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Abstract With the advent of Industry 4.0, Artificial
Intelligence (AI) has created a favorable environment
for the digitalization of manufacturing and processing,
helping industries to automate and optimize operations.
In this work, we focus on a practical case study of a
brake caliper quality control operation, which is usu-
ally accomplished by human inspection and requires a
dedicated handling system, with a slow production rate
and thus inefficient energy usage. We report on a devel-
oped Machine Learning (ML) methodology, based on
Deep Convolutional Neural Networks (D-CNNs), to
automatically extract information from images, to auto-
mate the process. A complete workflow has been devel-
oped on the target industrial test case. In order to find
the best compromise between accuracy and computa-
tional demand of the model, several D-CNNs architec-
tures have been tested. The results show that, a judi-
cious choice of the ML model with a proper train-
ing, allows a fast and accurate quality control; thus,
the proposed workflow could be implemented for an
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ML-powered version of the considered problem. This
would eventually enable a better management of the
available resources, in terms of time consumption and
energy usage.
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Introduction

An efficient use of energy resources in industry is
key for a sustainable future (Bilgen, 2014; Ocampo-
Martinez et al., 2019). The advent of Industry 4.0, and
of Artificial Intelligence, have created a favorable con-
text for the digitalisation of manufacturing processes.
In this view, Machine Learning (ML) techniques have
the potential for assisting industries in a better and
smart usage of the available data, helping to automate
and improve operations (Mazzei & Ramjattan, 2022;
Narciso & Martins, 2020). For example, ML tools can
be used to analyze sensor data from industrial equip-
ment for predictive maintenance (Carvalho et al., 2019;
Dalzochio et al., 2020), which allows identification of
potential failures in advance, and thus to a better plan-
ning of maintenance operations with reduced down-
time. Similarly, energy consumption optimization (Qin
et al., 2020; Shen et al., 2020) can be achieved via ML-
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enabled analysis of available consumption data, with
consequent adjustments of the operating parameters,
schedules, or configurations to minimize energy con-
sumption while maintaining an optimal production effi-
ciency. Energy consumption forecast (Liu et al., 2019;
Zhang et al., 2018) can also be improved, especially in
industrial plants relying on renewable energy sources
(Bologna et al., 2020; Ismail et al., 2021), by analysis
of historical data on weather patterns and forecast, to
optimize the usage of energy resources, avoid energy
peaks, and leverage alternative energy sources or stor-
age systems (Fasano et al., 2019; Li & Zheng, 2016;
Mishra et al., 2023; Ribezzo et al., 2022; Trezza et
al., 2022). Finally, ML tools can also serve for fault
or anomaly detection (Angelopoulos et al., 2019; Md
et al., 2022), which allows prompt corrective actions
to optimize energy usage and prevent energy ineffi-
ciencies. Within this context, ML techniques for image
analysis (Casini et al., 2024) are also gaining increas-
ing interest (Chen et al., 2023), for their application
to e.g. materials design and optimization (Choudhury,
2021), quality control (Badmos et al., 2020), process
monitoring (Ho et al., 2021), or detection of machine
failures by converting time series data from sensors to
2D images (Wen et al., 2017).

Incorporating digitalisation and ML techniques into
Industry 4.0 has led to significant energy savings (Mag-
giore et al., 2021; Nota et al., 2020). Projects adopt-
ing these technologies can achieve an average of 15%
to 25% improvement in energy efficiency in the pro-
cesses where they were implemented (Arana-Landín
et al., 2023). For instance, in predictive maintenance,
ML can reduce energy consumption by optimizing the
operation of machinery (Agrawal et al., 2023; Pan et
al., 2024). In process optimization, ML algorithms can
improve energy efficiency by 10-20% by analyzing and
adjusting machine operations for optimal performance,
thereby reducing unnecessary energy usage (Leong et
al., 2020). Furthermore, the implementation of ML
algorithms for optimal control can lead to energy sav-
ings of 30%, because these systems can make real-time
adjustments to production lines, ensuring that machines
operate at peak energy efficiency (Rahul & Chiddarwar,
2023).

In automotive manufacturing, ML-driven quality
control can lead to energy savings by reducing the
need for redoing parts or running inefficient produc-
tion cycles (Vater et al., 2019). In high-volume pro-
duction environments such as consumer electronics,

novel computer-based vision models for automated
detection and classification of damaged packages from
intact packages can speed up operations and reduce
waste (Shahin et al., 2023). In heavy industries like
steel or chemical manufacturing, ML can optimize
the energy consumption of large machinery. By pre-
dicting the optimal operating conditions and mainte-
nance schedules, these systems can save energy costs
(Mypati et al., 2023). Compressed air is one of the most
energy-intensive processes in manufacturing. ML can
optimize the performance of these systems, potentially
leading to energy savings by continuously monitoring
and adjusting the air compressors for peak efficiency,
avoiding energy losses due to leaks or inefficient oper-
ation (Benedetti et al., 2019). ML can also contribute
to reducing energy consumption and minimizing incor-
rectly produced parts in polymer processing enterprises
(Willenbacher et al., 2021).

Here we focus on a practical industrial case study
of brake caliper processing. In detail, we focus on the
quality control operation, which is typically accom-
plished by human visual inspection and requires a dedi-
cated handling system. This eventually implies a slower
production rate, and inefficient energy usage. We thus
propose the integration of an ML-based system to auto-
matically perform the quality control operation, with-
out the need for a dedicated handling system and thus
reduced operation time. To this, we rely on ML tools
able to analyze and extract information from images,
that is, deep convolutional neural networks, D-CNNs
(Alzubaidi et al., 2021; Chai et al., 2021).

A complete workflow for the purpose has been
developed and tested on a real industrial test case.
This includes: a dedicated pre-processing of the brake
caliper images, their labelling and analysis using
two dedicated D-CNN architectures (one for back-
ground removal, and one for defect identification),
post-processing and analysis of the neural network out-
put. Several different D-CNN architectures have been
tested, in order to find the best model in terms of accu-
racy and computational demand. The results show that,
a judicious choice of the ML model with a proper train-
ing, allows to obtain fast and accurate recognition of
possible defects. The best-performing models, indeed,
reach over 98% accuracy on the target criteria for qual-
ity control, and take only few seconds to analyze each
image. These results make the proposed workflow com-
pliant with the typical industrial expectations; there-
fore, in perspective, it could be implemented for an ML-
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powered version of the considered industrial problem.
This would eventually allow to achieve better perfor-
mance of the manufacturing process and, ultimately, a
better management of the available resources in terms
of time consumption and energy expense.

Case study

The industrial quality control process that we target is
the visual inspection of manufactured components, to
verify the absence of possible defects. Due to industrial
confidentiality reasons, a representative open-source
3D geometry (GrabCAD) of the considered parts, sim-
ilar to the original one, is shown in Fig. 1. For illus-
trative purposes, the clean geometry without defects
(Fig. 1(a)) is compared to the geometry with three pos-

Fig. 1 Sample 3D model (GrabCAD) of the considered brake
caliper: (a) part without defects, and (b) part with three sample
defects, namely a scratch, a partially missing letter in the logo,
and a circular painting defect (shown by the yellow squares, from
left to right respectively)

sible sample defects, namely: a scratch on the surface of
the brake caliper, a partially missing letter in the logo,
and a circular painting defect (highlighted by the yel-
low squares, from left to right respectively, in Fig. 1(b)).
Note that, one or multiple defects may be present on
the geometry, and that other types of defects may also
be considered.

Within the industrial production line, this quality
control is typically time consuming, and requires a ded-
icated handling system with the associated slow pro-
duction rate and energy inefficiencies. Thus, we devel-
oped a methodology to achieve an ML-powered ver-
sion of the control process. The method relies on data
analysis and, in particular, on information extraction
from images of the brake calipers via Deep Convo-
lutional Neural Networks, D-CNNs (Alzubaidi et al.,
2021). The designed workflow for defect recognition is
implemented in the following two steps: 1) removal of
the background from the image of the caliper, in order
to reduce noise and irrelevant features in the image,
ultimately rendering the algorithms more flexible with
respect to the background environment; 2) analysis of
the geometry of the caliper to identify the different pos-
sible defects. These two serial steps are accomplished
via two different and dedicated neural networks, whose
architecture is discussed in the next section.

Methods

Convolutional Neural Networks (CNNs) pertain to a
particular class of deep neural networks for informa-
tion extraction from images. The feature extraction
is accomplished via convolution operations; thus, the
algorithms receive an image as an input, analyze it
across several (deep) neural layers to identify target
features, and provide the obtained information as an
output (Casini et al., 2024). Regarding this latter output,
different formats can be retrieved based on the consid-
ered architecture of the neural network. For a numerical
data output, such as that required to obtain a classifica-
tion of the content of an image (Bhatt et al., 2021), e.g.
correct or defective caliper in our case, a typical lay-
out of the network involving a convolutional backbone,
and a fully-connected network can be adopted (see Fig.
2(a)). On the other hand, if the required output is still
an image, a more complex architecture with a convolu-
tional backbone (encoder) and a deconvolutional head
(decoder) can be used (see Fig. 2(b)).
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Fig. 2 Different neural
network architectures:
convolutional encoder (a)
and encoder-decoder (b)

As previously introduced, our workflow targets the
analysis of the brake calipers in a two-step procedure:
first, the removal of the background from the input
image (e.g. Fig. 1); second, the geometry of the caliper
is analyzed and the part is classified as acceptable or
not depending on the absence or presence of any defect,
respectively. Thus, in the first step of the procedure,
a dedicated encoder-decoder network (Minaee et al.,
2021) is adopted to classify the pixels in the input image
as brake or background. The output of this model will
then be a new version of the input image, where the
background pixels are blacked. This helps the algo-
rithms in the subsequent analysis to achieve a better
performance, and to avoid bias due to possible differ-
ent environments in the input image. In the second step
of the workflow, a dedicated encoder architecture is
adopted. Here, the previous background-filtered image
is fed to the convolutional network, and the geome-
try of the caliper is analyzed to spot possible defects
and thus classify the part as acceptable or not. In this
work, both deep learning models are supervised, that
is, the algorithms are trained with the help of human-

labeled data (LeCun et al., 2015). Particularly, the first
algorithm for background removal is fed with the orig-
inal image as well as with a ground truth (i.e. a binary
image, also called mask, consisting of black and white
pixels) which instructs the algorithm to learn which pix-
els pertain to the brake and which to the background.
This latter task is usually called semantic segmenta-
tion in Machine Learning and Deep Learning (Géron,
2022). Analogously, the second algorithm is fed with
the original image (without the background) along with
an associated mask, which serves the neural networks
with proper instructions to identify possible defects on
the target geometry. The required pre-processing of the
input images, as well as their use for training and val-
idation of the developed algorithms, are explained in
the next sections.

Image pre-processing

Machine Learning approaches rely on data analysis;
thus, the quality of the final results is well known to
depend strongly on the amount and quality of the avail-
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able data for training of the algorithms (Banko & Brill,
2001; Chen et al., 2021). In our case, the input images
should be well-representative for the target analysis
and include adequate variability of the possible fea-
tures to allow the neural networks to produce the cor-
rect output. In this view, the original images should
include, e.g., different possible backgrounds, a differ-
ent viewing angle of the considered geometry and a
different light exposure (as local light reflections may
affect the color of the geometry and thus the analy-
sis). The creation of such a proper dataset for specific
cases is not always straightforward; in our case, for
example, it would imply a systematic acquisition of a
large set of images in many different conditions. This
would require, in turn, disposing of all the possible
target defects on the real parts, and of an automatic
acquisition system, e.g., a robotic arm with an inte-
grated camera. Given that, in our case, the initial dataset
could not be generated on real parts, we have chosen
to generate a well-balanced dataset of images in silico,
that is, based on image renderings of the real geome-
try. The key idea was that, if the rendered geometry is
sufficiently close to a real photograph, the algorithms
may be instructed on artificially-generated images and
then tested on a few real ones. This approach, if prop-
erly automatized, clearly allows to easily produce a
large amount of images in all the different conditions
required for the analysis.

In a first step, starting from the CAD file of the
brake calipers, we worked manually using the open-
source software Blender (Blender), to modify the mate-
rial properties and achieve a realistic rendering. After
that, defects were generated by means of Boolean (sub-
traction) operations between the geometry of the brake
caliper and ad-hoc geometries for each defect. Fine
tuning on the generated defects has allowed for a real-
istic representation of the different defects. Once the
results were satisfactory, we developed an automated
Python code for the procedures, to generate the render-
ings in different conditions. The Python code allows to:
load a given CAD geometry, change the material prop-
erties, set different viewing angles for the geometry,
add different types of defects (with given size, rotation
and location on the geometry of the brake caliper), add
a custom background, change the lighting conditions,
render the scene and save it as an image.

In order to make the dataset as varied as possible,
we introduced three light sources into the rendering
environment: a diffuse natural lighting to simulate day-

light conditions, and two additional artificial lights. The
intensity of each light source and the viewing angle
were then made vary randomly, to mimic different day-
light conditions and illuminations of the object. This
procedure was designed to provide different situations
akin to real use, and to make the model invariant to
lighting conditions and camera position. Moreover, to
provide additional flexibility to the model, the training
dataset of images was virtually expanded using data
augmentation (Mumuni & Mumuni, 2022), where sat-
uration, brightness and contrast were made randomly
vary during training operations. This procedure has
allowed to consistently increase the number and variety
of the images in the training dataset.

The developed automated pre-processing steps eas-
ily allows for batch generation of thousands of different
images to be used for training of the neural networks.
This possibility is key for proper training of the neural
networks, as the variability of the input images allows
the models to learn all the possible features and details
that may change during real operating conditions.

The first tests using such virtual database have
shown that, although the generated images were very
similar to real photographs, the models were not able to
properly recognize the target features in the real images.
Thus, in a tentative to get closer to a proper set of real
images, we decided to adopt a hybrid dataset, where the
virtually generated images were mixed with the avail-
able few real ones. However, given that some possible
defects were missing in the real images, we also decided
to manipulate the images to introduce virtual defects on
real images. The obtained dataset finally included more
than 4,000 images, where 90% was rendered, and 10%
was obtained from real images. To avoid possible bias
in the training dataset, defects were present in 50% of
the cases in both the rendered and real image sets. Thus,
in the overall dataset, the real original images with no
defects were 5% of the total.

Along with the code for the rendering and manip-
ulation of the images, dedicated Python routines were
developed to generate the corresponding data labelling
for the supervised training of the networks, namely the
image masks. Particularly, two masks were generated
for each input image: one for the background removal
operation, and one for the defect identification. In both
cases, the masks consist of a binary (i.e. black and
white) image where all the pixels of a target feature
(i.e. the geometry or defect) are assigned unitary values
(white); whereas, all the remaining pixels are blacked
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(zero values). An example of these masks in relation to
the geometry in Fig. 1 is shown in Fig. 3.

All the generated images were then down-sampled,
that is, their resolution was reduced to avoid unnec-
essary large computational times and (RAM) memory
usage while maintaining the required level of detail
for training of the neural networks. Finally, the input
images and the related masks were split into a mosaic
of smaller tiles, to achieve a suitable size for feeding the
images to the neural networks with even more reduced
requirements on the RAM memory. All the tiles were
processed, and the whole image reconstructed at the
end of the process to visualize the overall final results.

Choice of the model

Within the scope of the present application, a wide
range of possibly suitable models is available (Chen

Fig. 3 Examples of the ground truth for the two target tasks:
background removal (a) and defects recognition (b)

et al., 2021). In general, the choice of the best model
for a given problem should be made on a case-by-case
basis, considering an acceptable compromise between
the achievable accuracy and computational complex-
ity/cost. Too simple models can indeed be very fast
in the response yet have a reduced accuracy. On the
other hand, more complex models can generally pro-
vide more accurate results, although typically requir-
ing larger amounts of data for training, and thus longer
computational times and energy expense. Hence, test-
ing has the crucial role to allow identification of the best
trade-off between these two extreme cases. A bench-
mark for model accuracy can generally be defined in
terms of a confusion matrix, where the model response
is summarized into the following possibilities: True
Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN). This concept can be
summarized as shown in Fig. 4. For the background
removal, Positive (P) stands for pixels belonging to the
brake caliper, while Negative (N) for background pix-
els. For the defect identification model, Positive (P)
stands for non-defective geometry, whereas Negative
(N) stands for defective geometries. With respect to
these two cases, the True/False statements stand for cor-
rect or incorrect identification, respectively. The model
accuracy can be therefore assessed as Géron (2022)

Accuracy = T P + T N

T P + T N + FP + FN
. (1)

Based on this metrics, the accuracy for different
models can then be evaluated on a given dataset,
where typically 80% of the data is used for training
and the remaining 20% for validation. For the defect
recognition stage, the following models were tested:
VGG-16 (Simonyan & Zisserman, 2014), ResNet50,
ResNet101, ResNet152 (He et al., 2016), Inception V1
(Szegedy et al., 2015), Inception V4 and InceptionRes-
Net V2 (Szegedy et al., 2017). Details on the assess-
ment procedure for the different models are provided
in the Supplementary Information file. For the back-
ground removal stage, the DeepLabV3+ (Chen et al.,
2018) model was chosen as the first option, and no
additional models were tested as it directly provided
satisfactory results in terms of accuracy and processing
time. This gives preliminary indication that, from the
point of view of the task complexity of the problem, the
defect identification stage can be more demanding with
respect to the background removal operation for the
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Fig. 4 Confusion matrix
for accuracy assessment of
the neural networks models

case study at hand. Besides the assessment of the accu-
racy according to, e.g., the metrics discussed above,
additional information can be generally collected, such
as too low accuracy (indicating insufficient amount of
training data), possible bias of the models on the data
(indicating a non-well balanced training dataset), or
other specific issues related to missing representative
data in the training dataset (Géron, 2022). This informa-
tion helps both to correctly shape the training dataset,
and to gather useful indications for the fine tuning of
the model after its choice has been made.

Results

Background removal

An initial bias of the model for background removal
arose on the color of the original target geometry (red
color). The model was indeed identifying possible red
spots on the background as part of the target geom-
etry as an unwanted output. To improve the model
flexibility, and thus its accuracy on the identification
of the background, the training dataset was expanded
using data augmentation (Géron, 2022). This technique
allows to artificially increase the size of the train-
ing dataset by applying various transformations to the
available images, with the goal to improve the perfor-
mance and generalization ability of the models. This
approach typically involves applying geometric and/or
color transformations to the original images; in our
case, to account for different viewing angles of the
geometry, different light exposures, and different color
reflections and shadowing effects. These improvements
of the training dataset proved to be effective on the per-
formance for the background removal operation, with
a validation accuracy finally ranging above 99% and
model response time around 1-2 seconds. An example

of the output of this operation for the geometry in Fig. 1
is shown in Fig. 5.

While the results obtained were satisfactory for the
original (red) color of the calipers, we decided to test
the model ability to be applied on brake calipers of other
colors as well. To this, the model was trained and tested
on a grayscale version of the images of the calipers,
which allows to completely remove any possible bias of
the model on a specific color. In this case, the validation
accuracy of the model was still obtained to range above
99%; thus, this approach was found to be particularly
interesting to make the model suitable for background
removal operation even on images including calipers
of different colors.

Defect recognition

An overview of the performance of the tested mod-
els for the defect recognition operation on the original
geometry of the caliper is reported in Table 1 (see also
the Supplementary Information file for more details on

Fig. 5 Target geometry after background removal

123



   48 Page 8 of 16 Energy Efficiency            (2024) 17:48 

Table 1 Comparison of the
models for defect
recognition on our dataset

Model Av [%] Np (×106) Notes

VGG-16 62.5 138 Unprecise

ResNet50 92.8 26 Good

ResNet101 94.6 44,6 Best choice

ResNet152 94.8 230 Slow and complex

Inception v1 91.6 5 Good

Inception v4 94.5 43 Very good

Inception-Resnet v2 94.7 55 Very good but slow

the assessment of different models). The results report
on the achieved validation accuracy (Av) and on the
number of parameters (Np), with this latter being the
total number of parameters that can be trained for each
model (Géron, 2022) to determine the output. Here, this
quantity is adopted as an indicator of the complexity of
each model.

As the results in Table 1 show, the VGG-16 model
was quite unprecise for our dataset, eventually showing
underfitting (Géron, 2022). Thus, we decided to opt for
the Resnet and Inception families of models. Both these
families of models have demonstrated to be suitable for
handling our dataset, with slightly less accurate results
being provided by the Resnet50 and InceptionV1. The
best results were obtained using Resnet101 and Incep-
tionV4, with very high final accuracy and fast process-
ing time (in the order ∼ 1 second). Finally, Resnet152
and InceptionResnetV2 models proved to be slightly
too complex or slower for our case; they indeed pro-
vided excellent results but taking longer response times
(in the order of ∼ 3-5 seconds). The response time is
indeed affected by the complexity (Np) of the model
itself, and by the hardware used. In our work, GPUs
were used for training and testing all the models, and
the hardware conditions were kept the same for all mod-
els.

Based on the results obtained, ResNet101 model
was chosen as the best solution for our application, in
terms of accuracy and reduced complexity. After fine-
tuning operations, the accuracy that we obtained with
this model reached nearly 99%, both in the validation
and test datasets. This latter includes target real images,
that the models have never seen before; thus, it can be
used for testing of the ability of the models to general-
ize the information learnt during the training/validation
phase.

The trend in the accuracy increase and loss function
decrease during training of the Resnet101 model on
the original geometry are shown in Fig. 6(a) and (b),
respectively. Particularly, the loss function quantifies
the error between the predicted output during training
of the model and the actual target values in the dataset.
In our case, the loss function is computed using the
cross-entropy function and the Adam optimiser (Géron,
2022). The error is expected to reduce during the train-
ing, which eventually leads to more accurate predic-
tions of the model on previously-unseen data. The com-
bination of accuracy and loss function trends, along
with other control parameters, is typically used and
monitored to evaluate the training process, and avoid
e.g. under- or over-fitting problems (Géron, 2022). As
Fig. 6(a) shows, the accuracy experiences a sudden step
increase during the very first training phase (epochs,
that is, the number of times the complete database is
repeatedly scrutinized by the model during its train-
ing (Géron, 2022)). The accuracy then increases in a
smooth fashion with the epochs, until an asymptotic
value is reached both for training and validation accu-
racy. These trends in the two accuracy curves can gener-
ally be associated with a proper training; indeed, being
the two curves close to each other may be interpreted
as an absence of under-fitting problems. On the other
hand, Fig. 6(b) shows that the loss function curves are
close to each other, with a monotonically-decreasing
trend. This can be interpreted as an absence of over-
fitting problems, and thus of proper training of the
model.

Finally, an example output of the overall analysis is
shown in Fig. 7, where the considered input geometry
is shown (a), along with the identification of the defects
(b), (c) and (d) obtained from the developed protocol.
Note that, here the different defects have been sepa-
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Fig. 6 Accuracy (a) and loss function (b) curves for the Resnet101 model during training

rated in several figures for illustrative purposes; how-
ever, the analysis yields the identification of defects
on one single image. In this work, a binary classifica-
tion was performed on the considered brake calipers,
where the output of the models allows to discriminate
between defective or non-defective components based
on the presence or absence of any of the considered
defects. Note that, fine tuning of this discrimination
is ultimately with the user’s requirements. Indeed, the
model output yields as the probability (from 0 to 100%)
of the possible presence of defects; thus, the discrimi-

nation between a defective or non-defective part is ulti-
mately with the user’s choice of the acceptance thresh-
old for the considered part (50% in our case). Therefore,
stricter or looser criteria can be readily adopted. Even-
tually, for particularly complex cases, multiple models
may also be used concurrently for the same task, and
the final output defined based on a cross-comparison
of the results from different models. As a last remark
on the proposed procedure, note that here we adopted a
binary classification based on the presence or absence
of any defect; however, further classification of the dif-

Fig. 7 Final results of the analysis on the defect identification: (a) considered input geometry, (b), (c) and (d) identification of a scratch
on the surface, partially missing logo, and painting defect respectively (highlighted in the red frames)
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ferent defects could also be implemented, to distinguish
among different types of defects (multi-class classifi-
cation) on the brake calipers.

Energy saving

Illustrative scenarios

Given that the proposed tools have not yet been imple-
mented and tested within a real industrial production
line, we analyze here three perspective scenarios to pro-
vide a practical example of the potential for energy
savings in an industrial context. To this, we consider
three scenarios, which compare traditional human-
based control operations and a quality control system
enhanced by the proposed Machine Learning (ML)
tools. Specifically, here we analyze a generic brake
caliper assembly line formed by 14 stations, as outlined
in Table 1 in the work by Burduk and Górnicka (2017).
This assembly line features a critical inspection station
dedicated to defect detection, around which we con-
struct three distinct scenarios to evaluate the efficacy
of traditional human-based control operations versus
a quality control system augmented by the proposed
ML-based tools, namely:

First Scenario (S1): Human-Based Inspection. The
traditional approach involves a human operator respon-
sible for the inspection tasks.

Second Scenario (S2): Hybrid Inspection. This sce-
nario introduces a hybrid inspection system where our
proposed ML-based automatic detection tool assists
the human inspector. The ML tool analyzes the brake
calipers and alerts the human inspector only when it
encounters difficulties in identifying defects, specifi-
cally when the probability of a defect being present
or absent falls below a certain threshold. This col-
laborative approach aims to combine the precision of
ML algorithms with the experience of human inspec-
tors, and can be seen as a possible transition scenario
between the human-based and a fully-automated qual-
ity control operation.

Third Scenario (S3): Fully Automated Inspection. In
the final scenario, we conceive a completely automated
defect inspection station powered exclusively by our
ML-based detection system. This setup eliminates the
need for human intervention, relying entirely on the
capabilities of the ML tools to identify defects.

For simplicity, we assume that all the stations are
aligned in series without buffers, minimizing unneces-

sary complications in our estimations. To quantify the
beneficial effects of implementing ML-based quality
control, we adopt the Overall Equipment Effectiveness
(OEE) as the primary metric for the analysis. OEE is
a comprehensive measure derived from the product of
three critical factors, as outlined by Nota et al. (2020):
Availability (the ratio of operating time with respect
to planned production time); Performance (the ratio of
actual output with respect to the theoretical maximum
output); and Quality (the ratio of the good units with
respect to the total units produced). In this section, we
will discuss the details of how we calculate each of
these factors for the various scenarios.

To calculate Availability (A), we consider an 8-hour
work shift (tshi f t ) with 30 minutes of breaks (tbreak)
during which we assume production stop (except for
the fully automated scenario), and 30 minutes of sched-
uled downtime (tsched ) required for machine clean-
ing and startup procedures. For unscheduled downtime
(tunsched ), primarily due to machine breakdowns, we
assume an average breakdown probability (ρdown) of
5% for each machine, with an average repair time of
one hour per incident (tdown). Based on these assump-
tions, since the Availability represents the ratio of run
time (trun) to production time (tpt ), it can be calculated
using the following formula:

A = trun
tpt

= tshi f t − tbreak − tsched − tunsched
tshi f t − tbreak − tsched

(2)

with the unscheduled downtime being computed as fol-
lows:

tunsched = tdown

(
1 − (1 − ρdown)

N
)

(3)

where N is the number of machines in the production
line and 1 − (1 − ρdown)

N represents the probability
that at least one machine breaks during the work shift.
For the sake of simplicity, the tdown is assumed constant
regardless of the number of failures.

Table 2 presents the numerical values used to cal-
culate Availability in the three scenarios. In the sec-
ond scenario, we can observe that integrating the auto-
mated station leads to a decrease in the first factor of
the OEE analysis, which can be attributed to the addi-
tional station for automated quality-control (and the
related potential failure). This ultimately increases the
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Table 2 Comparison of Availability across the three scenarios
(S1: Human-Based Inspection, S2: Hybrid Inspection, S3: Fully
Automated Inspection)

S1 S2 S3

tshi f t [min] 480 480 480

tbreak [min] 30 30 0

tsched [min] 30 30 30

tunsched [min] 29.2 30.7 30.7

N [-] 13 14 14

A [%] 93.05 92.68 93.17

estimation of the unscheduled downtime. In the third
scenario, the detrimental effect of the additional sta-
tion compensates the beneficial effect of the automated
quality control on reducing the need for pauses during
operator breaks; thus, the Availability for the third sce-
nario yields as substantially equivalent to the first one
(baseline).

The second factor of OEE, Performance (P), assesses
the operational efficiency of production equipment rel-
ative to its maximum designed speed (tline). This evalu-
ation includes accounting for reductions in cycle speed
and minor stoppages, collectively termed as speed
losses. These losses are challenging to measure in
advance, as performance is typically measured using
historical data from the production line. For this analy-
sis, we are constrained to hypothesize a reasonable esti-
mate of 60 seconds of time lost to speed losses (tlosses)
for each work cycle. Although this assumption may
appear strong, it will become evident later that, within
the context of this analysis – particularly regarding the
impact of automated inspection on energy savings – the
Performance (like the Availability) is only marginally
influenced by introducing an automated inspection sta-
tion. To account for the effect of automated inspection
on the assembly line speed, we keep the time required
by the other 13 stations (t∗line) constant while vary-
ing the time allocated for visual inspection (tinspect ).
According to Burduk and Górnicka (2017), the total
operation time of the production line, excluding inspec-
tion, is 1263 seconds, with manual visual inspection
taking 38 seconds. For the fully automated third sce-
nario, we assume an inspection time of 5 seconds,
which encloses the photo collection, pre-processing,
ML-analysis, and post-processing steps. In the second
scenario, instead, we add an additional time to the pure
automatic case to consider the cases when the confi-

dence of the ML model falls below 90%. We assume
this happens once in every 10 inspections, which is
a conservative estimate, higher than that we observed
during model testing. This results in adding 10% of
the human inspection time to the fully automated time.
Thus, when tlosses are known, Performance can be
expressed as follows:

P = tline
tline + tlosses

= t∗line + tinspect
t∗line + tinspect + tlosses

(4)

The calculated values for Performance are presented
in Table 3, and we can note that the modification in
inspection time has a negligible impact on this factor
since it does not affect the speed loss or, at least to
our knowledge, there is no clear evidence to suggest
that the introduction of a new inspection station would
alter these losses. Moreover, given the specific linear
layout of the considered production line, the inspection
time change has only a marginal effect on enhancing
the production speed. However, this approach could
potentially bias our scenario towards always favouring
automation. To evaluate this hypothesis, a sensitivity
analysis which explores scenarios where the production
line operates at a faster pace will be discussed in the
next subsection.

The last factor, Quality (Q), quantifies the ratio of
compliant products out of the total products manufac-
tured, effectively filtering out items that fail to meet the
quality standards due to defects. Given the objective of
our automated algorithm, we anticipate this factor of
the OEE to be significantly enhanced by implementing
the ML-based automated inspection station. To esti-
mate it, we assume a constant defect probability for the
production line (ρde f ) at 5%. Consequently, the num-

Table 3 Comparison of Performance across the three scenarios
(S1: Human-Based Inspection, S2: Hybrid Inspection, S3: Fully
Automated Inspection)

S1 S2 S3

t∗line [s] 1263 1263 1263

tinspect [s] 38 8,8 5

tlosses [s] 60 60 60

P [%] 95.59 95.49 95.48
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ber of defective products (Ndef ) during the work shift
is calculated as Nunit ·ρde f , where Nunit represents the
average number of units (brake calipers) assembled on
the production line, defined as:

Nunit = tshi f t − tbreak − tsched − tunsched
t∗line + tinspect + tlosses

. (5)

To quantify defective units identified, we consider the
inspection accuracy (ρacc), where for human visual
inspection, the typical accuracy is 80% (Sundaram &
Zeid, 2023), and for the ML-based station, we use the
accuracy of our best model, i.e., 99%. Additionally,
we account for the probability of the station mistak-
enly identifying a caliper as with a defect even if it is
defect-free, i.e., the false negative rate (ρFN ), defined
as

ρFN = FN

FN + FP
. (6)

In the absence of any reasonable evidence to justify a
bias on one mistake over others, we assume a uniform
distribution for both human and automated inspections
regarding error preference, i.e. we set ρH

FN = ρML
FN =

ρFN = 50%. Thus, the number of final compliant
goods (Ngoods), i.e., the calipers that are identified as
quality-compliant, can be calculated as:

Ngoods = Nunit − Ndetect (7)

= Nunit − T N − FN

= Nunit − Nunit · ρde f · ρacc−
Nunit · (

1 − ρde f
) · (1 − ρacc) · ρFN ,

where Ndetect is the total number of detected defec-
tive units, comprising T N (true negatives, i.e. correctly
identified defective calipers) and FN (false negatives,
i.e. calipers mistakenly identified as defect-free). The
Quality factor can then be computed as:

Q = Ngoods

Nunit
= Nunit − Ndetect

Nunit
(8)

Table 4 summarizes the Quality factor calculation,
showcasing the substantial improvement brought by the
ML-based inspection station due to its higher accuracy
compared to human operators.

Finally, we can determine the Overall Equipment
Effectiveness by multiplying the three factors previ-

Table 4 Comparison of Quality across the three scenarios
(S1: Human-Based Inspection, S2: Hybrid Inspection, S3: Fully
Automated Inspection)

S1 S2 S3

Nunit [-] 17.23 17.53 18.94

Ndef [-] 0.86 0.88 0.88

T N [-] 0.89 0.87 0.87

FN [-] 1.64 0.09 0.09

Ndetect [-] 2.33 0.95 0.95

Q [%] 86.50 94.58 94.58

ously computed. Additionally, we can estimate the
recall rate (ρR), which reflects the rate at which a cus-
tomer might reject products. This is derived from the
difference between the total number of defective units,
Ndef , and the number of units correctly identified as
defective, T N , indicating the potential for defective
brake calipers that may bypass the inspection process.
In Fig. 8 we summarize the outcomes of the three sce-
narios. It is crucial to note that the scenarios incorpo-
rating the automated defect detector, S2 and S3, sig-
nificantly enhance the Overall Equipment Effective-
ness, primarily through substantial improvements in
the Quality factor. Among these, the fully automated
inspection scenario, S3, emerges as a slightly supe-

Fig. 8 Overall Equipment Effectiveness (OEE) analysis for
three scenarios (S1: Human-Based Inspection, S2: Hybrid
Inspection, S3: Fully Automated Inspection). The height of the
bars represents the percentage of the three factors A: Availability,
P: Performance, and Q: Quality, which can be interpreted from
the left axis. The green bars indicate the OEE value, derived from
the product of these three factors. The red line shows the recall
rate, i.e. the probability that a defective product is rejected by the
client, with values displayed on the right red axis
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rior option, thanks to its additional benefit in remov-
ing the breaks and increasing the speed of the line.
However, given the different assumptions required for
this OEE study, we shall interpret these results as illus-
trative, and considering them primarily as compara-
tive with the baseline scenario only. To analyze the
sensitivity of the outlined scenarios on the adopted
assumptions, we investigate the influence of the line
speed and human accuracy on the results in the next
subsection.

Sensitivity analysis

The scenarios described previously are illustrative and
based on several simplifying hypotheses. One of such
hypotheses is that the production chain layout operates
entirely in series, with each station awaiting the arrival
of the workpiece from the preceding station, result-
ing in a relatively slow production rate (1263 seconds).
This setup can be quite different from reality, where
slower operations can be accelerated by installing addi-
tional machines in parallel to balance the workload and
enhance productivity. Moreover, we utilized a litera-
ture value of 80% for the accuracy of the human visual
inspector operator, as reported by Sundaram and Zeid
(2023). However, this accuracy can vary significantly
due to factors such as the experience of the inspector
and the defect type.

A sensitivity analysis on these two factors was con-
ducted to address these variations. The assembly time
of the stations (excluding visual inspection), t∗line, was
varied from 60 s to 1500 s, and the human inspection
accuracy, ρacc, ranged from 50% (akin to a random
guesser) to 100% (representing an ideal visual inspec-
tor); meanwhile, the other variables were kept fixed.

The comparison of the OEE enhancement for the
two scenarios employing ML-based inspection against
the baseline scenario is displayed in the two maps in
Fig. 9. As the figure shows, due to the high accuracy
and rapid response of the proposed automated inspec-
tion station, the area representing regions where the
process may benefit energy savings in the assembly
lines (indicated in red shades) is significantly larger
than the areas where its introduction could degrade per-
formance (indicated in blue shades). However, it can
be also observed that the automated inspection could
be superfluous or even detrimental in those scenarios
where human accuracy and assembly speed are very
high, indicating an already highly accurate workflow.

a) S2 vs S1

b) S3 vs S1

Fig. 9 Effect of assembly time for stations (excluding visual
inspection), t∗line, and human inspection accuracy, ρacc, on the
OEE analysis. (a) The subplot shows the difference between the
scenario S2 (Hybrid Inspection) and the baseline scenario S1
(Human Inspection), while subplot (b) displays the difference
between scenario S3 (Fully Automated Inspection) and the base-
line. The maps indicate in red the values of t∗line and ρacc where
the integration of automated inspection stations can significantly
improve OEE, and in blue where it may lower the score. The
dashed lines denote the breakeven points, and the circled points
pinpoint the values of the scenarios used in the “Illustrative sce-
nario” Subsection.

In these cases, and particularly for very fast production
lines, short times for quality control can be expected to
be key (beyond accuracy) for the optimization.

Finally, it is important to remark that the blue region
(areas below the dashed break-even lines) might expand
if the accuracy of the neural networks for defect detec-
tion is lower when implemented in an real produc-
tion line. This indicates the necessity for new rounds
of active learning and an augment of the ratio of real
images in the database, to eventually enhance the per-
formance of the ML model.
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Conclusions

Industrial quality control processes on manufactured
parts are typically achieved by human visual inspec-
tion. This usually requires a dedicated handling sys-
tem, and generally results in a slower production rate,
with the associated non-optimal use of the energy
resources. Based on a practical test case for quality
control on brake caliper manufacturing, in this work
we have reported on a developed workflow for integra-
tion of Machine Learning methods to automatize the
process. The proposed approach relies on image anal-
ysis via Deep Convolutional Neural Networks. These
models allow to efficiently extract information from
images, thus possibly representing a valuable alterna-
tive to human inspection.

The proposed workflow relies on a two-step proce-
dure on the images of the brake calipers: first, the back-
ground is removed from the image; second, the geome-
try is inspected to identify possible defects. These two
steps are accomplished thanks to two dedicated neural
network models, an encoder-decoder and an encoder
network, respectively. Training of these neural net-
works typically requires a large number of represen-
tative images for the problem. Given that, one such
database is not always readily available, we have pre-
sented and discussed an alternative methodology for
the generation of the input database using 3D render-
ings. While integration of the database with real pho-
tographs was required for optimal results, this approach
has allowed fast and flexible generation of a large
base of representative images. The pre-processing steps
required for data feeding to the neural networks and
their training has been also discussed.

Several models have been tested and evaluated, and
the best one for the considered case identified. The
obtained accuracy for defect identification reaches ∼
99% of the tested cases. Moreover, the response of the
models is fast (in the order of few seconds) on each
image, which makes them compliant with the most typ-
ical industrial expectations.

In order to provide a practical example of possible
energy savings when implementing the proposed ML-
based methodology for quality control, we have ana-
lyzed three perspective industrial scenarios: a baseline
scenario, where quality control tasks are performed by a
human inspector; a hybrid scenario, where the proposed

ML automatic detection tool assists the human inspec-
tor; a fully-automated scenario, where we envision a
completely automated defect inspection. The results
show that the proposed tools may help increasing the
Overall Equipment Effectiveness up to ∼ 10% with
respect to the considered baseline scenario. However, a
sensitivity analysis on the speed of the production line
and on the accuracy of the human inspector has also
shown that the automated inspection could be super-
fluous or even detrimental in those cases where human
accuracy and assembly speed are very high. In these
cases, reducing the time required for quality control
can be expected to be the major controlling parameter
(beyond accuracy) for optimization.

Overall the results show that, with a proper tun-
ing, these models may represent a valuable resource
for integration into production lines, with positive out-
comes on the overall effectiveness, and thus ultimately
leading to a better use of the energy resources. To
this, while the practical implementation of the proposed
tools can be expected to require contained investments
(e.g. a portable camera, a dedicated workstation and an
operator with proper training), in field tests on a real
industrial line would be required to confirm the poten-
tial of the proposed technology.
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