. 2010; Lee and Moudon 2006; Rodríguez et al. 2009; Wang
et al. 2015; Witten et al. 2011); motorized infrastructure and land use (Duranton and
Turner 2012; Giuliano et al. 2012; Horner and Schleith 2012; Stanilov 2003;
Vandenbulcke et al. 2009). Rodríguez et al. (2009) pointed out that higher levels of
walking accessibility can intensify population density, availability of retail and land use
mix. Stanilov (2003) proposed integral accessibility, which assesses the ease of access
to high-class roads, to explore the impact of transport networks on land use pattern. The
result suggests that the priorities of accessible locations allocation are: commercial,
industrial, multi-family, medium-density single-family and low-density single-family
uses. In addition to the above mentioned two categories, urban rail system (tram and
metro) is taken into account in studies at metropolitan scale (King 2011; Ratner and
Goetz 2013). Ratner and Goetz (2013) found that the extended light rail transit
increased residential density in station areas of Denver. All of these attempts confirm
the fact that transport is inextricably related to land use and development. However, the
transport impacts vary in mobility service provided by transport infrastructure. Little
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attention has been paid to the integrated effects of pedestrian bike infrastructure and
motorized infrastructure. Moreover, besides land use/land cover change driven by
transport networks (Chaudhuri and Clarke 2015; Mothorpe et al. 2013; Müller et al.
2010; Patarasuk 2013), there is a lack of investigation into the transport characteristics
of different land use/land cover types, which can bring the perspective of integrated
land use transport to urban spatial planning.

The objectives of this study therefore are: (1) to quantify transport characteristics of
an area; (2) to investigate the relationship between land use/land cover types and
transport characteristics; (3) to discuss the potential use of the measures of transport
characteristics and the aforementioned relationship in urban planning and management.
A series of measures are developed as driving accessibility, cycling accessibility and
walking accessibility to capture the mobility service of pedestrian infrastructure, bike
infrastructure and motorized infrastructure, respectively. We adopted hierarchical clus-
tering to group spatial units in terms of transport characteristics which are quantified by
accessibility, and then investigated the relationship between land use/land cover types
and accessibility. The conclusions about this relationship are drawn from the contin-
gency table analysis of land use/land cover types and transport clusters with Chi-square
test. On the basis of the relationship, combined with accessibility measurements and
clustering method (agglomerative hierarchical clustering using Ward’s method), this
study provides an operational and applicable approach, which can identify the gaps in
coverage of mobility service and in efficiency of land use/land cover pattern. Two cases
are designed to exhibit the effectiveness and applicability of the proposed approach.

With discussions on related literatures, this section has introduced the purpose and
scope of this paper. BStudy Area and Data^ section goes into the study area and data
sources. Methods are introduced in BMethods^ section. BResults^ section presents the
results and illustrates how the results can be applied in planning practice. Conclusions
and policy recommendations are followed in BDiscussion and Conclusions^ section.

Study Area and Data

Eindhoven is the fifth largest city in the Netherlands with a total area of 88.84 km2 and
a population of 225,000 (November 2015). It is known as a major technological and
industrial hub lying in the southern part of the country, between the economic centers of
the Dutch Randstad conurbation, the Ruhr conurbation of Central Germany, Brussels
and Antwerp. Industries are mainly located in the outskirts of the city. Influenced by the
concept of neighborhood (Yang and Timmermans 2014), urban center and surrounding
areas are distributed alternatively with residential and commercial uses. Eindhoven has
relatively complete transport systems, covering foot, bike, car, bus, train (two stations
support long-distance public transport) and plane (Eindhoven airport is the second
largest one in the Netherlands). The road networks comprise motorways, arterials,
collectors and local roads. The ring road A2 Eindhoven, with one uninterrupted main
track and two parallel roads, connects the local road networks to the national network,
which supports express traffic passing the city region as well as trips between Eindho-
ven and neighboring towns.

For analyzing the relationship between transport characteristics and land use/land
cover types, the data used in this study is composed of two parts: transport network data
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obtained from Open Street Map (OSM) and land use/land cover data obtained from
Dutch land registry (NL: Kadaster). The OSM data of 2013 contains Eindhoven road
networks and surrounding connected roads (see Fig. 1), which are line geometries
characterized by length and max allowed speed. These can be used to construct a
routable topology graph (directed, weighted and connected), which consists of nodes
and edges, so that any well-known route search algorithm can be applied (Naumann
and Kovalyov 2017). For Eindhoven road networks (surrounding connected roads are
not included), the car network contains 4755 nodes and 6957 links; the bike network
contains 4646 nodes and 6781 links; the foot network contains 4654 nodes and 6819
links (Zhang et al. 2011). The total length of transport networks is 3707 km, which
encompasses approximately 100 km highways (TomTom 2016).

The spatial land use database of Statistics Netherlands (NL: BBG, Bestand
Bodemgebruik), BBG2012 (CBS 2012), contains digital geometry of the bound-
aries of land use/land cover in Eindhoven in 2012 (see Fig. 1). The entities of
BBG2012 are parcels with single land use/land cover type in vector format.
Compared to raster format, each parcel, which is enclosed by boundaries with
various length, can vary in shape and size. In addition to land use/land cover type,
attributes like shape, border length and area are stored for each parcel. The 970
parcels of Eindhoven belong in 7 land use/land cover types, including transport
area, built area, semi-built area, recreation area, agricultural area, forest and open
natural area, inland water, each of which is subdivided into a number of catego-
ries. In this study, these original land use/land cover types in BBG2012 are
reclassified as: transport, residential, commercial, industrial, natural area and open
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space. The proportions of these 6 new defined types of Eindhoven are 10.9%,
31.4%, 6.2%, 9.6%, 15.9% and 26.1%, respectively.

Methods

Spatial Unit and Construction of OD Matrix

The spatial frame of this study necessitates the use of zone-based accessibility mea-
sures. The commonly used spatial units are administrative division and grid cell. As
study area ranges from a city to a country, even the whole world, the type, shape and
size of spatial unit differ in research purposes and there is no consensus over them.
Administrative divisions are often taken as traffic analysis zones in transport related
studies with large study areas, while grid cells are principally employed in land use/land
cover related researches at a finer level. To create accessibility patterns and further
investigate the relationship between land use/land cover types and accessibility, the
spatial unit of analysis used in this study factors in the following considerations:
modifiable areal unit problem (MAUP), the homogeneity of transport characteristics
and the uniqueness of land use/land cover type.

First of all, the partitioning scheme of study area can affect the calculation
results of accessibility, which is known as MAUP (Kwan and Weber 2008). In this
study, if each spatial unit is represented by a point, MAUP refers to the errors in
travel time measured between locations due to the size and shape of spatial unit.
The consistence of size and shape and resulting uniform spatial distribution of grid
cells can handle MAUP efficiently. Secondly, the variance in transport character-
istics would appear in spatial units with excessive size. Small size can ensure the
homogeneity of transport characteristics but smaller unit is necessarily accompa-
nied by a ‘side effect’ – increasing computation burden. With the improvement of
computing power, more and more high grid cell resolutions have been applied,
some of which are 100 × 100 m (Cao et al. 2012), 200 × 200 m (Pei et al. 2014) and
250 × 250 m (Chaudhuri and Clarke 2015). Thirdly and lastly, one grid cell may
cover several different land use/land cover types. The complicated representation
of land use/land cover type is an obstacle to establish linkages with accessibility,
which requires the uniqueness of land use/land cover type in spatial units. To strike
a balance between these three considerations, in this study, parcels with single land
use/land cover type in BBG2012 were taken as the basis for analysis unit division,
and in QGIS 2.18, polygon divider plugin was used to divide parcels into smaller
‘squarish’ sections with approximately same size by the implementation of Brent’s
method (Brent 1971). No matter in reality or in BBG2012 dataset, parcels are
commonly irregular shaped. So, most of the output spatial units can be in squarish
shape with predefined size, while the edge of a parcel is always split into irregular
pieces. The output spatial units inherit attributes including land use/land cover type
from their parent and serve as traffic zones for measuring accessibility. In terms of
land use/land cover types, traffic zones, the spatial units of this study, are divided
into: residential traffic zone (RTZ), commercial traffic zone (CTZ), industrial
traffic zone (ITZ), open space traffic zone (OSTZ), natural area traffic zone
(NATZ) and transport traffic zone (TTZ).

Land Use/Land Cover and Accessibility: Implications of the... 927



In the Netherlands, the houses are geo-coded at 4-digit and 6-digit postcode level.
For a 6-digit postcode area, it consists of at most about 20 houses (Debrezion et al.
2011), which results in a phenomenon that 6-digit areas near city center are smaller than
the outskirts where one postcode represents a larger area. Nevertheless, the 6-digit
postcode division is an appropriate scale for reference because it takes into account
population distribution. Eindhoven has 5218 6-digit postcode districts and the average
area is 17,025m2. Roughly in line with 6-digit postcode divisions, the size of traffic
zone was set as 16,900m2 (130 m × 130 m) and the study area hereby was partitioned
into 5355 traffic zones.

For accessibility measures, these 5355 traffic zones were converted into their
centroids which correspond to the geometric centers. These centroids are origins as
well as destinations. The total number of origin-destination (OD) pairs is 28,670,670.
The road graph was built in QGIS 2.18 through Python Console and each origin
(destination) point was tied to the road graph. The paths with minimum travel time
from origin i to all the other destinations were searched by Dijkstra’s algorithm.

Accessibility Measurement

In this study, transport infrastructure means road networks and accessibility, which
captures the mobility service provided by road networks, is proposed to quantify the
transport characteristics of a traffic zone. The main modes of inner-city transport in
Eindhoven are driving, cycling and walking. Bus-based public transit is just an
extension of motorized service, which utilizes infrastructure chiefly designed and
constructed for driving. Therefore, transport characteristics of a traffic zone are depicted
from three aspects: driving accessibility, cycling accessibility and walking accessibility.
It is assumed that any location of developed cities (e.g. Eindhoven) is accessible. The
intuitive approach to evaluate accessibility would be travel time. The accessibility
measures of a traffic zone hereby are based on average travel time from that to all
the other accessible traffic zones. Furthermore, a negative exponential function, as the
most widely used and appropriate form associated with travel behavior theory (Handy
and Niemeier 1997), is applied to estimate the impedance function in accessibility.
Accessibility indicators: driving accessibility AD

i, cycling accessibility AC
i and walking

accessibility AW
i have the following equations:

AD
i ¼ e− f

D ið Þ ð1Þ

AC
i ¼ e− f

C ið Þ ð2Þ

AW
i ¼ e− f

W ið Þ ð3Þ

where fD(i), fC(i) and fW(i) are the travel time functions for driving, cycling and
walking, respectively.
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Among the three modes, the driving accessibility needs to consider the effects of
traffic congestion, otherwise, the driving time is underestimated during peak hours.
Considering the obvious traffic performance differences in peak and off-peak hours, the
driving time function has two components: average driving time during off-peak hours,
and average driving time during peak hours, which describes reduced accessibility
under rush hour condition. It can be expressed in the following manner:

f D ið Þ ¼ βpeak ⋅ ∑
j∈ZD

i

tDij 1þ αkð Þ=ND
i þ βoff −peak ⋅ ∑

j∈ZD
i

tDij =N
D
i ð4Þ

where, tDij is the minimum driving time from origin i to destination j, αk is the
congestion parameter for roads in type k, ZD

i is the driving trip area of origin i,
ND

i is the number of destinations in ZD
i, βpeak and βoff-peak are coefficients to

measure the contribution of peak hours condition and off-peak hours condition to
the whole day traffic performance. ZD

i defines the movement scope of driving
from origin i. Likewise, there are ZCi for cycling and ZWi for walking. The scope
is determined by the movement capacity of different travel modes. For driving,
the trip area ZD

i is the whole city and thus, ND
i is the total number of

destinations in Eindhoven. The value of αk is determined by road type.
According to the traffic congestion statistics of Eindhoven, during peak hours,
the travel time increases 11% in highways and 25% in non-highways (TomTom
2016). Though non-highways actually contain several subtypes, the validation of
α is limited by reliable empirical data. Therefore, given k = 1 denotes highways
and k = 2 denotes non-highways, α1 = 0.11and α2 = 0.25. Equal weighting is
applied to the values of β, i.e. βpeak = 0.5 and βoff-peak = 0.5, which could be
further validated by experts if needed.

The trip area setting of cycling and walking refers to Dur and Yigitcanlar (2015). For
cycling, the trip area of origin i is a circular region of 3 km radius with center i. An
example of a cycling trip area is shown in Fig. 2. For each origin, only traffic zones
within 3 km (the outer circle in Fig. 2) are used as destinations to calculate the cycling
accessibility. The cycling time function is given by:

f C ið Þ ¼ ∑
j∈ZC

i

tCij =N
C
i ð5Þ

where tCij is the minimum cycling time from origin i to destination j, ZCi is the cycling
trip area of origin i, NC

i is the number of destinations in ZCi. Walking accessibility is
measured in a similar approach with cycling accessibility, except the trip area of origin i
is a circular region of 800 m radius with center i. For each origin, only traffic zones
within 800 m (the inner circle in Fig. 2) are used as destinations to calculate the walking
accessibility. So walking time function has the following equation:

f W ið Þ ¼ ∑
j∈ZW

i

tWij =N
W
i ð6Þ

where tWij is the minimum walking time from origin i to destination j, ZWi is the walking
trip area of origin i, NW

i is the number of destinations in ZWi. The cycling speed was set
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as 15 km/h and walking speed was set as 5 km/h. Road speed limits were used to set the
driving speed.

Spatial Pattern and Cluster Analysis

For visualizing the accessibility disparity, the traffic zones were divided into 6 classes
by driving, cycling and walking accessibility, respectively. The classification is based
on Jenks natural breaks, which is a method to place data values into discrete categories
with minimum squared deviation within classes and maximum squared deviation
between classes. Moran’s I was calculated to measure the spatial autocorrelation of
accessibility. Moran’s I, which was initially proposed byMoran (1948) and popularized
by Cliff and Ord (1973), can help understand the degree to which one object is similar
to other nearby objects. The spatial pattern can be simply characterized as dispersion,
randomness and clustering. In general, the value of Moran’s I varies on a scale between
−1 and 1. Positive values indicate positive spatial autocorrelation (clustering); negative
values indicate negative spatial autocorrelation (dispersed); a randomly dispersed
pattern results in a value close to 0.

Agglomerative hierarchical clustering using Ward’s method was employed to syn-
thesize accessibility indicators so that the transport characteristics of each traffic zone
can be comprehensively estimated. Each resulting cluster represents specific transport
characteristics which are identified by accessibility values. Hierarchical clustering,
including agglomerative and divisive two types, is a commonly used unsupervised
statistical method for clustering data. Agglomerative hierarchical clustering starts with
each object in its own single-element cluster, and then at each step, pairs of clusters are
merged in order of decreasing similarity, which is measured by distance between
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clusters. The Ward’s method evaluates the distance between classes by variance
approach and it attempts to minimize the error sum of squares (ESS) of any possible
cluster pair at each step of grouping (Murtagh and Legendre 2014).

Results

Spatial Accessibility Pattern

We visualized and mapped the calculations of driving accessibility (Fig. 3a), cycling
accessibility (Fig. 3b) and walking accessibility (Fig. 3c). The three accessibility patterns
show how mobility service for driving, cycling and walking varies spatially with the
current transport infrastructure. In Eindhoven, driving accessibility decreases from urban
center to remote areas (see Fig. 3a). The disparity of driving convenience disclosed by
driving accessibility pattern is mainly caused by the motorized network, though only
considering inner-city transport increases the inaccessibility of urban edge. The least
accessible areas (see yellow traffic zones in Fig. 3a) for driving are concentrated in A2.
A2 is controlled-access highway which is designed for high-speed cross-region vehicular
traffic. However, in spite of the speed limit of A2 is absolutely high, A2 is less driving
accessible for inner-city transport due to its limited entrances and exits. Compared with

Land Use/Land Cover and Accessibility: Implications of the... 931

Fig. 3 Accessibility patterns and clustering map: a driving accessibility pattern, b cycling accessibility pattern,
c walking accessibility pattern and d subdivisions of the study area in 7 clusters



driving accessibility whose trip area is the whole city, the accessibility of medium-distance
cycling is vulnerable to areas with sparse roads, such as natural area and open space. As a
consequence, the cycling infrastructure provides citizens with more favorable cycling
condition in the middle and east of the study area than western Eindhoven where large
tracts of natural area and open space are located (see Fig. 3b). For walking, traffic zones
with high walking accessibility shows a north-south distribution (see Fig. 3c), which
corresponds to the distribution of residential and commercial areas (see Fig. 1).

A comparison of Fig. 3a–c locates three particular less accessible areas for driving,
cycling and walking, which are labelled as S1, S2 and S3 in Fig. 3c. S1 overlaps
Eindhoven airport and most of S2 falls into a piece of natural area. S3 situates along the
banks of Eindhovens Kanaal (a canal). The depression of accessibility in S1 results
from the closed nature around the airport. The relatively sparse roads, which accom-
modates the low travel generation and attraction in natural area, lead to the travel
inconvenience in S2. In S3, the canal impedes the connection of local roads on both
sides of it. In contrast with the numerous bridges over Dommel (another river across
Eindhoven), there are only 3 bridges over Eindhovens Kanaal within 3.3 km. More-
over, there is a fenced industrial park with a length of about 2 km and a width of about
0.5 km in S3. The enclosure of the industrial park is another reason for the low
accessibility of S3. The industrial park only has two entrances & exits, one is on the
east side and the other one is on the west side, which damage the connectivity between
inside roads of industrial park and urban road networks.

All these accessibility patterns show spatial agglomeration: to a certain extent, dark
areas (high accessibility) and bright areas (low accessibility) are individually concen-
trated (Fig. 3a–c). The Moran’s I results of driving, cycling and walking accessibility
demonstrate strong positive spatial autocorrelation (Table 1). Z-scores which are
achieved by Monte Carlo method indicate that the results are statistically significant
(p < 0.001). In reality, the effects of transport infrastructure radiate outwards across
surrounding areas, and as a result, neighboring places within the area of influence have
similar transport characteristics. The calculated high positive Moran’s I values validate
this phenomenon. Additionally, it can be seen from Fig. 1 that there are several
agglomerations of land use/land cover. The positive spatial autocorrelation of accessi-
bility corresponds to the land use/land cover agglomeration, if any linkage between
land use/land cover types and accessibility exists, which is discussed in BCluster
Analysis: A Synthesis of Accessibility .̂

Cluster Analysis: A Synthesis of Accessibility

We divided the traffic zones into clusters according to the accessibility differences of
driving, cycling and walking. F-statistics (Table 2) and t2-statistics, combined with

Table 1 Global spatial analysis

Driving accessibility Cycling accessibility Walking accessibility

Moran’s I 0.771833 0.866856 0.842676

z-score 77.1255 89.1865 87.5478
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consideration of the number of land use/land cover types, suggest that seven clusters is
the optimum scheme. The statistics of each cluster are compiled in Table 2. The mean
accessibility values of each cluster are given as the cluster center to represent transport
characteristics of affiliated traffic zones. Average travel time which corresponds to
accessibility is listed on odd rows. The classification results are presented graphically in
Fig. 3d, which can be explained as a superimposition of Fig. 3a–c in a new color
scheme for clusters.

As illustrated in Table 2, among these seven clusters, the comprehensive
accessibility of cluster 6 and cluster 7 are obviously better than the others. The
driving accessibility and walking accessibility of cluster 6 are the highest and the
cycling accessibility is only second to cluster 7. The cycling accessibility of
cluster 7 is highest, meanwhile, the walking accessibility and driving accessibil-
ity rank second and third out of seven clusters, respectively. On the other hand,
compared with cluster 6 and cluster 7, the poor performance of cluster 1, cluster
2 and cluster 3 is apparent. Traffic zones in cluster 2 are inconvenient for driving
and cycling, which is indicated by the lowest driving accessibility and cycling
accessibility of cluster 2. Though the driving accessibility of cluster 3 is mid-
dling, the pedestrian and bike circumstance of traffic zones in cluster 3 is
unfavorable, which is indicated by the lowest walking accessibility and second
lowest cycling accessibility. Cluster 1 is also no better off except its medium
walking accessibility. The comprehensive accessibility of cluster 4 and cluster 5
are mediocre but these two clusters have their own advantages. Cluster 4 is
relatively prominent in driving (second highest driving accessibility) while clus-
ter 5 performs well in cycling (third highest cycling accessibility) and walking
(third highest walking accessibility).

To investigate the relationship between land use/land cover types and accessi-
bility, the statistics for the distribution of seven clusters in each land use/land
cover type and the distribution of land use/land cover types in seven clusters were
made. The results are presented in a 6 × 7 contingency table (Table 3). The

Table 2 Descriptive statistics of cluster centers

Variable Cluster center

1 2 3 4 5 6 7 F-statistics

Driving accessibility a −0.8932 −1.6307 0.1395 0.7024 −0.1799 1.2945 0.5674 2164.691

Average driving time b 11.0851 12.4630 9.2764 8.3126 9.8215 7.3141 8.5372

Cycling accessibility a −0.0760 −1.7384 −0.8900 0.1805 0.7406 0.8254 0.9579 2714.913

Average cycling time c 11.5971 14.9070 13.1850 11.1035 10.0465 9.8877 9.6422

Walking accessibility a 0.3107 −0.5036 −2.0213 0.0518 0.6778 0.7448 0.7398 1780.757

Average walking time d 11.2324 14.9654 22.0026 12.3106 9.6866 9.4084 9.4279

a The values have been normalized to zero mean and unit variance
b The mean of driving time calculated by Eq. (4)
c The mean of cycling time calculated by Eq. (5)
d The mean of walking time calculated by Eq. (6)

Land Use/Land Cover and Accessibility: Implications of the... 933



statistics show that in Eindhoven the less accessible clusters 1, 2 and 3 only
occupy 9.2%, 4.2 and 6.2% of total, furthermore, more than half of traffic zones
are in high accessible clusters (6 and 7).

In order to estimate whether land use/land cover types and clusters are statistically
independent, a Chi-square test with 30 degrees of freedom was conducted for variables
in Table 3. According to the test, land use/land cover types are significantly associated
with clusters. Table 3 shows that no RTZ locates in cluster 2 and cluster 3 and only a
small proportion of CTZs (1.2%) and ITZs (8.6%) belong to these two clusters. For
another less accessible cluster 1, the total of RTZs, CTZs and ITZs accounts for merely

Table 3 The distributions of land use types and clusters

Cluster

1 2 3 4 5 6 7 Total

RTZ Count 7 0 0 143 103 852 576 1681

% within land use 0.4% 0.0% 0.0% 8.5% 6.1% 50.7% 34.3% 100.0%

% within cluster 1.4% 0.0% 0.0% 14.5% 16.9% 50.9% 55.8% 31.4%

% of Total 0.1% 0.0% 0.0% 2.7% 1.9% 15.9% 10.8% 31.4%

CTZ Count 14 2 2 53 41 173 48 333

% within land use 4.2% 0.6% 0.6% 15.9% 12.3% 52.0% 14.4% 100%

% within cluster 2.8% 0.9% 0.6% 5.4% 6.7% 10.3% 4.6% 6.2%

% of Total 0.3% 0.0% 0.0% 1.0% 0.8% 3.2% 0.9% 6.2%

ITZ Count 11 2 42 168 27 204 60 514

% within land use 2.1% 0.4% 8.2% 32.7% 5.3% 39.7% 11.7% 100.0%

% within cluster 2.2% 0.9% 12.6% 17.0% 4.4% 12.2% 5.8% 9.6%

% of Total 0.2% 0.0% 0.8% 3.1% 0.5% 3.8% 1.1% 9.6%

OSTZ Count 112 15 62 196 100 214 151 850

% within land use 13.2% 1.8% 7.3% 23.1% 11.8% 25.2% 17.8% 100.0%

% within cluster 22.7% 6.7% 18.6% 19.8% 16.4% 12.8% 14.6% 15.9%

% of Total 2.1% 0.3% 1.2% 3.7% 1.9% 4.0% 2.8% 15.9%

NATZ Count 293 121 165 314 302 77 123 1395

% within land use 21.0% 8.7% 11.8% 22.5% 21.6% 5.5% 8.8% 100.0%

% within cluster 59.4% 54.3% 49.5% 31.8% 49.5% 4.6% 11.9% 26.1%

% of Total 5.5% 2.3% 3.1% 5.9% 5.6% 1.4% 2.3% 26.1%

TTZ Count 56 83 62 114 37 155 75 582

% within land use 9.6% 14.3% 10.7% 19.6% 6.4% 26.6% 12.9% 100.0%

% within cluster 11.4% 37.2% 18.6% 11.5% 6.1% 9.3% 7.3% 10.9%

% of Total 1.0% 1.5% 1.2% 2.1% 0.7% 2.9% 1.4% 10.9%

Count 493 223 333 988 610 1675 1033 5355

% within land use 9.2% 4.2% 6.2% 18.5% 11.4% 31.3% 19.3% 100.0%

% within cluster 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

% of Total 9.2% 4.2% 6.2% 18.5% 11.4% 31.3% 19.3% 100.0%

RTZ residential traffic zone, CTZ commercial traffic zone, ITZ industrial traffic zone, OSTZ open space traffic
zone, NATZ natural area traffic zone, TTZ transport traffic zone
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6.4%. On the other hand, cluster 6 and cluster 7 gather a large collection of CTZs
(66.4%), ITZs (51.4%) and especially RTZs (85%). The rest of RTZs, CTZs and ITZs
are distributed across medium accessible clusters (4 and 5). Consequently, it can be
inferred that the commercial and residential uses favor and require strong comprehen-
sive transport support from driving, cycling and walking. The agglomeration of ITZs in
cluster 4 implies that the industrial uses highly depend on motorized transport, but the
needs for cycling and walking are lower than commercial and residential uses. Even
cluster 3, which is less accessible for cycling and walking but medium accessible for
driving, contains some ITZs.

When it comes to natural area and open space, their distributions in clusters indicate
overall low requirements for transport. The demands of open space on transport are
lower than industrial uses, which is implied by the fact that OSTZs in less accessible
clusters (1, 2 and 3), medium accessible clusters (4 and 5) and high accessible clusters
(6 and 7) account for 22.24%, 34.82% and 42.94% of the total, respectively, in
comparison with ITZ’s 10.70%, 37.94% and 51.36%. Natural area is the second largest
type among the six and all clusters have a certain number of NATZs. The great
superiority of NATZs in cluster 1 (59.4%), cluster 2 (54.3%) and cluster 3 (49.5%)
corroborates the relatively discommodity of traveling to and within natural area. As for
transport land, discussing the accessibility of itself serves no practical purpose. The
effects of transport land on accessibility need to consider transport land type (e.g. rail or
road, road rank) and network topology (e.g. circuity, complexity, connectivity). This
issue is complicated and remains to be further explored.

Improvements in Accessibility of S3

As mentioned in 4.1, S1, S2, S3 (see Fig. 3c) are less accessible for driving,
cycling and walking. Since S1 is an airport and S2 is a natural area, only S3, in
which an industrial park locates, is able and deserves to be improved in accessi-
bility. Urban development is a mutual adaption process between land use systems
(e.g. land use/land cover pattern) and transport systems (e.g. transport infrastruc-
ture). The transport construction and land use type change are durable and very
slow in highly developed economies of today, which can even have been no
change in physical patterns for centuries (Simmonds et al. 2013), so that Eindho-
ven can adopt a quasi-equilibrium representation of development with an interval
of several years or decade. It can be inferred from a normally functioning city (e.g.
Eindhoven) that, through long-term evolution of land use/land cover pattern and
transport infrastructure, the transport conditions of most areas can support corre-
sponding land use/land cover types. Therefore, the transport characteristics of each
land use/land cover type, which are summarized from the majority, can be the
reference for assessing any adjustment to either land use systems or transport
systems. In the context of this study, the adjustments all are ‘conservative surgery’
(Geddes 1949) without intervening the evolutionary approach of city dramatically,
which is consistent with slow, incremental and local change regarding the plan-
ning of cities (Batty and Marshall 2017). The analysis of 4.2 shows that 89.30% of
ITZs belongs to high accessible clusters and medium accessible clusters, whereas
10.70% of them are in less accessible clusters. Therefore, the overwhelming
majority of ITZs in high and medium accessible clusters indicates that the
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mobility service level characterized by high and medium accessible clusters,
especially cluster 4 and cluster 6 with the top 2 driving accessibility, is more
suitable for industrial land use at this stage.

The accessibility patterns and cluster analysis enable the identification of transport
incongruous area (e.g. S3) where the accessibility doesn’t meet the demands of land
use. To illustrate how the results from 4.1 and 4.2 can serve for urban planning and
management practice, we designed two cases for improving accessibility of S3 (see
Fig. 4a). As introduced in 4.1, there is no entrance & exit on the north and south sides
of S3. Case 1 is opening a new access at location A and adding a bridge to connect
inside roads with urban road networks. Case 2 is an upgrade of Case 1. Case 2 involves
the measures in Case 1 and opens another access at location B. Locations A and B are
at both ends of an inside road, thus, Case 2 forms a path connecting inside roads with
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Fig. 4 Improvements in accessibility of S3: a case 1 and case 2 illustration, b subdivisions of the study area in
7 clusters under case 1, c subdivisions of the study area in 7 clusters under case 2



urban road networks in the north-south direction, which supplements the existing path
in the west-east direction. These two cases are ‘fine-tunings’ of transport infrastructure
under the current land use/land cover pattern. As mentioned before, infrastructure
construction such as highways, major thoroughfares, railways and canals, which could
provoke quantum changes in urban layout, is beyond the scope of this study.

Under Case 1 and Case 2, the driving, cycling and walking accessibility were
calculated by the formulas in 3.2 for a discriminant analysis. With a priori knowledge
of classifications achieved in 4.2, which is the standard for the discriminant analysis,
traffic zones were re-classified into 7 clusters based on new accessibility calculations.
Case 1 changes some ITZs in S3 from cluster 3 to cluster 4 (see Fig. 4b). These ITZs
are accumulated in the northern part of S3, on which the access at location A and the
new bridge have a direct impact. In Case 2, all traffic zones, except for one, change
from cluster 3 to cluster 4 or cluster 7 (see Fig. 4c). Benefiting from accesses
connecting inside roads with urban road networks in both north and south directions,
the comprehensive accessibility of S3 is improved further as compared with Case 1.
When land use/land cover pattern remains stable, the impact of upgrading transport
infrastructure should be within limits so as not to cause large disturbance to the
temporary quasi-equilibrium between transport infrastructure and land use/land cover
pattern. Case 1 and Case 2 are minor modifications to existing transport systems and
the main effects of them on accessibility are restricted in S3. Only a few traffic zones
near urban edge but away from S3 change to higher clusters in the wake of improve-
ments in driving convenience provided by Case 1 and Case 2.

Discussion and Conclusions

This study adopted driving, cycling and walking accessibility, which are measured by a
negative exponential function of average travel time with e-number, to quantify the
transport characteristics of traffic zone. The spatial units used in this study, traffic
zones, were created by partitioning parcels with single land use/land cover type to
investigate the relationship, if any, between land use/land cover types and accessibility.
In addition to the uniqueness of land use/land cover type, the size and squarish shape of
traffic zone can also handle MAUP efficiently and ensure the homogeneity of transport
characteristics. The accessibility calculations were mapped as spatial accessibility
patterns, all of which reveal strong positive spatial autocorrelation echoing the agglom-
erations of land use/land cover. The three accessibility patterns are generally various but
city center is always the most accessible area. Through clustering method, driving,
cycling and walking accessibility were synthesized to group traffic zones into seven
clusters. According to the results of cluster analysis and contingency table analysis, it is
statistically significant that land use/land cover types are associated with transport
characteristics. Locations with best comprehensive accessibility for driving, cycling
and walking tend to be residential and commercial uses. Industrial use prefers locations
with high driving accessibility. Cycling and walking are secondary to the priority of
driving accessibility for the siting of industry. Open space favors locations with high
driving accessibility as well, while its demands on accessibility are comprehensively
lower than industrial use. The majority of NATZs in less accessible clusters reflects the
low travel generation and attraction in natural areas.
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Obviously, there is no universally applicable urban planning strategy. However, the
case study of Eindhoven, a typical European city, can be valuable to other cities. This
study evidences the prospects and effectiveness of cooperating accessibility measure-
ments with clustering method in land use management and transport planning. The
proposed approach can pinpoint potential locations for transport improvement or
landscape alteration. To demonstrate the clustering map’s utility for decision-making,
we designed two cases to improve accessibility of a particular industrial area.

To achieve urban sustainability, transport infrastructure and associated mobility
service should match land use and development and vice versa. The relationship
between land use/land cover types and accessibility brings a new view into
planning practice, e.g. transport network design and land use allocation. For
transport planning, the transport systems should be upgraded to improve the
mobility service of RTZs, CTZs and ITZs with insufficient accessibility, which
is a shift from only emphasizing the operation of transport systems themselves to
supporting land use and development. In the example of Eindhoven, the driving
accessibility of ITZs which are in cluster 1, 2 and 3 requires to be improved. With
regard to residential and commercial areas, the driving, cycling and walking
infrastructure, any of which fails to provide adequate accessibility (e.g. transport
infrastructure serve for RTZs and CTZs in medium or less accessible clusters),
should be strengthened to fill the accessibility gaps. Land use and development
cannot realize its full potential without the supports from transport systems. From
a land use and development perspective, the main policy implications of this study
are given as follows: with established transport systems, (1) residential and
commercial development should be given priority to be distributed in high acces-
sible areas (e.g. cluster 6 and 7); (2) the location of industry should satisfy its high
requirements for efficient vehicular transport, e.g. cluster 4; (3) to take full
advantage of excessive mobility service, the open space and natural area with
comprehensive high accessibility (e.g. open space and natural area in high and
medium accessible clusters) are qualified and desirable locations for landscape
alterations brought on by urban development.
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