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Abstract This paper examines the problem of attri-
bution in the evaluation of energy efficiency program 
impact. The methodological problem concerns the 
observability of consumer behavior under the base-
line condition of no program intervention. The sta-
tistical solution to the problem, which entails rand-
omized exposure of targeted individuals to program 
influence, is not a viable alternative in most applica-
tions. Randomized opt-in and randomized encour-
agement designs do not conform to this requirement 
because all targeted individuals are encouraged to 
participate in the program, resulting in negative expo-
sure bias. Quasi-experimental methods which utilize 
non-targeted individuals or targeted nonparticipants 
as baseline surrogates are further subject to selec-
tion bias of unknown magnitude and direction. Valid 
attribution in the general case of unrestricted eligibil-
ity depends on prior knowledge of the determinants 
of measure adoption and program participation. 
In default of such knowledge, evaluators must rely 
upon structural assumptions that have no foundation 
in empirical science. On the other hand, established 
measurement and verification methods which exploit 
scientific knowledge of the determinants of end-use 
energy consumption should be utilized to obtain unbi-
ased estimates of individual measure and gross pro-
gram energy savings.

Keywords Energy efficiency · Program evaluation · 
Causal inference · Net savings · Experimental and 
non-experimental methods

Introduction

The methods employed to quantify energy efficiency 
program impact can be broadly categorized as either 
experimental, quasi-experimental, or survey meth-
ods. Experimental methods incorporate randomized 
eligibility into program design. Quasi-experimental 
methods are based on comparisons of program par-
ticipants and eligible nonparticipants or comparisons 
of targeted and non-targeted populations. Survey 
methods solicit responses from participants, nonpar-
ticipants, and trade allies to hypothetical questions 
regarding market behavior under the counterfactual 
condition of no program implementation. Whereas 
experimental methods seek to selectively control pro-
gram influence on targeted individuals, non-exper-
imental methods are applied to programs in which 
eligibility to participate within the target population 
is unrestricted, which are the norm given the policy 
objective to make program benefits available to all 
individuals within the market segments addressed by 
each program.

All programs are designed to promote energy effi-
ciency measure adoption. Promotional activities uti-
lize various communication channels to inform con-
sumers of the benefits of improved end-use efficiency 
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as well as the availability of program incentives to 
purchase products that conform to qualifying stand-
ards of energy efficiency and performance. A primary 
policy objective is market transformation, i.e., the 
reduction of market barriers to adoption via the dis-
semination of information pertaining to the availabil-
ity, performance, and economic benefits of high-effi-
ciency alternatives to less efficient energy-consuming 
equipment. Marketing channels include mass media, 
utility web sites, retail outlets, contractors, whole-
sale equipment vendors, utility bill inserts, and direct 
mail. Marketing and outreach activities are typically 
designed to achieve maximum exposure to program 
influence, in order to promote energy savings, partici-
pation, and program cost-effectiveness. Indeed many 
states have adopted the requirement that program 
portfolios be designed and implemented to achieve all 
cost-effective potential savings to maximize the net 
benefits to consumers.

Energy efficiency program impact is defined in 
terms of the difference between the energy con-
sumption (net savings) and measure adoption (net 
adoption) of targeted individuals under the mutu-
ally exclusive conditions of program implementa-
tion and non-implementation (Violette & Rathbun, 
2017). Because impact evaluations are retrospective, 
outcomes under the former (program) condition are 
observable whereas under the latter condition, termed 
the “baseline” by convention, they are not. In his 
seminal paper on causal inference, Holland (1986) 
referred to the impossibility of observing both pro-
gram and baseline behavior of the same individual as 
“the fundamental problem of causal inference.” The 
focus of Holland’s discussion is on the “statistical 
solution” to this problem formulated in terms of the 
potential outcomes model of causal inference devel-
oped by Donald Rubin.

Rubin’s model provides a formal treatment of the 
problem of attribution which is generally applicable 
to empirical studies that seek to quantify the causal 
effect of an intervention on a population of tar-
geted individuals and consequently has been widely 
adopted by investigators and evaluators working in 
diverse disciplines including statistics, psychology, 
education, sociology, political science, economics, 
epidemiology, and clinical research (Rubin, 1990; 
Winship & Morgan, 1999; Greenland & Robins, 
2009; Sobel, 2009; Stuart, 2010; Yamamoto, 2012; 
Imbens & Rubin, 2015; Abadie & Cattaneo, 2018). 

The generic formulation of causal effects in terms 
of potential outcomes allows for a coherent and 
transparent framework of analysis that is directly 
applicable to the diverse array of methods and pro-
grams which comprise the main body of current 
practice of impact evaluation. Nevertheless, it has 
received scant attention among program evaluation 
practitioners in the energy efficiency field of appli-
cation, suggesting that insights into the problem of 
attribution and the transparency of model assump-
tions afforded by this framework have not been fully 
internalized in current practice.

Since the inception of energy efficiency pro-
grams in the late 1970s, program evaluators and 
utility regulators in the USA have struggled to 
achieve consensus on a standard of practice to 
establish confidence in the inference of attribution 
from impact evaluation findings. In their review of 
emerging issues in the evaluation of energy-effi-
ciency programs, Vine et  al. (2012) observe that, 
after decades of program evaluation experience, a 
number of issues are still unresolved and, in cer-
tain cases, “are highly contested,” noting that the 
authors themselves are not in agreement on the res-
olution of some of the issues discussed in the paper. 
The review identifies net savings as one of the most 
important issues that are yet to be resolved, both in 
terms of its technical definition and problems with 
estimation, noting the implications of jurisdictional 
inconsistencies in definition for the evaluation 
methods employed and the resulting values derived 
therefrom.

The American Council for an Energy-Efficient 
Economy (ACEEE) conducted a national survey of 
current practice and expert opinion on this subject. 
The survey found that there is remarkable variation 
among states in the approach taken to the net sav-
ings issue. The authors were particularly struck by 
the divergence of opinion among the surveyed evalu-
ation experts: “Even among evaluation professionals, 
there is no consensus on whether net savings is the 
metric that should be used, much less on what spe-
cific methodologies should be utilized to determine 
net savings” (Kushler et  al., 2014, p. 19). The lack 
of consensus on methodology is underscored by the 
introductory comments to Chapter 21 of the Depart-
ment of Energy/National Renewable Energy Labora-
tory (DOE/NREL) Uniform Methods Project (UMP), 
which is devoted to the estimation of net savings:
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The chapter provides a definition of net sav-
ings, which remains an unsettled topic both 
within the EE evaluation community and across 
the broader public policy evaluation commu-
nity, particularly in the context of attribution of 
savings to a program. The chapter differs from 
the measure-specific Uniform Methods Project 
(UMP) chapters in both its approach and work 
product. Unlike other UMP resources that pro-
vide recommended protocols for determining 
gross energy savings, this chapter describes 
and compares the current industry practices for 
determining net energy savings but does not 
prescribe methods. (Violette & Rathbun, 2017, 
p. 1)

The restriction of the UMP net savings guidelines 
to a description of current practice and the deliber-
ate exclusion of specific recommendations concern-
ing methodological approach mirrors the reluctance 
of the expert respondents to the ACEEE survey to 
characterize any of the methods employed in current 
practice as superior to any others, finding them all to 
be acceptable alternatives and commenting further 
that “best practice would be to use multiple methods 
and triangulation to develop defensible estimates” 
(Kushler et al., 2014, p. 18). Regulators, for their part, 
must rely on evaluated savings to assess program per-
formance and cost-effectiveness, but, in default of a 
working consensus among evaluators on a normative 
methodological standard for valid attribution, they are 
placed at a distinct disadvantage in their review and 
interpretation of reported evaluation findings because 
there are no established criteria to assess the credibil-
ity of the results.

This paper presents a critical examination of the 
methods utilized by evaluators of utility ratepayer-
funded energy efficiency programs to quantify the net 
impact of program implementation. The substance 
of this critique is an analysis of the sources of bias 
that undermine a valid inference of attribution and 
the credibility of the implicit assumptions required to 
sustain such an inference. The analysis is structured 
in terms of policy-relevant impact parameters defined 
by program and baseline potential outcomes and the 
processes employed by different methods to generate 
observations on the potential outcomes. The objec-
tive of this approach is to translate the general con-
ditions for valid attribution formalized by Rubin and 

others into context-specific assumptions that energy 
efficiency program evaluators must make about the 
market behavior of targeted individuals in order to 
justify their interpretation of reported estimates of 
program impact. The articulation of these assump-
tions in terms familiar to energy efficiency program 
evaluators is intended to clarify the summative and 
formative interpretations which may or may not be 
warranted by study findings.

This formulation yields new insights into the com-
parative validity of alternative methods. The analysis 
reveals that accepted methods, as indicated by com-
mon practice or EM&V guidance documents, exhibit 
categorical differences when seen through the lens of 
the potential outcomes model. Foremost is the dis-
tinction between experimental and non-experimental 
methods, which depend on radically different assump-
tions to support valid attribution. There are, moreover, 
methods that may be categorized as experimental, 
because they employ some form of randomized selec-
tion, which cannot realistically be characterized as 
equivalent or even close substitutes for methods that 
selectively control program eligibility, as discussed 
below. These core methodological differences directly 
contradict the view that, since all methods are subject 
to some form of bias, the choice of a particular alter-
native is reducible to practical considerations such as 
applicability to the type of program being evaluated, 
data availability, evaluation cost, or other resource 
requirements. On the contrary, methods which rest 
on fundamentally different identifying assumptions 
or different baseline surrogates are not “complemen-
tary.” They are intrinsically inconsistent because they 
are not quantifying equivalent parameters of the tar-
get population. The implications of the findings of the 
analysis for EM&V practice and policy are explored 
in the discussion. The discussion concludes with some 
thoughts on changes to current practice that could be 
undertaken by program evaluators to address some of 
the issues raised in this critique.

The statistical solution

The two essential elements in Rubin’s exposition are 
(1) definition of the causal estimand (impact param-
eter) as a comparison of the individual program and 
baseline potential outcomes, termed the “unit-level 
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causal effects,” or the population average of the unit-
level effects, termed the “summary causal effect,” 
and (2) a “posited assignment mechanism” which 
specifies a probability model of the selection of tar-
geted individuals for exposure or non-exposure to the 
program intervention (Rubin, 2005). Rubin (1990, 
2005) credits the statistician Jerzy Neyman with 
the origination of the potential outcomes formula-
tion for application to the design of agricultural field 
experiments. In addition to introducing the potential 
outcomes notation, Neyman (1923) proved that the 
difference between the average of the observed out-
comes of individuals randomly selected for exposure 
to an experimental treatment and the average of the 
observed outcomes of individuals randomly selected 
for non-exposure to the treatment is an unbiased 
estimator of the population average of the unit-level 
causal effects, i.e., the average difference between the 
program and baseline potential outcomes for every 
individual, only one of which is observable. This 
finding establishes the formal validity of causal infer-
ence in randomized experiments. The designation 
“Neyman-Rubin Model” (NRM) employed in this 
paper follows Pearl (1996).

In Neyman’s formulation, the statistical solution to 
the problem of attribution requires that a subset of the 
target population of N energy consumers be randomly 
selected for exposure to the influence of program 
implementation, a design known as a completely ran-
domized experiment. The subsets of n exposed and 
N–n non-exposed individuals thus represent random 
samples selected from the target population. Under 
this design, the average of the observed outcomes 
(e.g., measure adoption, energy consumption) for 
each subset is an unbiased estimator of the corre-
sponding target population parameter and the differ-
ence between the average outcomes of the exposed 
and non-exposed subsets is an unbiased estimator of 
net impact (adoption/savings), which, in Rubin’s par-
lance, is the summary causal effect.

Randomized eligibility is intended to selectively 
control exposure to program influence. Success-
ful implementation of this program design requires 
that targeted individuals excluded from eligibility to 
participate be effectively insulated from all program 
influence, including marketing content pertaining to 
the benefits of measure adoption, in order to simu-
late the baseline condition of non-implementation. 
The program is thus designed to be a controlled 

experiment that yields an unbiased estimate of pro-
gram impact, calculated as the difference between the 
average outcomes of the groups of eligible and ineli-
gible individuals randomly selected from the target 
population. Effective exclusion from program influ-
ence is a prerequisite for the validity of any program 
design which purports to establish an observable 
condition that can serve as a valid surrogate for the 
unobservable baseline condition of non-implementa-
tion. However, selective exposure requires restricted 
program marketing as well as restricted eligibility 
because, for an unknown segment of the population, 
the threshold of measure adoption may be purely 
informational, not transactional or financial.

The feasibility of controlled exposure is further 
complicated by the effects of market transformation 
— in economic terms, “general equilibrium” effects 
— on market adoption of energy efficiency meas-
ures. Even when consumers can be selectively insu-
lated from the direct influence of program promo-
tional activities, depending on the scope and scale of 
program implementation, they will be subject to the 
potential impact of program-induced changes in the 
production, availability, and price of efficient alterna-
tive products and services.

Failure to control program influence on targeted 
individuals whose eligibility is restricted results in 
exposure bias. If it is assumed that program imple-
mentation has the potential to induce some ineligible 
individuals to adopt energy efficiency measures, then 
the estimates of baseline energy consumption and net 
energy savings will be negatively biased. While elim-
ination of exposure bias is a necessary condition for 
valid attributional inference, it is not sufficient unless 
restriction of eligibility is randomized. Even though 
the ineligible individuals are not subject to program 
influence, their observed energy consumption may 
not be representative of the baseline consumption of 
the target population. This is the problem of selection 
bias. Thus, experimental methods which effectively 
randomize exposure to program influence, via rand-
omized selection for eligibility, can eliminate both 
sources of bias and yield valid estimates of attribut-
able program savings.

In energy efficiency applications, the prototypical 
example of randomized eligibility is the randomized 
opt-out (ROO) design which entails the random selec-
tion of targeted individuals (“treatment group”) to 
receive home energy reports containing site-specific 
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information, including historical energy consump-
tion data and recommended actions to reduce con-
sumption. In this design, selected individuals are 
sent monthly, bimonthly, or quarterly reports, unless 
they inform the program administrator that they have 
elected to opt out of the program. The treatment 
group is thus comprised of all individuals who are 
selected, informed about the program, and received 
an initial report, regardless of their decision to par-
ticipate or not to participate, i.e., to opt out. Under 
the assumption of no exposure bias, that is, no influ-
ence of the intervention on individuals who are not 
selected to receive the reports (“control group”), the 
difference between the measured average energy con-
sumption of the control and treatment groups yields 
an unbiased estimate of average net savings. The net 
savings estimand is the difference between the aver-
age potential response of targeted individuals if all 
were sent the initial mailing of home energy reports 
and the average potential response if no targeted indi-
viduals were sent reports.

Net savings thus accounts for the impact of pro-
gram implementation on the energy consumption 
of both program participants and nonparticipants. 
Depending on the program design, participants are 
defined as eligible individuals who either voluntar-
ily opt in to receive excludable program benefits or 
voluntarily decline to opt out. In certain programs, 
e.g., “upstream” interventions, participants may be 
unaware that they are the recipients of program ben-
efits, so there is no conscious decision to participate 
or not to participate. In any case, the defining char-
acteristic of net impact, whether the potential out-
come is energy consumption or measure adoption, is 
the comparison of the program and baseline potential 
outcomes of all targeted individuals. The population 
average impact is directly scalable to the population 
total impact via multiplication by the size of the tar-
get population. Program net savings is implicitly a 
weighted average of participant and nonparticipant 
net savings, so its value reflects the rate of participa-
tion, differences between the participant and nonpar-
ticipant rates of measure adoption attributable to the 
intervention as well as the respective differences in 
the average measure savings per targeted participant 
or nonparticipant.

The net impact of randomized eligibility is 
sometimes referred to as an “intention-to-treat” 
(ITT) parameter (Imbens & Rubin, 2015), because 

it captures the average causal effect of treatment 
“assignment” on potential outcomes rather than the 
average effect on individuals who “received” the 
treatment. In the context of energy efficiency pro-
gram evaluation, this terminology is ambiguous, 
if not misleading, because the intervention under 
evaluation is program implementation. The primary 
focus is the impact on all individuals who are eli-
gible to participate, which includes the effective-
ness of marketing efforts to make individuals aware 
of the program and to inform them of the potential 
benefits of measure adoption and the incremental 
excludable benefits of program participation. The 
scope of potential influence is not restricted to pro-
gram participants because targeted individuals may 
be induced to adopt measures but decline to partici-
pate, and program effectiveness depends critically 
on the overall rate of net adoption by all individu-
als exposed to the influence of program implemen-
tation. The ROO program design provides a good 
illustration of the fact that program participation 
is never under the direct control of the program 
administrator, but is rather a potential outcome of 
the intervention that may not be realized by assign-
ment to receive the home energy report. Stewart and 
Todd (2017, p. 9) make the point: “For example, 
some households may opt out of an energy reports 
program, or they may fail to notice or simply 
ignore the energy reports. Thus, the effect is ITT, 
and the evaluator should base the results on the ini-
tial assignment of subjects to the treatment group, 
whether or not subjects actually complied with the 
treatment.”

Allowing for the possibility of program impact on 
nonparticipants rules out the separate identification 
of participant and nonparticipant net savings and net 
adoption impact parameters, meaning that the observ-
able data cannot differentiate between alternative val-
ues of the impact on the respective subpopulations of 
the target population. Of course, under the assump-
tion of no program influence on nonparticipants, 
the net savings and net adoption ITT parameters are 
exclusively attributable to measure adoption by pro-
gram participants, in which case the average net sav-
ings of participants is identified by the ratio of the 
population average net savings and rate of participa-
tion, sometimes referred to as the average treatment 
effect on the treated (ATT). While the estimates of the 
population average net savings and participation rate 
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parameters are unbiased, the ratio of the two unbiased 
estimates is consistent but biased.1

However, most programs are not designed to limit 
eligibility within the target population; every targeted 
individual decides whether or not to participate. The 
consequence of unrestricted eligibility is exposure of 
the entire target population to the influence of pro-
gram marketing and promotional activities that would 
not occur under the defined baseline condition of no 
intervention; consequently, there are no source data 
to reveal the baseline behavior of targeted individu-
als. Quasi-experimental methods that rely upon the 
market behavior of eligible nonparticipants to serve 
as a valid baseline surrogate are fundamentally flawed 
because valid attribution requires the unrealistic 
assumption that the program has had no influence on 
nonparticipant energy consumption decisions, i.e., 
that there is no nonparticipant spillover. Furthermore, 
even under the assumption of no exposure bias due 
to nonparticipant spillover, there remains the prob-
lem of selection bias, because nonparticipants and 
participants are not randomly selected from the target 
population. As noted above, some quasi-experimental 
methods, e.g., cross-sectional market sales analysis of 
upstream programs, utilize a non-target population as 
a surrogate for the target population under the base-
line condition of program non-implementation. For 
this method, the ideal surrogate population consists of 
individuals who are representative of the target popu-
lation but are not subject to the influence of the evalu-
ated program or a similar program that would bias the 
estimate of baseline energy consumption.

It is important to note that the definition of experi-
mental methods stated above is limited to programs 
that randomize eligibility. There are two program 
designs typically classified as experimental which 
do not conform to this definition (Stewart & Todd, 
2017; Violette & Rathbun, 2017). In randomized opt-
in (ROI) designs, also known as randomized recruit 
deny/delay, the program is marketed to all targeted 
individuals. A subset of the pool of intended partici-
pants, i.e., those who opt in to the program, is then 
randomly disqualified from participation. Those who 

are disqualified serve as the baseline surrogate for 
all eligible individuals who intended to participate. 
Every targeted individual, including the baseline sur-
rogate group, is therefore exposed to program influ-
ence, resulting in exposure bias.

Failure to recognize the distinction between ran-
domized exposure and randomized denial or defer-
ral of eligibility to a subset of all targeted individu-
als who have been recruited to participate creates 
the misconception that randomization automatically 
confers internal validity on program impact estimates, 
which is not the case. In their discussion of residen-
tial behavior-based (BB) programs, Stewart and Todd 
(2017) assert, without qualification, that the ROI pro-
gram design produces an unbiased estimate of the 
average net energy savings of targeted individuals 
who opt in to the program, but that the estimated pro-
gram impact lacks external validity because it does 
not apply to targeted individuals who do not opt in. 
What randomization does in this program design is 
eliminate selection bias from the comparison of the 
participants and the customers who wanted to partici-
pate but were randomly disqualified. However, unless 
the consumption behavior of all individuals in the lat-
ter group is assumed to be uninfluenced by the pro-
gram marketing and recruitment process, the estimate 
of net savings of the opt-in subpopulation is subject 
to exposure bias. The validity of inference cannot be 
correctly characterized in terms of a limitation on the 
scope of application of an unbiased estimate of pro-
gram impact, which is to say that it is only a matter 
of external validity; internal validity is impaired as 
well. Moreover, the negative exposure bias gener-
ated by the effect of nonparticipant spillover on the 
baseline surrogate group is compounded by the fail-
ure to account for the net adoption and energy sav-
ings attributable to the potential impact of program 
implementation on all targeted individuals who did 
not participate, i.e., those who did not opt in as well 
as those who opted in and were subsequently denied 
eligibility.

Stewart and Todd (2017) recommend a different 
approach in applications where selective exclusion of 
targeted individuals from participation is unaccepta-
ble. In randomized encouragement designs (RED), 
evaluators randomly select targeted individuals to 
receive supplemental encouragement to participate, 
in addition to the normal promotional and recruit-
ment program process. The potential outcomes and 

1 This ratio is an instrumental variable (IV) estimator of the 
ATT. The critical distinction between the IV estimands under 
randomized eligibility and randomized encouragement designs 
is discussed below.
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corresponding impact parameters are accordingly 
defined by the presence or absence of encouragement 
to participate, as opposed to the presence or absence 
of the program as designed. The ITT estimate of 
net savings is the average consumption difference 
between the encouraged and non-encouraged indi-
viduals. In this approach, the implicit baseline is the 
condition of program implementation as designed and 
the intervention is supplemental encouragement. The 
RED method exemplifies the problem of exposure 
bias in the extreme because the net impact of program 
implementation is embedded in the estimate of base-
line energy consumption. The RED baseline param-
eter thus understates the true value of non-imple-
mentation baseline consumption by the amount of 
program net savings and the RED intervention param-
eter understates the potential program consumption as 
designed by the incremental amount of net savings 
attributed to supplemental encouragement.

The nature of the randomized intervention funda-
mentally changes the definition of the baseline and 
program conditions and hence the definition of the 
impact parameter. While the RED impact parameter 
may have formative policy relevance as an experimen-
tal exploration of the efficacy of a specific enhanced 
recruitment design element, it cannot serve as a valid 
metric to quantify the net savings of all eligible indi-
viduals under the condition of program implementa-
tion in the absence of supplemental encouragement, 
which is the summative objective of program impact 
evaluation. When multiplied by the number of indi-
viduals in the target population, it is equal to the total 
savings of individuals who were induced to participate 
and adopt measures by the supplemental encourage-
ment, which is additional to the total savings attributa-
ble to the program intervention. These net participants 
are commonly referred to as “compliers,” because 
they represent the subset of participants with encour-
agement who would not have participated without 
encouragement, whereas the remaining participants 
who would participate independently of encourage-
ment are termed “always takers.” The targeted individ-
uals who do not participate with encouragement are 
referred to as “never takers.” Compliers are induced 
to participate by the encouragement intervention 
whereas always takers are induced to participate by 
the program intervention.

The incremental nature of an encouragement inter-
vention is clearly illustrated in the situation where 

the source of encouragement is a behavior-based 
(BB) program that encourages program participants 
to enroll in an existing program that offers different 
benefits such as equipment rebates or other financial 
incentives to purchase and install qualified energy 
efficiency measures. Stewart and Todd (2017, p. 36) 
provide recommendations regarding the quantifica-
tion of the BB program savings attributable to “pro-
gram uplift,” which is the term commonly used for 
the additional participation generated by the encour-
agement intervention which would not have occurred 
without implementation of the BB program. As the 
authors state, quantification of this component of 
BB program savings is important because (1) it is 
“an important effect of BB programs and a potential 
additional source of program energy savings” and (2) 
in order to avoid double counting the savings from 
uplift, it is necessary that the amount of savings be 
subtracted from the evaluated energy efficiency pro-
gram savings. This recommendation clearly differ-
entiates between the savings attributable to the uplift 
generated by BB program encouragement to par-
ticipate and the evaluated savings attributable to the 
existing program in the absence of encouragement. 
The BB program thus functions in part as an RED 
intervention to increase uptake in another program; 
however, the savings from uplift conveys no infor-
mation about the impact of the existing program on 
energy consumption.

In this context, it is clear that the estimated net 
savings from program uplift are directly attributable 
to the BB RED intervention and are not comparable 
to the estimated net savings attributable to the incen-
tive program intervention because, by definition, 
without supplemental encouragement, the compli-
ers would not have participated in the incentive pro-
gram and the always takers would have participated. 
This obvious distinction illustrates the problem of 
latent heterogeneity of program impact within a tar-
get population. The program with and without RED 
interventions represents mutually exclusive imple-
mentation scenarios. The success of any particular 
encouragement intervention depends on the extent 
to which the inducements devised by the evaluator 
address the diverse barriers to participation confront-
ing targeted individuals within the program nonpar-
ticipant population. Every different encouragement 
intervention will selectively attract different segments 
of this population with correspondingly different rates 
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of baseline measure adoption and potential measure 
savings. Under randomized assignment, comparisons 
of different interventions relative to each other and to 
the existing program can accordingly yield valuable 
insight into the potential impact of program enhance-
ments, but such studies cannot realistically serve as a 
sound empirical basis for valid attribution of existing 
program impact.

Stewart and Todd (2017) are careful to point out 
that the RED ITT parameter quantifies the savings 
attributable to the encouragement, not to the pro-
gram intervention. The authors then summarize 
the technical approach to estimation of an alterna-
tive impact parameter, the Local Average Treatment 
Effect (LATE), formulated by Angrist et  al. (1996). 
Angrist et  al. (1996) first define the unit-level ITT 
effect of the encouragement intervention in terms of 
the difference between the potential outcome of inter-
est — in this context energy consumption — of each 
targeted individual under the encouragement and no 
encouragement conditions. Given certain assump-
tions, the individual ITT effect is shown to be equal 
to the product of a binary indicator of the individual 
effect of encouragement on participation and the indi-
vidual effect of participation on energy consumption, 
i.e., the difference between an individual’s potential 
energy consumption under the two participation con-
ditions. Therefore, under the maintained assumptions, 
the target population average causal effect of encour-
agement on energy consumption is equal to the prod-
uct of the population rate of net participation, i.e., the 
proportion of compliers, and the average net energy 
savings of the complier subpopulation. The character-
ization as “net” savings is essential because, depend-
ing on program design, some compliers may be base-
line measure adopters, in which case participation has 
no effect on energy consumption.

The average net energy savings of compliers is 
termed the LATE by Angrist et al. (1996), who show 
that the LATE is equal to the ratio of the RED ITT net 
savings parameter to the population rate of net par-
ticipation, which can also be characterized as an ITT 
parameter that quantifies the impact of encourage-
ment on program participation. Angrist et al. (1996) 
demonstrate that under randomized encouragement, 
the ratio of the unbiased estimators for the two ITT 
estimands is equal to the standard instrumental vari-
ables (IV) estimator for binary instruments. The for-
mulation of the LATE was motivated by the practical 

objective to establish conditions under which the 
instrumental variable (IV) estimand warrants a causal 
interpretation. However, this interpretation of the 
LATE is not valid if the encouragement interven-
tion has a direct influence on energy consumption 
apart from the indirect effect via induced participa-
tion. This critical assumption is termed an “exclusion 
restriction.” Stewart and Todd (2017) accordingly 
advise against the use of encouragement materials 
that could affect energy consumption, the feasibility 
of which is certainly open to question. Another criti-
cal assumption, termed “monotonicity,” requires that 
the intervention has a non-negative effect on partici-
pation; in other words, it rules out the possibility that 
the intervention may discourage participation.2

In their discussion of the formalization of the IV 
estimand and its interpretation as a causal param-
eter, Angrist et  al. (1996) emphasize the point that 
the impact on compliers is the only estimable causal 
effect of the intervention because under the RED 
design, the data are not informative about non-com-
pliers, for whom only one potential participation 
outcome is observed. They further comment that the 
only way to identify the impact on non-compliers is to 
make the implausible assumption that the average net 
savings of those subpopulations are equal to the net 
savings of compliers. This point is crucial to a valid 
interpretation of the LATE parameter under alterna-
tive program designs.3 As noted by Angrist et  al. 
(1996), given the exclusion restriction and monoto-
nicity assumption, under randomized eligibility, the 
LATE is equal to the ATT, defined above, because in 
that context, there are no always takers and the “com-
pliers” consist of all targeted individuals who par-
ticipate when eligible in the absence of supplemental 
encouragement. However, in the RED context, these 
same individuals are defined as always takers whose 
net savings count nothing toward the RED impact on 

2 The monotonicity assumption should not be taken lightly. 
Discouragement of measure adoption can be an explicit objec-
tive of program design in order to reduce implementation of 
measures which will in certain applications increase the total 
cost of end-use service.
3 In this context, the RED design is characterized as “two-
sided noncompliance” to distinguish it from the “one-sided 
noncompliance” randomized eligibility design. See Imbens 
and Rubin (2015) for a thorough discussion of both designs 
and Freedman (2006), who uses the respective characteriza-
tions of “double crossover” and “single crossover” designs.
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participants. So, as discussed above, the true value 
of average net savings attributable to participation in 
the program as designed has no relation to the value 
of the RED LATE which, when imputed to program 
participants in the evaluated program, reflects the 
implicit assumption that the causal effect on always 
takers is the same as that for compliers, who in the 
absence of encouragement contribute nothing to the 
ATT.

Consider an idealized upstream program designed 
to randomize a discounted price of high-efficiency 
equipment among all targeted individuals who are 
purchasing a new central air conditioner. HVAC con-
tractors and equipment vendors agree to randomly 
select purchasers to be offered either the current price 
or a discounted price for the more efficient product, 
while maintaining the current price for standard effi-
ciency products. Suppose further that the purchasers 
who must pay the undiscounted price have no knowl-
edge of the discount being offered to others. Selection 
bias and exposure bias are thus eliminated, assuming 
as well that there are no market effects. Consequently, 
the differences between the observed average con-
sumption and market adoption of the purchasers at 
the current and discounted prices yield unbiased esti-
mates of the corresponding ITT net savings and net 
adoption impact parameters. The ATT net savings of 
program participants is identified by the ratio of the 
ITT net savings and participation rate parameters, 
assuming monotonicity and recognizing that there 
is no nonparticipant spillover bias in upstream pro-
grams that discount all qualified products. All meas-
ure adopters are program participants because they no 
longer have the option to purchase the efficient prod-
uct at the undiscounted price.

But suppose that, given the infeasibility of rand-
omized selection for eligibility and selective exposure 
of targeted individuals to an upstream intervention, 
all purchasers of the high-efficiency products were 
charged the discounted price and an impact evalua-
tion was undertaken to randomly provide a subset of 
purchasers with information designed to encourage 
the selection of the high-efficiency product. What 
conclusions could be drawn from the findings of such 
a study? What is the correct interpretation of the esti-
mated values of the ITT and LATE impact param-
eters? If the encouragement intervention generates 
a substantial increase in efficient product sales, then 
the ratio of the difference between the average energy 

consumption of non-encouraged and encouraged indi-
viduals to the corresponding difference in the propor-
tion of efficient product sales provides an estimate of 
the average net savings of the complier subpopula-
tion. But what can be inferred about the impact of the 
program price discount from the estimated impact of 
encouragement, that is to say, from a comparison of 
the market response of two separate populations of 
consumers to two fundamentally different interven-
tions? While the findings indicate the positive effect 
of encouragement on some consumers for whom the 
price discount was not sufficient to induce measure 
adoption, there are no data to support any conclusion 
about the effectiveness of the discount on the always 
takers who required no encouragement to purchase 
the efficient product. Therefore, the data generated 
by the RED cannot differentiate between alterna-
tive values of the average net savings of the targeted 
individuals who participated in the program being 
evaluated. Indeed it is quite plausible that randomized 
selection for the price discount would produce results 
indicating no impact of the upstream program on the 
target population. Likewise, a finding of no effect of 
encouragement could plausibly be consistent with 
a substantial impact of the program intervention on 
measure adoption and energy consumption. Clearly, 
conclusions regarding program effectiveness that 
are based on a spurious interpretation of the RED 
causal estimand, especially if they were to inform 
policy decisions pertaining to program design and 
implementation, could seriously undermine the reali-
zation of energy efficiency policy objectives with 
obvious adverse economic consequences for the pop-
ulation of energy consumers targeted by the evaluated 
programs.

In summary, estimates of the net impact of pro-
grams that are not designed to randomize exposure 
to program influence are subject to negative exposure 
bias and selection bias of unknown magnitude and 
direction, both of which undermine the internal valid-
ity of the estimator. The source of both types of bias 
is a defective baseline surrogate that is not representa-
tive of the target population under the condition of 
non-implementation. In what follows, I will consider 
two aspects of the methodological problem. First is 
the question of whether certain non-experimental 
methods can in some way overcome or to some extent 
compensate for the limitations on valid attribution 
of program impact imposed by program design. The 
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answer to this question is formulated in terms of the 
choice between two alternative paradigms that rely 
on radically different assumptions to justify the pro-
posed solutions. The final section undertakes a close 
examination of the latent structure of program impact 
which identifies two separate questions of attribution 
that entail fundamentally different solutions.

Alternative paradigms

The experimental paradigm

The methods of data analysis developed by Rubin, 
Rosenbaum, Imbens, Angrist, and others to estimate 
causal effects are routinely employed in energy effi-
ciency program evaluations to quantify net program 
impact. In these evaluations, the implications of non-
random selection for attributional inference are gen-
erally ignored or glossed over. This is unfortunate 
because the implications are quite serious: the results of 
methods that produce unbiased estimates when applied 
to experimental data are subject to bias of unknown 
magnitude and direction in the absence of randomized 
exposure. Rubin’s innovation was the extension of 
Neyman’s experimental model to observational stud-
ies, which he variously refers to as “nonexperimental,” 
“nonrandomized,” or studies “with unknown assign-
ment mechanisms” (Imbens & Rubin, 2015).

The cardinal principle of the NRM perspective 
is the essential role of the assignment mechanism: 
if the investigator cannot “posit” a plausible assign-
ment mechanism that generated the observed data, 
then causal inference is not possible. The task for the 
researcher “when trying to estimate causal effects 
from an observational dataset is to conceptualize the 
observational dataset as having arisen from a com-
plex randomized experiment, where the rules used 
to assign the treatment conditions have been lost and 
must be reconstructed” (Rubin, 2008, p. 815). Of first 
importance is the identification of “key covariates,” 
i.e., measured background variables that were avail-
able for use in the selection process. Given a set of 
key covariates:

The next step is to try to find subgroups (sub-
classes, or matched pairs) of treated and control 
units such that within a subgroup, the treated 
and control units appear to be balanced with 

respect to their distributions of key covariates. 
That is, within such a subgroup, the treated and 
control units should look as if they could have 
been randomly divided (usually not with equal 
probability) into treatment and control condi-
tions. (Rubin, 2008, p. 817)

In Rubin’s conception, adherence to this methodo-
logical approach constitutes:

[an] objective observational study design in the 
sense that the resultant designed study can be 
conceptualized as a hypothetical, approximat-
ing randomized block (or paired comparison) 
experiment, whose blocks (or matched pairs) 
are our balancing groups, and where the prob-
abilities of treatment versus control assignment 
may vary relatively dramatically across the 
blocks. (Rubin, 2008, p. 818) 

If the posited assignment mechanism approximates 
the actual process that was employed to select tar-
geted individuals for exposure to the interven-
tion, then the Neyman unbiased estimator can be 
employed to calculate the average net savings within 
every subgroup (block or matched pair). Rubin’s 
conception of observational data as having been gen-
erated by a randomized block design is formalized in 
the assumption of “strong ignorability,” defined as an 
assignment mechanism that combines the properties 
of unconfoundedness and positivity (Rosenbaum & 
Rubin, 1983):

In the NRM formulation, the energy consumption 
variables EC(0) and EC(1) represent the potential 
outcomes for each individual i in the target popula-
tion consisting of N individuals under the respective 
states (PI = 0, PI = 1), only one of which is observ-
able depending on the alternative conditions of pro-
gram implementation or non-implementation. The 
binary selection variable PI indicates selection for 
exposure or non-exposure of each targeted individ-
ual to the program intervention. Strong ignorability 
sets the unconfoundedness condition of conditional 
independence of selection and potential outcomes, 
given the observed values of key covariates X, and 
the additional condition that the probability of 

Pr(PI|X,EC(1),EC(0)) = Pr(PI|X)

(1)1 > Pr(PI|X) > 0
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selection is positive for both selection conditions. 
The conditional probability of selection Pr(PIi|Xi ) is 
known as the “propensity score.”

Under the NRM assumption of a strongly ignor-
able assignment mechanism, i.e., a hypothetical ran-
domized block design, selection bias can be elimi-
nated or mitigated by conditioning via stratification, 
matching, or parametric regression on the key 
covariates, which adjust for variation among tar-
geted individuals in the propensity score, Pr(PIi|X ). 
The randomized design balances, in expectation, 
the distribution of unobserved as well as observed 
covariates within each stratum. The paradigm is 
“experimental” because it is based on the assump-
tion that individuals within each target population 
stratum, defined by measured key covariates, were 
randomly selected to participate or for eligibility to 
participate. This is simply an extension of the com-
pletely randomized program design to one in which 
selection is randomized within each population stra-
tum, that is, the probability of selection is uniform 
within each stratum but can vary among strata.

The NRM addresses exposure bias via the “con-
sistency assumption”:

This assumption implies that knowledge of the 
values of the observed outcome and exposure of 
each individual are sufficient to empirically deter-
mine the corresponding value of the potential out-
come. Rubin’s term for this condition is the “stable 
unit treatment value assumption” (SUTVA). Con-
sistency implies no exposure bias.

Most energy efficiency programs are not con-
formable to the experimental paradigm because 
the assumption of random selection is not cred-
ible; the selection variable used in the evaluation is 
either voluntary program participation or program 
eligibility. In the latter approach, observations of 
non-targeted consumers are utilized to represent 
the unobserved baseline condition for the target 
population. An example is the method of market 
sales analysis, in which market adoption data are 
collected for a baseline surrogate population of 
consumers in a separate geographical area outside 
of the target population area. There is no sense in 
which the participant and nonparticipant subpopu-
lations or eligible target and ineligible surrogate 

(2)ECi = ECi(1)PIi + ECi(0)(1 − PIi)

populations can be conceptualized as the outcome 
of a random selection process.

In their discussion of statistical inference for 
non-random samples, Copas and Li (1997, p. 55) 
cite the seminal contribution of R.A. Fisher regard-
ing the critical role of randomization “as the logi-
cal underpinning of methods of analysis” in experi-
mental research, noting further the logical flaw in 
the assumption that the same underpinnings of valid 
inference are sustained by application of these meth-
ods in the non-experimental context:

However, methods designed for analysing 
experimental data are also routinely applied 
to observational data, sometimes (often?) 
with little or no recognition of the fact that the 
absence of randomization has, in Fisher’s sense, 
removed the grounds for the validity of these 
methods. Essentially, randomization becomes 
a model for the data rather than a factual state-
ment of how the data were obtained.
Modern statistics places great emphasis on the 
testing of assumptions. But the argument that 
randomization underpins the standard model 
assumptions is not reversible — the empirical 
verification of these assumptions does not imply 
that the hidden assumption of randomization is 
necessarily justified so that standard inference 
statements can safely be made.

Imbens (2010, p. 407) elaborates on this confu-
sion of fact and assumption which glosses over the 
categorical distinction between experimental and 
quasi-experimental methods. To contentions that ran-
domized methods do not merit special priority over 
non-randomized methods, because all such methods 
rely on the validity of certain assumptions to justify 
causal conclusions, Imbens responds that what sets 
randomized experiments apart “is not the assumption 
of randomization but the actual act of randomization 
that allows for precise quantifications of uncertainty, 
and this is what gives randomization a unique status 
among study designs.”

The structural paradigm

The statistical solution is not a viable option in the 
absence of random selection. Consequently, program 
evaluators must invoke an alternative “structural” 
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paradigm to justify the inference of attribution or accept 
the possibility that such inference is not possible in most 
energy efficiency program applications. In the alterna-
tive paradigm, elimination of selection bias that arises 
in the comparison of targeted and non-targeted indi-
viduals, or targeted participants and nonparticipants, 
requires adjustment for population differences in the 
determinants of baseline consumption. Put differently, 
what is needed in the structural paradigm is an accurate 
model of the baseline potential outcomes as opposed to 
a model of the assignment mechanism. The rationale 
for covariate adjustment marks a fundamental point of 
divergence between the structural and experimental par-
adigms. In the experimental paradigm, the “key covari-
ates” are the set of observed variables used to determine 
the target population strata employed in the posited 
assignment mechanism. In the structural paradigm, the 
“relevant covariates” function instead as posited deter-
minants of the baseline potential outcome. In Rubin’s 
terms, a “model on the science” is now required to iden-
tify the causal effect of the intervention (Rubin, 2005).

In most energy efficiency applications, quasi-
experimental methods employ a comparison of the 
metered energy consumption of participant and non-
participant target subpopulations. In the absence of 
exposure bias, i.e., nonparticipant spillover, an unbi-
ased estimate of participant net savings requires the 
additional assumption of conditional mean independ-
ence of baseline energy consumption and program 
participation (PP):

Equation  (3) states that conditioning on the 
observed covariates X is sufficient to eliminate selec-
tion bias, because the observed average consumption 
of nonparticipants is equal to the unobserved average 
baseline consumption of participants who have the 
same values of X . Therefore, the difference between 
nonparticipant and participant conditional mean 
consumption is an unbiased estimate of conditional 
participant net savings. Under this assumption, an 
unbiased estimate of unconditional net savings is cal-
culated as the average of the conditional savings esti-
mates weighted by the corresponding population fre-
quencies of the covariates. The estimator is formally 
equivalent to the unbiased stratified estimator under 
the NRM assumption of strong ignorability. The 
critical difference is that the latter is a design-based 

(3)
(
EC(0)|X,PP = 0

)
=
(
EC(0)|X,PP = 1

)

assumption of random selection whereas the former is 
a model-based assumption concerning “the science” 
of baseline energy consumption.

A valid structural model must therefore account 
for all determinants of baseline energy consumption 
(or measure adoption) in order to eliminate selec-
tion bias; all relevant covariates must accordingly be 
known and measurable. This is the crux of the prob-
lem: it is not possible to condition on unobserved 
causal factors. There are two reasons for failure to 
observe the critical determinants of baseline potential 
outcomes. First, most quasi-experimental methods 
that purport to control for selection bias do not collect 
the essential site-specific data that enable condition-
ing on known causal factors. Second, it is not possible 
to measure unknown determinants of potential out-
comes. Both of these problems — the data problem 
and the problem of prior knowledge — present formi-
dable barriers to valid inference.

The data required to properly account for varia-
tion in known determinants are typically not collected 
because the cost of on-site measurement and verifica-
tion (M&V) of the relevant covariates for both pro-
gram and baseline surrogate population samples is 
generally considered to be prohibitive. Nevertheless, 
the feasibility of the data collection process is dem-
onstrated by standard practice of site verification and 
monitoring of the installation and operation of pro-
gram measures installed by a sample of participants, 
routinely employed to provide accurate estimates 
of individual measure, and gross program energy 
savings required to evaluate measure and program 
cost-effectiveness and program administrator perfor-
mance and to support program and resource planning. 
Established standards of data collection and analy-
sis are documented in various M&V protocols and 
guidelines, including the International Performance 
Measurement and Verification Protocol (IPMVP), 
the Uniform Methods Project (UMP), and the US 
Department of Energy Federal Energy Management 
Program (FEMP) M&V guidelines. Various elements 
of established M&V standards are incorporated into 
Technical Reference Manuals (TRMs) utilized by 
program administrators as approved by state regula-
tory authorities.

EM&V budget constraints limit the range of prac-
tical options for large study populations to methods 
which rely upon available data. Impact evaluations 
of residential retrofit and opt-in behavioral programs 
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often employ regression analysis or matching meth-
ods that condition post-implementation metered con-
sumption of participants and nonparticipants on his-
torical metered consumption and local weather data. 
Impact evaluations of equipment rebate and upstream 
incentive programs condition efficient product sales 
to target and surrogate baseline populations on demo-
graphic and product price data.

However, even if the requisite funds were allo-
cated to conduct primary site-specific data collection, 
evaluators would be left with the insoluble problem 
of controlling for population differences in unknown 
determinants of consumer behavior, because there is 
no scientific basis to establish equality of the aver-
age baseline outcomes of distinct populations. Equa-
tion  (3) is an invalid assumption because it omits 
unknown relevant covariates that are by definition 
unobservable. Heckman and Robb (1985) charac-
terized the implicit structural assumption of condi-
tional independence as “selection on the observables” 
(SOO).4 Heckman (2005) has argued that SOO is not 
credible because it is inconsistent with the widely 
accepted hypothesis that the program participation 
decision is based in part on individual unobserved 
expectations pertaining to the benefits of participa-
tion, i.e., the potential outcomes. He proposes an 
alternative approach which allows for selection on 
unobservable causal factors (SOU) as well as on 
measured covariates. The proposed solution is to 
model the selection bias in terms of observed covari-
ates and hypothetical latent (unobserved) variables in 
the form of a discrete choice model of the individual 
participation decision. The modeled probability of 
selection is used to adjust for differences between 
participant and nonparticipant baseline outcomes. 
Heckman’s method of “control functions” explicitly 
models the dependence between potential outcomes 
and the decision to participate. The model specifies 
the unknown potential outcomes as a function of 
observed and unobservable determinants of the par-
ticipation decision which is consistent with economic 
theory (Heckman, 2010a).

Heckman (2010b) has written extensively con-
cerning the dichotomy between the structural and 
“program evaluation” approaches to causal analysis. 
The explicit formulation of structural assumptions 
pertaining to consumer decision-making provides a 
level of methodological transparency that is wanting 
in impact evaluations that employ standard methods 
of data analysis that rely on implicit assumptions 
which, at best, are only vaguely articulated, let alone 
critically examined. For example, Heckman (2010a) 
characterizes the conditional independence assump-
tion invoked by matching methods as the result of 
some undefined natural process of randomization that 
functions as a surrogate for an actual experimental 
manipulation.

At the same time, Heckman (2005, p. 65) allows 
that: “Offsetting these disadvantages, the method of 
matching … does not require separability of outcome 
or choice equations, exogeneity of conditioning vari-
ables, exclusion restrictions, or adoption of specific 
functional forms of outcome equations.” Neverthe-
less, Heckman and Navarro-Lozano (2004, p. 30) 
contend that: “Because the method of control func-
tions explicitly models omitted relevant conditioning 
variables rather than assuming that there are none, 
it is more robust to omitted conditioning variables.” 
Heckman (2005, p. 5) also stresses the importance 
of incorporating unobserved heterogeneity in models 
of program impact: “Another reason why epidemio-
logical and statistical models are incomplete is that 
they do not specify the sources of randomness gen-
erating the unobservables in the models — i.e., they 
do not explain why observationally identical people 
make different choices and have different outcomes 
given the same choice.” Sobel (2005, pp. 121, 122) 
takes Heckman to task on his assertion that the con-
trol functions method is more general than matching 
(Heckman, 2005, p. 73), observing that the validity of 
the two approaches rests on alternative sets of untest-
able assumptions, neither of which is implied by the 
other. In Sobel’s view, Heckman “is far less critical” 
of the assumptions required to justify the control 
functions method than those required in the use of 
matching and instrumental variables methods.

Heckman (2010b, p. 367), as noted above, 
emphasizes that the structural model specification 
of observed determinants of potential outcomes 
and the participation decision must be derived from 
economic theory because “there is no ‘objective’ 

4 Parallel but technically distinct identifying assumptions are 
routinely invoked by investigators working in diverse fields of 
application under various terminology: admissibility, compara-
bility, exchangeability, exogeneity, sufficiency, no omitted vari-
ables, no unmeasured confounders, etc.
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way to choose these conditioning variables. Any 
argument for inclusion or exclusion of variables has 
to be made by an appeal to theory — implicit or 
explicit.” Unfortunately, in this context, economic 
theory cannot provide any meaningful guidance 
because there is no body of knowledge that can be 
drawn upon to favor one set of structural assump-
tions over another. If critical determinants of base-
line consumption are unknown, then the magnitude 
and direction of the selection bias of estimated net 
impact are unknown and indeterminate in any non-
experimental application. Like SOO methods, SOU 
methods based on models of program participation 
and potential outcomes employ untested assump-
tions about the relevant measured covariates that 
determine the probability of participation and its 
relationship to potential outcomes.

The dependence of the validity of attribution on 
the credibility of assumptions regarding unknown 
determinants of the behavior of targeted individu-
als under unobserved conditions raises the ques-
tion: “What is the threshold of credibility of such 
assumptions?” Regarding the credibility of SOO, 
Heckman (2005) asks why some otherwise obser-
vationally identical individuals decide to participate 
in a program while others do not. There must be 
unobserved factors that account for heterogeneity of 
response among targeted individuals who are homo-
geneous in the measured covariates. Equation  (3) 
implies that the unobserved factors that gener-
ate individual differences in baseline consumption 
have no effect on the average rate of participation 
within each homogeneous (on X) segment of the 
target population. How does one come to such a 
conclusion?

Provencher et  al., (2013, p. 6) present a different 
perspective on this question in their discussion of the 
rationale for matching participants and nonpartici-
pants on historical monthly consumption to estimate 
the energy savings attributable to an opt-in behavio-
ral-based program. The authors reject the hypothesis 
“that even though the participants and their matches 
behave the same on average for 24 months before the 
start of the program, in the absence of the program 
their energy use would not continue to be the same 
on average because unobservable factors cause the 
development of systematic differences in the energy 
use between the two groups.” Their explanation for 
this assumption is based on the following rationale:

Suppose an underlying set of unobservable vari-
ables Z reflect a household’s behavioral propen-
sity to save energy, and these variables are cor-
related with participation in the program. One 
can reasonably expect that close matching on 
the energy use history will, on average, generate 
the same distribution of Z among the matched 
households as among the participant house-
holds. 

Why is this supposition a reasonable expectation? 
With matching on energy use history, the covariates 
X in Eq.  (3) consist of observed monthly metered 
energy consumption during the pre-implementa-
tion period. These covariates are not determinants 
of baseline consumption, which is the unobserved 
energy consumption of program participants during 
the post-implementation period under the counterfac-
tual condition of non-implementation. They are the 
observed historical outcomes which, like the base-
line outcomes, are complex functions of unobserved 
physical and behavioral factors, some of which are 
known and measurable. Balance between participants 
and nonparticipants in the distribution of historical 
whole-building energy consumption does not imply 
balance in the corresponding distributions of the 
determinants of baseline end-use consumption, i.e., 
that they “behave the same.”

There are two intrinsic difficulties with this meth-
odological approach. First is the problem of measure-
ment boundary: metered consumption confounds the 
targeted end-use consumption, which is the object 
of program influence, with the other loads at each 
site; matching on monthly, or even hourly, billing 
data cannot identify the baseline consumption value 
that defines the net savings parameter. Second is the 
problem noted that matching on energy consump-
tion, even if it were measured at the relevant end use, 
does not match on the critical determinants of base-
line consumption, viz., the magnitude and utilization 
of equipment capacity that vary according to indi-
vidual differences in the demand for end-use services 
and the end-use efficiency of the targeted equipment. 
Moreover, the comparability of matched participants 
and nonparticipants is further compromised by the 
lack of data necessary to cull from the latter sample 
individuals who are not eligible to participate for var-
ious reasons, such as the end-use technology or fuel 
type, building type or size, etc.
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Agnew and Goldberg (2017) recommend an alter-
native approach designed to mitigate selection bias in 
estimates of energy savings attributable to residen-
tial whole-building retrofit programs. The approach 
entails the use of a comparison group of targeted 
customers who participate in a time period following 
or preceding the implementation year under evalua-
tion. The critical assumptions supporting this recom-
mendation are that future and past participants: (1) 
“are similar to the participants being evaluated with 
respect to energy consumption characteristics” and 
(2) “are unlikely to install the program measures on 
their own during their non-participating years.” Under 
these assumptions, the authors conclude that the sav-
ings estimate is properly interpreted as gross savings 
and that the estimate is likely to be “less biased with 
respect to self-selection.” The implied comparison 
is: less biased than estimates derived from a matched 
comparison group of nonparticipants.

The recommended method of estimation is a mean 
difference-of-differences (DiD) regression analysis. 
The authors stipulate that the validity of this estimate 
depends on a critical assumption, that the determi-
nants of the baseline consumption time trends are the 
same on average for the participant and comparison 
groups. This condition expresses the “parallel trends” 
assumption of DiD analysis, which is undermined by 
the strong possibility that the timing of the decision 
to participate is related to unobserved differences in 
customer or physical site characteristics. For exam-
ple, eligible customers who anticipate a near-term 
increase in the demand for end-use services due, for 
example, to a change in occupancy, have a stronger 
incentive to participate than customers who do not 
face an impending increase in consumption and 
energy costs, in which case the observed pre-post 
difference in energy consumption of future partici-
pants will underestimate the current participant base-
line trend and produce negative bias in the savings 
estimate.

The SOU approach takes selection bias as a fore-
gone conclusion; there is no assumption of balance 
in the participant and nonparticipant distributions, 
conditional on observed covariates, of unobserved 
determinants of the potential outcomes. Rather, the 
assumption of mean independence conditional on 
observed covariates in Eq.  (3) is replaced with an 
“all causes” model of the dependence between unob-
served determinants of the participation decision and 

unobserved determinants of the potential outcomes, 
conditional on observed covariates. Heckman (2005) 
articulates the basic rationale: “Knowledge of the 
relationship between choices and counterfactuals sug-
gests appropriate methods for solving selection prob-
lems. By analyzing the relationship of the unobserva-
bles in the outcome equation, and the unobservables 
in the treatment choice equation, the analyst can use a 
priori theory to devise appropriate estimators to iden-
tify causal effects.”

The thrust of Heckman’s argument is that SOO 
methods are based on implicit assumptions which, 
when clearly articulated, are not plausible. The 
hypothesis of selection bias carries a presumptive 
validity that cannot be assumed away, whereas SOU 
methods are based on assumptions about the sources 
of the bias that can yield bias-corrected estimators of 
program impact. In other words, evaluators should 
not make inferences of attribution that rely upon 
assumptions that most, if not all, evaluators believe 
to be false. The structural modeler’s predicament, on 
the other hand, is not a question of the plausibility of 
the maintained assumptions so much as the availabil-
ity of an unlimited set of equally plausible alternative 
models from which to choose. The posited underly-
ing determinants of measure adoption and program 
participation represent one out of many untested, 
but intuitively plausible, alternative hypotheses that 
can be invoked to fill the void in our scientific under-
standing of the consumer decision process. The less 
we know, the greater the scope of plausibility, which 
undermines the credibility of any one of the hypo-
thetical alternatives as a valid basis for attribution. 
As Heckman himself acknowledges, the distinction 
between SOO and SOU methods is not reducible to 
the presence or absence of the assumption of con-
ditional independence. The modeled allowance for 
selection bias must be traded off against the validity 
of other structural assumptions which are imposed in 
order to identify the impact parameter of interest.

SOU methods model potential outcomes as a spec-
ified mathematical function of measured covariates 
and unobserved random variables defined by certain 
distributional assumptions. Unfortunately, Heckman’s 
appeal to economic theory to guide model specifica-
tions does not provide a solution to the evaluation 
problem in energy efficiency applications. In the 
preceding quotation, he blurs the critical distinc-
tion between a priori theory and knowledge of the 
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relationship between the unobservable determinants 
of participation and potential outcomes. Thus, both 
SOO and SOU approaches claim to account for selec-
tion bias via conditioning on measured covariates that 
are assumed to determine baseline energy consump-
tion and/or measure adoption; where they differ is in 
the nature of the assumptions about unobservables.

Valid application of the formal solutions to the 
problem of attribution ultimately comes down to 
questions of subject-matter knowledge. Failure to con-
front these questions leads to methodological abstrac-
tion from the substantive interpretation, that is, the 
semantics of the identifying assumptions in a specific 
application. For example, the formal equivalence of 
the assumptions of strong ignorability and conditional 
independence can blur the categorical distinction 
between the experimental and structural paradigms 
of attribution. Within the experimental paradigm, 
application of the statistical solution requires knowl-
edge of the randomized design employed in program 
implementation. Quasi-experimental methods, on the 
other hand, require knowledge of the determinants 
of the potential outcomes. In the concluding section, 
I examine the problem of knowledge in energy effi-
ciency applications and the methodological implica-
tions of a clear separation of the known and unknown 
determinants of program impact.

The latent structure of program impact

It is instructive to interpret Heckman’s question regard-
ing observational equivalence within the context of 
market demand for end-use efficiency: Why is it that 
consumers who exhibit the same level of demand for 
end-use services and face identical prices of commodity 
energy and energy-consuming equipment adopt differ-
ent levels of equipment efficiency? The question reveals 
the principal dimensions of heterogeneity of the known 
and unknown determinants of net energy savings within 
the target population. The individual demand for end-
use services and the market prices of energy and equip-
ment efficiency are presumed to be observable deter-
minants of measure adoption. The presumption is that 
they are determinants. That they are observable is not 
in question. It is therefore possible to identify subsets 
of targeted individuals who are homogeneous in these 
variables and to identify individuals within such subsets 

who do not purchase and install equipment with the 
same rated efficiency.

The question calls attention to two observable 
sources of heterogeneity: end-use service demand and 
measure adoption among individuals who are homo-
geneous in demand for the same end-use service. The 
question posed by the latter source of heterogeneity 
embodies two distinct hypotheses: first is the hypoth-
esis that a consumer’s demand for energy efficiency 
is informed (in part) by the magnitude of the potential 
energy cost savings and the incremental cost of higher 
efficiency; second is the hypothesis that there are other 
unobserved determinants of consumer choice which 
account for differences in adoption between individuals 
who would realize the same return on the investment 
in improved efficiency. End-use demand thus has dual 
significance as both a known and unknown determinant 
of net energy savings. It is a known determinant of net 
savings because the magnitude of savings produced 
by measure adoption is a function of the magnitude 
and utilization of the installed capacity of the equip-
ment serving the relevant end use. It is an unknown 
determinant of net energy savings because its role as a 
causal factor in the adoption decision process is purely 
hypothetical.

The following exposition formalizes the dichotomy 
between the known and unknown determinants of the 
net savings impact parameter. The causal structure is 
composed of two functions that determine the values 
of the two factors that combine to produce program 
impact. Each factor is a policy-relevant impact param-
eter in its own right with independent significance for 
program planning and evaluation. However, the two 
questions of attribution associated with each factor cor-
respond to the two extremes of the problem of knowl-
edge, i.e., the known and unknown determinants of 
program impact, which, as such, require fundamentally 
different solutions.

Two questions of attribution

The derived demand for delivered energy is a function 
of the site-specific end-use demand for useful energy 
( EU) and the equipment-specific efficiency of conver-
sion (η ) from energy input to the useful energy output 
required by the end-use application:

(4)EC = EU∕� = (HO ∙ C)(CL∕C)
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Energy utilization at the end use is expressed as 
the product of rated equipment capacity (C) , assumed 
equal to the maximum demand for useful energy 
(e.g., lumens, BTU/h), and equivalent full load hours 
of equipment operation ( HO ). Conversion efficiency 
( � ) is the ratio of useful energy output per unit of 
energy input (e.g., lumens/W, BTU/h/W). The con-
nected load ( CL ) is the input energy demand at full 
capacity.

An energy efficiency measure is a consumer 
action that reduces the amount of energy input 
required to produce the same level of end-use ser-
vice as a specified (less efficient) baseline alterna-
tive. Energy efficiency measures can be classified 
as one of two types: actions that result in the instal-
lation of equipment with a higher conversion effi-
ciency and actions that reduce the hours of equip-
ment operation. The former reduces the amount of 
delivered energy required to produce a given amount 
of useful energy while the latter reduces the amount 
of useful energy that must be produced to maintain 
the desired level of end-use service, e.g., illumina-
tion and thermal comfort. Examples of conversion 
efficiency measures include installation of lighting 
equipment with a specified minimum rated lumens 
per watt and air conditioners with a specified mini-
mum rated BTU/h per watt. Actions that reduce 
hours of operation include occupancy sensors, 
programmable thermostats, building weatheriza-
tion, and “behavioral” measures whereby end users 
manually adjust the operation of energy-consuming 
equipment. For clarity of exposition, the following 
formal treatment of the problem formulates the mar-
ket adoption decision as a choice between two alter-
native levels of efficiency.

Individual potential energy consumption can be 
expressed in terms of the potential adoption ( MAi) 
or non-adoption of a specific measure under the cor-
responding conditions of program implementation 
or non-implementation ( PI) . For each targeted indi-
vidual, there are two potential values of energy con-
sumption ( ECMi , ECBi ) associated with the realized 
value of the binary measure adoption variable:

ECi (0) = MAi(0) ∙ ECMi +
(
1 −MAi(0)

)
∙ ECBi

ECi (1) = MAi(1) ∙ ECMi +
(
1 −MAi(1)

)
∙ ECBi

Net savings ( NSi) is accordingly defined as the dif-
ference between the baseline and program values of 
energy consumption:

Substituting the previous equations for potential 
energy consumption yields an equivalent expression 
for net savings as the product of measure savings 
( MSi) and net adoption ( NAi):

Equation  (5) makes transparent the composite 
nature of the individual net savings impact param-
eter. Net savings embeds two separate and intrinsi-
cally different questions of attribution: net adoption 
is the impact of program implementation on meas-
ure adoption and measure savings is the impact of 
measure adoption on energy consumption. Struc-
tural separation of these two impact parameters is 
central to the assessment of methodological validity, 
because it reveals the dichotomy between the known 
and unknown determinants of net savings. Whereas 
the determinants of measure savings are known and 
measurable, the determinants of net adoption are 
unknown.

Measure savings quantifies the site-specific impact 
of independent variation in the relevant measure-spe-
cific determinant of energy consumption, i.e., conver-
sion efficiency or operating hours, holding the other 
determinants at fixed values. By definition, it repre-
sents the potential savings that can be realized by the 
specified efficiency improvement, regardless of the 
factors that induce measure adoption. Measure sav-
ings is the source of the economic and environmental 
benefits of measure adoption and, as such, a princi-
pal determinant of the cost-effectiveness of measure 
adoption and program implementation. Accurate 
quantification of measure savings is therefore funda-
mental to effective program and portfolio design.

Program planners and regulators rely heavily upon 
site measurement and verification of the determi-
nants of energy savings attributable to measure adop-
tion by program participants. The principal source 

NS
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of uncertainty associated with estimates of measure 
savings and measure cost-effectiveness is the annual 
cycle of equipment operation. The rated capacity and 
efficiency of installed equipment can be verified by 
onsite inspection at the time of program implementa-
tion or as part of a subsequent evaluation. Quantifi-
cation of annual hours of operation is a much more 
involved process that entails direct or indirect meas-
urement during a representative range of annual oper-
ating conditions. These measurement and verifica-
tion activities are required by regulation to conform 
to rigorous protocols designed to minimize the bias 
and control the statistical precision of estimates of 
the total energy savings of the participant or target 
population.

On the other hand, net adoption quantifies the site-
specific impact of exposure to program influence on 
measure adoption. There is no known equation, paral-
lel to Eq. (4), which specifies the functional relation-
ship between measure adoption and observable deter-
minants. Measure savings is the difference between 
two physical outcomes generated by two different val-
ues of one of the variables in Eq. (4). The quantitative 
relationship between the physical variables is gov-
erned by physical laws of energy transformation and 
energy transfer and is hence invariant with respect 
to the behavioral determinants of their realized val-
ues at a particular site and time. In contrast, measure 
adoption is a behavioral outcome for which there is 
no known scientific explanation. Measure savings and 
measure adoption can be said without exaggeration to 
represent opposite extremes of the possible states of 
scientific knowledge of an empirical phenomenon.

Equation (4) is a statement of the knowledge that, 
for instance, operation of a connected load of 0.8 kW 
for 1000  h will increase metered consumption by 
800 kWh, and that if equipment of the same capac-
ity and a connected load of 1.0 kW had been installed 
and operated during the same time interval instead of 
the more efficient equipment, metered consumption 
would have been incrementally higher by the amount 
of 200 kWh. That is to say, measurement and verifica-
tion of the demand for useful energy and the installed 
measure efficiency can be utilized to quantify the 
measure savings at the individual site. Holland (1986) 
refers to this method, which “exploits various homo-
geneity or invariance assumptions,” as the “scientific 
solution” to the fundamental problem of causal infer-
ence, to differentiate it from the statistical solution.

There is, however, no prior knowledge to sustain 
a parallel statement concerning measure adoption. 
There is no way of knowing whether the same indi-
vidual who purchased the more efficient product at a 
program-discounted price would have purchased the 
same product at the baseline undiscounted price or the 
standard efficiency product. Unlike the energy con-
sumption function in Eq. (4), every model of measure 
adoption is a formulation of a specific set of untested 
hypotheses regarding the data generating process that 
relates the latent variables (potential outcomes) to the 
observed data. As an illustration, consider the com-
mon structural assumption in EE applications that the 
consumer selects the level of product efficiency which 
minimizes the life-cycle cost of service, i.e., the sum of 
the capital and discounted operating costs of producing 
the same level of end-use service over the useful life 
of the equipment, in economic terms the “conditional 
demand” for energy efficiency. Given two alternative 
levels of energy efficiency, this criterion entails a com-
parison of the difference between the respective capital 
and operating costs:

IVi is the present value imputed by each individual 
to a unit of annual energy savings and ICi is the incre-
mental cost of the energy efficiency measure. MSi and 
ICi are, by definition, functions of observable covari-
ates.  IVi is a hypothetical unobserved covariate that 
represents the imputed value, i.e., the implicit indi-
vidual willingness to pay for a unit of energy savings. 
Under this structural assumption, measure savings and 
the imputed value of measure savings are the princi-
pal sources of heterogeneity in the target population. 
Conditioning on incremental cost and measure savings 
yields the conditional average:

FIV|MS,IC(IC∕MS) is the cumulative proportion 
(conditional distribution function) of individuals for 
whom the unobserved imputed present value is less 
than the incremental measure cost per unit of meas-
ure savings. Hence,  1 − FIV|MS,IC(IC∕MS) is equal to 
the proportion of baseline adopters within the popula-
tion stratum ( MS, IC ). Under this model of measure 
adoption, the interpretation of the “no confounding” 
assumption of unobserved covariate balance between 
target (eligible/participant) and surrogate (ineligible/

MAi = 1(IVi ∙MSi > ICi)

MA|MS, IC = 1 − F
IV|MS,IC(IC∕MS)



Energy Efficiency (2024) 17:27 

1 3

Page 19 of 34 27

Vol.: (0123456789)

nonparticipant) populations is that the distribu-
tions of the imputed value, conditional on measure 
savings and cost, in the two populations are identi-
cal, i.e.,FS

IV|MS,IC = FT
IV|MS,IC , thus establishing a 

sufficient condition for the validity of the identifying 
assumption of equal rates of baseline measure adop-
tion within strata, here defined by measure savings 
and cost.

(6)
Selection Bias

(
̂
NS|MS, IC

)
≡

(
EC

S

(0)|MS, IC) − EC
T

(0)|MS, IC

)

= MS

[
(MA

T

(0)|MS, IC) − (MA
S

(0)|MS, IC)
]

Equation (6) defines the conditional selection bias 
of estimated net savings as the difference between the 
average baseline energy consumption of the surrogate 
and target populations within each stratum. The super-
scripts indicate the surrogate and target populations. 
Equality of average baseline measure adoption thus 
eliminates selection bias. But even if one had reason 
to believe that all consumers base their energy effi-
ciency preferences on a life-cycle cost comparison of 
the available alternatives, without prior knowledge of 
the principal factors governing consumer willingness 
to pay for energy savings, the assumption of unob-
served covariate balance is not plausible. The under-
lying determining factors are largely unknown and 
hence unobservable. If we do not know the determi-
nants of the imputed value, then there is no basis for 
the assumption that its distribution is the same in the 
target and surrogate populations, nor is it possible to 
test the validity of the assumption based on an analysis 
of the observed data. If the determinants were known 
and could be translated into observable data, then a 
stratified analysis could, in principle, be applied to 
adjust for selection bias; but no method of data analy-
sis — SOO or SOU — can compensate for the deficit 
in our scientific knowledge of the behavioral process 
of consumer decision.

Confounding of measure savings and net adoption

On the basis of Eq.  (5), every individual in the tar-
get population can be classified according to the four 
possible values of the potential measure adoption 
outcomes (MAi(0),MAi(1)). Table  1 summarizes the 
defining characteristics of each latent class in terms 
of potential measure adoption, net adoption, the joint 
distribution of the potential adoption outcomes, and 
the average net energy savings.

Each class is homogeneous in potential measure 
adoption and net adoption, which reduces the class 
average net savings to the product of class average 
measure savings and net adoption:

Averaging the class net savings and net adoption 
over the target population yields:

This canonical representation of population het-
erogeneity reveals the latent structure of program 

NS|MA(0),MA(1) =
(
MS ∙ NA

)
|MA(0),MA(1)

(7)NS = p(0, 1)MS(0,1) − p(1, 0)MS(1,0)

(8)NA = p(0, 1) − p(1, 0)

Table 1  Latent structure of 
program impact

Class MA
i
(0) MA

i
(1) NA

i
p(MA

i
(0),MA

i
(1)) NS|MA(0),MA(1)

Non-adopters 0 0 0 p(0, 0) 0
Net adopters 0 1 1 p(0, 1) MS(0,1)

Net non-adopters 1 0 -1 p(1, 0) −MS(1,0)

Adopters 1 1 0 p(1, 1) 0
Average MA(0) MA(1) NA NS
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impact.5 Non-adopters and adopters do not contrib-
ute to program net impact because measure adop-
tion is independent of exposure to program influence, 
whereas net adopters and net non-adopters make 
respectively a positive or a negative contribution to 
net impact. Table  2 presents the joint and marginal 
distributions of the potential measure adoption out-
comes (MAi(0),MAi(1)) in the standard configuration 
of a 2 × 2 contingency table. The column and row 
averages represent the marginal distributions of meas-
ure adoption under the respective program and base-
line conditions of exposure to the intervention.

The program marginal distribution MA(1) is 
observable. The baseline marginal distribution MA(0) 
is only observable in the exceptional case of selective 
exposure, i.e., if program eligibility is restricted to a 
subset of the target population. As discussed above, 
in the special case where selective exposure is rand-
omized, the calculated average measure adoption in 
the exposed and non-exposed sub-populations is an 
unbiased estimate of the corresponding program and 
baseline population parameter (marginal mean), thus 
yielding an unbiased estimate of net adoption. In the 
typical case of unrestricted eligibility, the program 
population average measure adoption is, in principle, 
observable, but recourse must be had to a surrogate 
population in order to quantify baseline adoption.

As discussed previously, the net savings and net 
adoption impact parameters represent the intention to 

treat (ITT) parameter, which means that the program 
intervention is designed to promote measure adoption 
by all targeted individuals. The ITT parameter quan-
tifies the average impact of program implementation 
on the entire target population. It accounts for meas-
ure adoption and energy savings of both program par-
ticipants and nonparticipants, viz., spillover. As such, 
it produces a valid summative measure of program 
impact. But what exactly is the informational content 
of the value of the net savings parameter?

Taking as an example the idealized upstream pro-
gram design considered earlier, given access to util-
ity billing data and vendor data identifying all tar-
geted individuals, i.e., all purchasers of central air 
conditioners of a given capacity, and indicating (a) 
whether they were offered a discounted price and (b) 
whether they purchased the standard or higher effi-
ciency product, the evaluator applies the statistical 
solution to estimate the net savings and net adoption 
parameters. In this case, the evaluator can reasonably 
infer that the calculated average (or total) net energy 
savings and net adoption are attributable to the ran-
domly assigned program price discount. However, the 
estimate of net savings does not provide the informa-
tion required to assess the accuracy of the average 
energy savings attributed by the program administra-
tor to observed market adoption by targeted individu-
als who receive a price discount if they purchase the 
more efficient product. This is because the net savings 
impact parameter, as revealed by Eq.  (5), confounds 
measure savings and net measure adoption. The 
standard metric to assess the accuracy of claimed sav-
ings is the gross realization rate (GRR ), equal to the 
ratio of realized gross energy savings (GS) to claimed 
energy savings. The latent structure of average gross 
savings over the target population is expressed by the 
following equation:

It is obvious from a comparison of Eqs. (7) and (9) 
that estimated net savings, i.e., the average impact of 
program implementation on energy consumption, is 
not a valid metric to quantify the average impact of 
measure adoption on energy consumption. The two 
parameters are incommensurable because they are 
designed to address fundamentally different ques-
tions of attribution. Nevertheless, some analysts have 

(9)
GS ≡

(
MS|PI = 1

)
= p(0, 1)MS(0,1) + p(1, 1)MS(1,1)

Table 2  Joint distribution of potential measure adoption outcomes

MA
i
(PI) MA

i
(1) = 0 MA

i
(1) = 1 Average

MA
i
(0) = 0 p(0, 0) p(0, 1) 1 −MA(0)

MA
i
(0) = 1 p(1, 0) p(1, 1) MA(0)

Average 1 −MA(1) MA(1) NA = MA(1) −MA(0)

5 In a seminal paper in the field of epidemiology, Greenland 
and Robbins (1986) introduced this formulation of the latent 
structure of the attributable effect of an exposure to a puta-
tive causal factor on disease risk in a target population char-
acterized by inherent differences in risk between exposed and 
unexposed individuals. Their analysis of the problem of hetero-
geneity of response, independently of Rubin, provides unique 
insight into the fundamental importance of the unconfound-
edness assumption to the identification of causal parameters. 
Pearl (2011) characterized the formulation as a “canonical 
partition” of the population according to equivalent response 
functions.
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presented patently spurious interpretations of evalu-
ation findings derived from such comparisons. In 
a widely cited paper, Nadel and Keating (1991, p. 
24) compared the results of 42 impact evaluations, 
derived from statistical analysis of participant and 
nonparticipant billing data, to engineering estimates 
of program savings. The authors offered the following 
justification for this analysis:

While it may seem unfair to judge engineering 
estimates of gross savings by comparing them 
to impact evaluations of net savings, given the 
importance of net savings for determining pro-
gram impacts and program cost-effectiveness, 
we chose to make the comparison, in an effort 
to encourage program planners and implement-
ers to devote increased attention to estimating 
the net impacts of programs. 

The comparison revealed significant discrepancies 
between engineering and billing analysis estimates of 
program savings, which the authors attribute to flaws 
in the engineering estimates. The premise of this 
comparison is that billing analysis estimates provide 
a valid benchmark to assess the accuracy of engineer-
ing estimates of measure savings. But the ratio of 
net to claimed savings confounds the program gross 
realization rate and the program energy savings net-
to-gross ratio (ESNTGR ), the ratio of net savings to 
(realized) gross savings. For example, a ratio of net 
to claimed savings of 0.6 cannot differentiate between 
the following parameter values: (a) a gross realization 
rate of 1.0 and a net-to-gross ratio of 0.6, (b) a gross 
realization rate of 0.6, and a net-to-gross ratio of 1.0, 
(c) a gross realization rate of 2.0 and a net-to-gross 
ratio of 0.3. The three possibilities are observationally 
equivalent. If the net-to-gross ratio does not exceed 
1.0, then the calculated net to claimed savings ratio is 
the lower bound of possible values of the gross reali-
zation rate and the intrinsic negative bias is equal to 
GRR  ∙ (ESNTGR -1).

The idealized randomized upstream design, with 
one additional assumption, could enable the iden-
tification of the average measure savings within the 
latent class of net adopters, MS(0,1) , which is a compo-
nent of both net and gross savings. This parameter is 
the previously defined local average treatment effect 
(LATE), to distinguish it from the ITT parameter, i.e., 
net savings averaged over the entire population. An 
estimate of the LATE can be formed by calculating 

the ratio of the unbiased estimates of net savings and 
net adoption, provided that the evaluator is willing to 
make the assumption that net adoption is non-nega-
tive for all targeted individuals. Given this monoto-
nicity assumption, the population proportion of net 
non-adopters, p(1, 0) , which appears in Eqs. (7) and 
(8), is equal to zero and the ratio of the two param-
eters is equal to:p(0, 1) MS(0,1)∕p(0, 1).

The empirical decomposition of the average net 
savings parameter into its average measure savings 
and net adoption components is critical to the evalu-
ation of measure and program cost-effectiveness. 
Net energy savings is the principal determinant of 
the incremental resource benefits of program imple-
mentation. However, quantification of the incremen-
tal capital cost of measure adoption requires knowl-
edge of the population rate of net adoption in order 
to account for the net impact of program implementa-
tion on the life-cycle cost of end-use service, which 
is the sum of the cost of energy consumption and the 
cost of capital investment. The net benefit of measure 
adoption, i.e., the reduction in the life-cycle cost of 
service attributable to program influence (achieved by 
net adopters), is the fundamental driver of program 
cost-effectiveness. The magnitude of the average net 
benefit of measure adoption, which is the difference 
between the avoided cost of the average energy sav-
ings of net adopters (LATE) and the incremental cost 
of the installed measure, must be positive and the 
magnitude of net adoption must be sufficient to pro-
duce aggregate benefits that exceed program imple-
mentation (administration, marketing, etc.) costs.

Moreover, the separation of net measure savings 
and net adoption enables the evaluation of program 
logic and the effectiveness of key design elements 
in the realization of program objectives. Separate 
estimates of net adoption and measure savings pro-
vide ongoing feedback to program administrators 
which can inform decisions to improve program per-
formance. The magnitude of net adoption is a direct 
indicator of the effectiveness of program incen-
tives and information to induce efficiency improve-
ments that would not have occurred in the absence 
of the program, whereas the average energy savings 
of induced adopters allows for an assessment of the 
life-cycle benefits realized by that latent class of the 
target population. Departures from expectations in 
the two impact parameters have different implications 
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for adaptive adjustment of program design or 
implementation.

If program incentive budgets, energy savings goals, 
and projected net benefits are based on a projection of 
net measure adoption that is substantially higher than 
the estimated actual level, the program administrator 
may increase the amount of the product discount or 
introduce a marketing or stocking incentive for equip-
ment vendors. Or if the claimed average measure sav-
ings per net adopter is substantially higher than the 
estimated amount, then reevaluation of measure and 
program cost-effectiveness may be in order. Modifi-
cation of measure or participant eligibility require-
ments could be investigated in order to more effec-
tively target those market transactions which present 
the greatest opportunity to realize the cost-effective 
potential of increased end-use efficiency.

While the separate estimation of net adop-
tion and average measure savings of net adopters 
affords some insight into the factors underlying 
the realization of program energy savings and the 
corollary implications for program improvement, 
the formative value of these parameters is severely 
limited by the absence of site-specific measure-
ment and verification data that can be used to 
identify and quantify the discrepancies between 
the assumptions employed in measure savings 
projections and the corresponding observed con-
ditions during the post-adoption reporting period. 
While, under ideal conditions of program design 
and data collection, statistical estimates based on 
longitudinal or cross-sectional comparisons of 
whole-building metered energy consumption may 

provide a valid summative measure of program 
impact, program administrators and regulators are 
left in the dark to speculate regarding the reasons 
for the empirical results.

M&V studies routinely conducted to estimate 
gross energy and demand savings are able to sepa-
rately quantify measure savings at a single site via 
direct measurement of the determinants of end-use 
consumption. These on-site assessments can provide 
a quantitative breakdown of the site and population 
(gross) energy savings realization rates into separate 
factors to explain the sources of differences between 
reported and evaluated savings, such as installed 
capacity and efficiency and hours of operation. The 
sample data can also be used to characterize the pop-
ulation distributions of measure savings and determi-
nants of savings, information that is critical to a clear 
understanding of the corresponding distribution of 
net benefits within the target population. The policy 
relevance of these findings is obvious given the pro-
gram and portfolio objectives to maximize all cost-
effective opportunities and to achieve a broad distri-
bution of benefits to diverse customer sectors.

Structural models of selection bias

In cases where it is feasible to condition on the known 
determinants of measure savings, then one source of 
covariate imbalance between the participant and sur-
rogate nonparticipant subpopulations can be elimi-
nated. The conditional selection bias of the quasi-
experimental stratified estimator parallels Eq. (6):

(10)

Selection Bias

(
̂
NS|MS, PP = 1

)
≡

(
EC(0)|MS, PP= 0) − EC (0)|MS, PP = 1

)

= MS

[
(MA (0)|MS, PP= 1) − (MA (0)|MS, PP= 0)

]

As before, the structural assumption of equal rates 
of baseline measure adoption within strata, in addi-
tion to monotonicity and no nonparticipant spillover, 
is sufficient to identify the participant net savings 
impact parameter. This assumption, the SOO condi-
tion formulated by Eq.  (3) of conditional independ-
ence of baseline adoption and program participation, 
is the basis for most matching and regression methods 
employed to quantify program net savings. The prob-
lem is that the assumption is not consistent with the 

basic logic of program design and the market research 
by which it is informed.

Energy efficiency programs are designed to address 
specific barriers to measure adoption. The design pro-
cess is accordingly guided by two questions: (1) What 
factors account for different measure adoption deci-
sions among consumers who are homogeneous with 
respect to potential measure savings? (2) What spe-
cific program design elements can effectively target 
individuals for whom cost-effective measure adoption 
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is inhibited by one or more of these factors? Market 
barriers may take many forms, but can be generally 
subsumed under two categories: informational and 
financial barriers. Informational barriers include 
lack of awareness of the commercial availability of 
alternative products and services to upgrade end-
use efficiency, lack of knowledge of the potential 
energy savings achievable by a specific upgrade and 
the potential reduction of annual operating expenses, 
uncertainty regarding equivalence of performance of 
alternative technologies, such as capacity, reliability, 
and quality of end-use service, and lack of awareness 
of non-energy costs and benefits of measure adoption. 
Financial barriers include limited access to capital, 
transaction costs of financing, and inability to capital-
ize building efficiency improvements.

A fundamental design objective is to minimize 
participation by baseline adopters, equivalently to 
maximize the program participant measure adop-
tion net-to-gross ratio (PPMANTGR ). The challenge 
is to offer program benefits that selectively motivate 
non-baseline adopters to participate. If, for example, 
program planners have conducted market research 
that identifies capital market imperfections that limit 
baseline measure adoption by a significant segment of 
the target population, then a program which facilitates 
access to capital could influence consumers within 
this segment to invest in a more efficient alternative, 
whereas consumers without capital constraints would 
have little incentive to seek alternative financing via 
program participation. In this case, the quasi-experi-
mental estimator would be negatively biased, under-
stating the true net impact of the program.

Product subsidies can also be designed to selec-
tively exclude eligibility of applications in which the 
simple payback of measure installation is below a 
prescribed threshold determined by survey research to 
assess the target population distribution of consumer 
energy efficiency investment criteria. From the incep-
tion of retrofit/early replacement programs, this strat-
egy has been employed to limit the number of partici-
pant “free riders” who receive an incentive payment 
for measures that consumers would adopt without a 
program subsidy. Implementation of this design ele-
ment of course depends upon the availability of site-
specific data required to project annual measure sav-
ings. Such programs which incorporate initial site 
assessments can also disqualify measure installations 
that replace existing equipment of the same or similar 

efficiency as the program measure or less-efficient 
equipment that would have been replaced with a non-
qualifying product that operates at the current market 
standard of efficiency.

Program interventions that are primarily focused 
on the provision of information target consumers and 
trade allies who may be unaware of the availability of 
more efficient alternatives and uninformed about the 
potential benefits of measure adoption. This category 
includes a diverse range of program designs, includ-
ing product labeling, facility operator and contrac-
tor training, home energy reports, residential energy 
management systems, alternative pricing, retro-com-
missioning, and audit programs that perform on-site 
assessments of energy savings potential and non-
energy benefits (e.g., avoided equipment replace-
ment costs, other resource costs, waste disposal costs, 
increased health, and safety and productivity ben-
efits). The intended effect of the provision of infor-
mation about the benefits of measure adoption is to 
enable each consumer to accurately value the impact 
of improved efficiency on the cost of end-use service, 
assuring that the willingness to pay for the improve-
ment is not distorted by a lack of awareness of avail-
able alternatives or misconceptions about potential 
savings or equivalence of service. Like financing pro-
grams, informational programs provide little incen-
tive for consumers to participate who have procured 
the relevant measure-specific and site-specific infor-
mation, or have installed data collection and analysis 
systems that generate such information.

However, some programs are designed to selec-
tively attract participants who have higher-than-
average potential energy savings in order to maxi-
mize gross energy savings and measure adoption. 
Many states have established performance incentives 
to motivate program administrators to achieve or 
exceed pre-approved energy savings targets utiliz-
ing resources that are limited by approved program-
specific budgets. Performance metrics consist of pro-
gram, sector, or portfolio energy savings targets and 
may incorporate additional components tied to pro-
gram cost-effectiveness. Such metrics can have the 
unintended consequence of rewarding program design 
and implementation which selectively encourages 
participation by high-use consumers that generate 
higher than average energy savings per participant. 
Selective marketing by customer account representa-
tives and “standard offer” programs which pay a fixed 
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incentive amount per unit of energy savings are nota-
ble examples of program design and implementation 
practices that are likely to result in a high rate of par-
ticipation by baseline adopters (free riders) and a cor-
responding low PPMANTGR .

Prescriptive rebates and subsidized measure instal-
lation incentives reduce the incremental cost of meas-
ure adoption by a fixed amount that does not vary 
within the eligible population. Baseline non-adop-
ters who are aware of the more efficient alternative 
may be influenced to adopt by the availability of an 
incentive that substantially reduces the difference in 
installed cost. Baseline adopters, on the other hand, 
are confronted with a fundamentally different tradeoff. 
Because they have determined that measure adoption is 
worth the additional (unsubsidized) cost, their baseline 
is the life-cycle cost of the more efficient alternative. 
Their decision criterion is not a comparison of the ben-
efit and subsidized cost of measure adoption, but rather 
a comparison of the benefit and cost of program par-
ticipation. The incremental benefit is the amount of the 
incentive; the incremental cost is the transaction cost of 
program participation, which is not observable.

These program design examples are presented to 
articulate the problem of knowledge in terms of the 
unobserved determinants of baseline measure adop-
tion and program participation. While, in practice, 
most programs incorporate some combination of 
informational and financial inducements, the cited 
alternative design elements indicate the scope of pos-
sible interventions that may be employed to influence 
diverse segments of a heterogeneous target population 
consisting of individuals who are confronted with 
some unknown combination of barriers to measure 
adoption and program participation. The examples 
reveal that the magnitude and direction of selection 
bias, as defined by Eq. (10), depend critically on the 
nature of the program intervention and the specific 
factors that account for variation in adoption and par-
ticipation decisions among the individuals who com-
prise the target population.

Programs which favor self-selection by non-
baseline adopters may be characterized as incen-
tive-compatible because the intervention induces 
eligible individuals to implicitly reveal their unob-
servable willingness to pay the unsubsidized incre-
mental cost of the efficiency upgrade via their 
observed participation outcomes. Random selection 
implies equality of average participant and non-
participant baseline adoption and, consequently, 
zero selection bias; as such it is a boundary point 
between incentive compatibility and adverse selec-
tion, which characterizes a program that selectively 
attracts baseline adopters to participate. The mag-
nitude and direction of the selection bias reflect the 
nature of the dependence between baseline measure 
adoption and participation. Negative bias indicates 
negative dependence and positive bias indicates 
positive dependence. The negative and positive lim-
its of dependence correspond respectively to the 
cases in which participant baseline adoption rates 
equal zero and one, or equivalently the participant 
measure adoption net-to gross ratios (PPMANTGR) 
equal one and zero. Table  3 presents the bounds 
on these parameters for the three self-selection 
scenarios.

Under the SOO assumption of random self-
selection, baseline measure adoption and program 
participation are independent (MA(0)⫫PP) and 
there is no selection bias. Under incentive compat-
ibility, participant baseline adoption is less than 
nonparticipant baseline adoption and selection 
bias is negative; under adverse selection, partici-
pant baseline adoption is greater than nonpartici-
pant baseline adoption and selection bias is posi-
tive. The lower and upper bounds of self-selection 
bias are respectively equal to  (−MA(0)|PP = 0) and 
(1 −MA(0)|PP = 0).

The previously mentioned method of control func-
tions is designed to account for unobservable differ-
ences between participant and nonparticipant baseline 
behavior (Heckman & Navarro-Lozano, 2004). The 

Table 3  Participant 
baseline measure adoption, 
net-to-gross ratio, and 
selection bias

Self-selection MA(0)|PP = 1 PPMANTGR Selection bias

Random selection (MA(0)⫫PP)                   
Incentive-compatible selection     
Adverse selection > MA(0)|PP = 0 < 1 −MA(0)|PP = 0 0 <1 −MA(0)|PP = 0

= MA(0)|PP = 0 = 1 −MA(0)|PP = 0 = 0

< MA(0)|PP = 0 > 1 −MA(0)|PP = 0 −MA(0)|PP = 0 < 0
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technical approach is to formulate separate models 
of the individual program participation decision pro-
cess and the potential outcome of interest which, in 
energy efficiency program impact evaluations, is typi-
cally energy consumption or measure adoption. The 
participation model is formulated as a random utility 
model, according to which an individual participates 
if the utility of participation exceeds the utility of 
nonparticipation:

In this formulation, utility is the sum of observ-
able and unobservable components. The observable 
component, also known as “representative utility,” is 
a specified function of measured covariates and the 
unobservable component is a random variable with a 
specified distribution. The probability of participation 
(propensity score) is determined by the difference 
between the observable components and the distribu-
tion function (F) of the difference between the unob-
servable components:

SOU models of energy consumption incorpo-
rate a correction factor for unobservable differences 
between participant and nonparticipant baseline 
energy consumption which is derived from the ran-
dom utility model probability of participation. The 
correction factor, termed the control function by 
Heckman and Robb (1985), is the expectation of the 
unobserved residual component of the regression of 
energy consumption on measured covariates, condi-
tional upon the participation decision. Violette and 
Ozog (1989) provide a review of the application of 
this approach, first developed by Heckman (1979), 
to impact evaluation of energy efficiency programs, 
utilizing an adaptation by Dubin and McFadden 
(1984), who characterize it as a “discrete/continu-
ous choice” model.

Train (1988, 1994) developed an alternative 
approach to correction for selection bias, in both audit 
and incentive programs, which combines the partici-
pation model with a discrete choice model of measure 
adoption, instead of a model of energy consumption. 
This approach has the virtue of separate quantifica-
tion of measure adoption and measure savings, which 
avoids selection bias in the latter component of net 

PP
i
= 1(V

PP,i + U
PP,i > V

NP,i + U
NP,i)

= 1(V
PP,i − V

NP,i > U
NP,i − U

PP,i)

(11)Pr(PPi) = FUNP,i−UPP,i
(VPP,i − VNP,i)

savings, whereas billing analysis of participant and 
nonparticipant energy consumption confounds two 
sources of selection bias. As discussed by Agnew and 
Goldberg (2017), participant and nonparticipant com-
parison groups can be expected to differ with respect to 
observable as well as unobservable characteristics that 
contribute to differences in baseline energy consump-
tion. The observable differences may be characterized 
as differences in the determinants of measure savings. 
The unobservable differences represent differences in 
baseline measure adoption.

Figure  1 illustrates the problem for a single stra-
tum of imputed hours of operation. The top and bot-
tom lines depict the energy consumption of a single 
device of a given capacity as a function of two alter-
native levels of rated efficiency and annual equivalent 
full-load hours of operation. The slope of each line is 
equal to the corresponding connected load. The dif-
ference between the values of the MA = 0 and MA = 1 
lines at the same hours of operation is equal to the 
amount of measure savings. The other two lines rep-
resent the average energy consumption at interme-
diate values of average baseline measure adoption, 
and consequently connected load, corresponding to 
participant and nonparticipant subpopulations. The 
average value of participant net savings of individu-
als homogeneous in hours of operation is equal to 
the difference between the MA(0)|PP = 1 and MA = 1 
consumption values, because it is assumed that par-
ticipation is contingent upon measure adoption. The 
corresponding value of net adoption is equal to the 
ratio of net savings to measure savings at the same 
hours of use.

In this hypothetical example, the quasi-experimen-
tal estimator of participant net savings is the differ-
ence between the observed average energy consump-
tion values of nonparticipants and participants within 
the single stratum of imputed hours of operation. 
Selection bias is the difference between nonpartici-
pant and participant average baseline consumption, 
indicated by the horizontal solid lines.6 All quasi-
experimental methods seek to account for observable 
differences between the determinants of participant 
and nonparticipant baseline consumption in order to 

6 The maintained assumption of no program impact on non-
participants implies that observed consumption is equal to 
baseline consumption.
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eliminate or minimize this source of bias. The prin-
cipal observable determinants of the consumption of 
the single device are the rated efficiency, which in this 
example is limited to two possible values, and indi-
vidual hours of operation. The analysis must therefore 
condition energy consumption on measured hours 
of operation, utilizing either a non-parametric (e.g., 
stratification, matching) or a parametric regression 
method to eliminate this source of bias.

As discussed earlier, a serious deficiency of most 
billing analyses is the lack of site measurement and 
verification of key covariates for both participants 
and nonparticipants. Evaluators must accordingly 
rely upon available data that can serve as proxy val-
ues for site-specific measurements. Proxies for device 
hours of operation, depending on the end use, include 
building operating schedule obtained via customer 
surveys, utility records of building type, weather data 
collected at the closest site, or values imputed from 

site measurements conducted in other populations. 
Figure  1 depicts a case in which the true average 
hours of operation of nonparticipants in one particu-
lar stratum is less than the corresponding true par-
ticipant average, after conditioning on one or more 
proxy covariates to adjust for this source of bias. The 
residual difference in this illustrative example creates 
a negative bias in the estimate of participant baseline 
consumption and participant net savings.

The negative bias in hours of operation reduces 
the observed nonparticipant energy consumption by 
the amount bracketed on the vertical axis.7 This com-
ponent of bias is reflected in the difference in meas-
ure savings determined by the difference in average 
hours of operation. The second component of bias is 

Energy
Consumption

Hours of Operation

MA = 0

MA = 1

MA(0)|PP=1

MA(0)|PP=0

EC(0)|PP=1

EC(0)|PP=0

HO|PP=1HO|PP=0

HO Bias

MA(0) Bias

Fig. 1  Sources of self-selection bias

7 The bracketed hours of operation bias is the incremental bias 
after accounting for baseline adoption bias.
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the reduction in nonparticipant energy consumption 
associated with higher nonparticipant baseline adop-
tion. For clarity of illustration, the two components of 
bias are negative, but both could be positive or one 
positive and the other negative. It must also be noted 
that the participant and nonparticipant baseline rates 
of adoption can assume any value between 0 and 1 
in any stratum, so that the slopes of the intermediate 
lines can differ among strata.

The discrete/continuous energy consumption 
model must address both sources of bias in the esti-
mation of net savings. The data problem which is the 
source of measure savings bias can, in principle, be 
solved via accurate site-specific measurement of the 
observable determinants, in this example hours of 
operation. However, the proposed correction for latent 
baseline adoption bias entails the inclusion of a selec-
tivity covariate in the energy consumption regression 
model which is derived from the modeled probability 
of participation. The key assumption is that the differ-
ence between nonparticipant and participant average 
baseline consumption, conditional on measure sav-
ings, is equal to the product of the difference between 
the participant and nonparticipant average values of 
the selectivity covariate and its regression coefficient. 
The covariate, commonly known as the inverse Mills 
ratio, is the expected value of the unknown compo-
nent of the utility of participation conditional on the 
observed participation decision.

The unknown component of utility is the difference 
between the hypothetical random utility of the partici-
pation decision made by each targeted individual and 
the modeled representative utility, which is a speci-
fied function of observable covariates. The individual 
values of the selectivity covariate included in the 
consumption model are determined by the assump-
tions about the set of relevant covariates, the func-
tional form of the relationship between the observed 
covariates and representative utility, and the distribu-
tion of the unknown random components of utility, as 
formulated in Eq. (11). Misspecification of the repre-
sentative utility function undermines the validity of 
the assumptions concerning this distribution. Omis-
sion of relevant covariates or misspecification of the 
form of the utility function will violate the common 
assumptions that the modeled errors are identically 
distributed as normal or logistic random variables 
with zero mean and common variance. These dis-
tributional assumptions, moreover, are inconsistent 

with heterogeneity of representative utility implied by 
variation in the relative importance that a consumer 
attaches to the observable variables specified in the 
evaluator’s model of representative utility.

As discussed above, due to heterogeneity of market 
barriers to measure adoption, different latent classes 
of targeted individuals can be expected to respond 
differently to program design elements, depending 
on the individual baseline threshold of adoption and 
the incremental utility of participation. In particular, 
it was noted that baseline adopters and non-adopters 
can be expected to employ different decision criteria 
and further that different segments of baseline adop-
ters and non-adopters may be selectively attracted by 
different program design elements, such that some 
baseline adopters may be more likely to participate 
than some non-adopters and vice versa. In light of 
these considerations, the scope of uncertainty con-
cerning selection bias may be characterized in terms 
of an unknown mixture of some number of latent 
classes of targeted individuals with selection prob-
abilities that can vary over the entire range of incen-
tive-compatibility and adverse selection presented 
in Table  3. The selectivity covariate is thus derived 
from a participation model that is subject to the same 
types of specification error that it is designed to cor-
rect in the consumption model. The “solution” to the 
problem of knowledge of the determinants of baseline 
adoption has simply been transposed via a different 
set of assumptions regarding the unobserved compo-
nents of the utility of participation.

Train (1994, p. 440) rejects the application of 
discrete/continuous choice methods to the prob-
lem of estimation of net energy savings because this 
approach does not separately model the measure 
adoption decision as well as the program participa-
tion decision:

Estimation of net savings necessarily requires 
identifying causation. The central question is: 
to what extent did participants install meas-
ures because of the program? Yet regressions 
of consumption against program participation 
dummies are not causal. Program participation 
does not cause consumption to change. It is the 
implementation of measures that causes con-
sumption to change. Program participation is 
expected to increase the chance that a customer 
implements conservation measures, and then 
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this installation changes the consumption of the 
customer. A causal model would represent these 
two steps of causation explicitly.

In contrast to the discrete/continuous modeling 
approach, discrete choice methods explicitly model 
the measure adoption decision as well as the participa-
tion decision. Train et  al. (1994) formulated a nested 
logit model of the three options represented in Table 4: 
non-adoption, nonparticipant adoption, and participant 
adoption, applicable to programs which condition par-
ticipation on measure adoption. The nested logit prob-
ability of each adoption/participation decision is derived 
from a random utility model composed of the sum of 
the observable components of the utilities of participa-
tion and measure adoption and an unobservable random 
component. Each choice probability can be expressed as 
the product of two binary logit probabilities. The condi-
tional probability of participation contingent upon meas-
ure adoption takes the same binary logit form adopted 
by Dubin and McFadden (1984) and subsequently 
applied by energy efficiency program evaluators to esti-
mate net energy savings using the discrete/continuous 
approach (Violette & Ozog, 1989). The marginal prob-
ability of measure adoption is also binary logit, which 
is a function of the individual representative utility of 
adoption, regardless of which participation option is 
selected, and the expected incremental utility afforded 
by the availability of the option to participate.

The energy consumption (discrete/continu-
ous choice) and measure adoption (discrete choice) 
approaches differ in important respects. One funda-
mental difference is the separation of the two questions 
of attribution. The discrete choice methods model the 
individual probability of measure adoption under pro-
gram and baseline conditions. Net savings is estimated 
by calculating the average of the product of the indi-
vidual probability of net adoption and individual meas-
ure savings estimates derived from onsite surveys of 
sampled participants and nonparticipants (Train et al., 
1994), whereas discrete/continuous choice billing 

analysis is designed to provide a comprehensive solu-
tion to selection bias which corrects for participant-
nonparticipant differences in both measure savings 
and baseline measure adoption, with the consequent 
confounding of measure savings and measure adoption 
bias. Discrete choice analysis generates separate esti-
mates of the two components of net savings in Eq. (5), 
providing an unbiased estimate of the average gross 
measure savings impact parameter and eliminating one 
source of bias in the estimate of net savings. However, 
a serious practical limitation of this method is the cost 
of site measurement of measure savings and verifica-
tion of measure adoption for nonparticipant as well as 
participant samples, which, as noted above, is a pri-
mary motivation for the use of the discrete/continuous 
billing analysis. The solution to the data problem may 
be prohibited by regulatory requirements to maintain 
evaluation budgets that do not exceed a specified per-
cent of total program expenditures.

In addition to avoiding measure savings bias, the 
expansion of the observed source data to include a 
characterization of the available efficiency alterna-
tives, verification of measure adoption, estimation of 
end-use demand and potential measure savings, and 
other site-specific observations enables the evaluator 
to explicitly model the measure adoption decision by 
participants and nonparticipants. The decomposition 
of the nested logit probabilities into separate binary 
logit models provides a transparent formulation of the 
distinct structural assumptions underlying the adop-
tion and participation decision processes. The repre-
sentative utility of measure adoption is specified as a 
function of covariates that do not vary with participa-
tion, e.g., measure savings, whereas the representative 
utility of participation depends on covariates that do 
vary with participation, e.g., program awareness and 
amount of program incentive to adopt a measure. The 
individual probability of baseline adoption is “simu-
lated” by recalculation of the marginal probability of 
adoption with the option to participate removed from 
the model, by setting the expected incremental utility 

Table 4  Joint distribution 
of potential measure 
adoption/participation 
outcomes (random 
selection)

MA
i
(PI)

[
MA

i
(1)|PP = 0

]
= 0

[
MA

i
(1)|PP = 0

]
= 1

[
MA

i
(1)|PP = 1

]
= 1 Average

MA
i
(0) = 0 0.60 0 0.15 0.75

MA
i
(0) = 1 0 0.20 0.05 0.25

Average 0.60 0.20 0.20 NA = .15

MA(1)|PP 0.75 (= 0.60/0.80) 0.25 (= 0.20/0.80) 1.00 (= 0.20/0.20)
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of participation to zero. The individual probability 
of net adoption is accordingly calculated as the dif-
ference between the marginal probability of adoption 
with and without this term in the equation.

The joint distribution of the potential outcomes 
under the program and baseline conditions presented 
in Table 2 can be expanded to disaggregate program 
measure adoption into participant and nonparticipant 
subpopulations. Under the monotonicity and exclu-
sion restriction assumptions, this joint distribution 
reduces to the joint distribution of participation and 
baseline adoption. Table 4 presents a numerical exam-
ple under these assumptions and the SOO assump-
tion of conditional independence of participation and 
baseline adoption, in which case the participant and 
nonparticipant rates of baseline adoption are equal 
and baseline adopters and non-adopters are equally 
likely to participate. Table 5 presents the bounds on 
program participant baseline measure adoption, net-
to-gross ratio, and the selection bias under the self-
selection assumptions presented in Table 3.

It is clear from Tables 4 and 5 that every possible 
value of average participant baseline measure adop-
tion, from 0 to 1.0, is consistent with the observed 
measure adoption data for non-adoption, nonpartici-
pant adoption, and participant adoption (presented 
in the row labeled “Average”). While nonparticipant 
baseline adoption is directly observable under the 
maintained assumptions of monotonicity and non-
participant spillover, alternative values of participant 
baseline adoption are observationally equivalent. The 
source of this indeterminacy is the absence of base-
line measure adoption data to estimate the population 
value (presented in the column labeled “Average”). 
The statistical solution is not available because there 
are no observations of the marginal distribution of 
baseline adoption in the target population. Structural 
assumptions must therefore be invoked to determine 
a solution.

In the three-option nested logit model, the joint 
distribution of the unobserved random components 
of utility is assumed to follow a specific parametric 

form that determines the nature of the dependence 
between baseline measure adoption and program 
participation. This specification of the joint distribu-
tion limits the assumed relationship to one of non-
negative dependence. In other words, the model 
specification rules out the possibility of incentive 
compatibility, thus incorporating an intrinsic nega-
tive bias in the estimation of net adoption. While 
more flexible models of discrete choice are avail-
able, there remains the basic problem of knowledge. 
In the quasi-experimental setting, every SOO or 
SOU model represents an alternative set of untest-
able assumptions about the structure of the adop-
tion and participation decision processes. Both 
approaches are fundamentally flawed because there 
is no scientific foundation for the assumptions that 
are required to determine a unique solution to the 
problem of attribution.

Quantification of bias

As noted in the “Introduction” section, program admin-
istrators and regulators, lacking a consensus methodo-
logical standard for valid attribution, must assess the 
credibility of the reported findings generated by diverse 
approaches to data collection and analysis. Given that 
most programs are not designed to randomize exposure 
to program influence, the presence of exposure or selec-
tion bias cannot be ruled out. The presumption of attribu-
tion bias accordingly raises the practical question of the 
magnitude of the effect on estimates of program impact.

Unfortunately, industry evaluation protocols gov-
erning statistical precision and physical measurement 
error cannot be applied to the quantification of these 
sources of bias. In certain cases, the direction of bias 
may be posited via plausible assumptions: in studies 
which employ targeted nonparticipants as a baseline 
surrogate, the assumption of positive spillover results 
in a negatively biased estimate of net impact. Further-
more, the magnitude of the negative bias is twice the 
level of spillover, because positive spillover leads to 

Table 5  Participant 
baseline measure adoption, 
net-to-gross ratio, and 
selection bias

Self-selection MA(0)|PP = 1 PPMANTGR Selection bias

Random selection (MA(0)⫫PP) 0.25 0.75 0
Incentive-compatible selection [0, 0.25) (0.75, 1.0] [− 0.25, 0)
Adverse selection (0.25, 1.0] [0, 0.75) (0, 0.75]
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an overstatement of participant baseline adoption and 
an understatement of nonparticipant net adoption. For 
example, even a modest level of 10% spillover will 
result in a negative bias of 20% of net impact. Yet even 
in applications where the assumption of no exposure 
bias may be plausible, the preceding discussion of the 
sources of selection bias reveals the unrestricted scope 
of the uncertainty of impact estimates derived from 
evaluation data which do not include observations of 
the baseline measure adoption or energy consumption 
of targeted individuals: the observed data are consist-
ent with every net-to-gross value between zero and 
one. In this common situation, the only recourse left 
to the evaluator is the explicit or implicit adoption of 
untestable structural assumptions regarding the deter-
minants of baseline behavior.

Discussion

In this examination of the problem of attribution, I 
have concentrated on the formal underpinnings of 
valid causal inference when using experimental and 
quasi-experimental methods to analyze program 
impact. Definition of policy-relevant impact param-
eters in terms of potential outcomes, following Ney-
man and Rubin, reveals the intrinsic limitations on 
valid attribution when all targeted individuals are 
subject to program influence or selective exposure is 
not randomized within the target population. This cat-
egorical distinction between quasi-experimental and 
experimental program design elements signifies the 
presence or absence of exposure and selection bias 
because, with quasi-experimental designs, there are 
no observable data that can adequately represent the 
potential outcomes under the baseline condition of no 
intervention.

In EM&V practice, the limited scope of applica-
tion of randomized control in program design is 
problematic given the importance of quantifying the 
benefits of programs funded by energy consumers to 
public policy decisions governing energy resource 
planning and environmental protection. In default of 
the program design conditions that enable a statisti-
cal solution to the problem, evaluators must rely upon 
structural assumptions to justify a causal interpreta-
tion of estimates of net energy savings, net adoption, 
and net-to-gross ratios. These assumptions are neces-
sary to fill the empirical void created by the lack of 

valid baseline data. The posited underlying behavio-
ral processes that determine measure adoption and 
program participation may be intuitively plausible 
or consistent with a theory of consumer preference, 
but they are devoid of empirical content, i.e., not 
testable from the available data. The model assump-
tions specifying the set of observed determinants, 
the distribution of the unobserved determinants, and 
their functional relationship to potential outcomes 
represent one out of many alternative hypotheses 
that can be devised to explain the potential outcomes 
under the mutually exclusive conditions of program 
implementation.

The observational equivalence of alternative sets 
of plausible assumptions undermines the credibility 
of any one of the modeled hypothetical alternatives as 
a valid basis for attribution. As illustrated by numeri-
cal example, different analyses of the same observed 
choice data can lead to conflicting, indeed diametri-
cally opposed conclusions about program net impact, 
depending on the structural assumptions selected by 
the evaluator. The deficit in knowledge of the relevant 
behavioral determinants provides full scope for latent 
heterogeneity of consumer response to program mar-
keting, information, and financial incentives which 
will vary according to the differential effects of pro-
gram design elements on diverse segments of the tar-
get population.

Vine et al., (2014, p. 628), in a plea for the adop-
tion of the experimental paradigm in EE program 
evaluation, note the contrast between engineering 
calculations to quantify measure savings, which are 
“relatively uncontroversial,” with problems of attribu-
tion in the assessment of program impact “that have 
resisted resolution and create a persistent climate of 
uncertainty about the effectiveness of energy effi-
ciency programs.” The authors argue for the use of 
experiments to resolve the uncertainties intrinsic to 
estimates of net impact, including spillover effects, 
of programs that have not typically employed rand-
omized selection for eligibility. They further propose 
the explicit incorporation of a research dimension into 
program evaluation which emphasizes the formative, 
as well as the summative value of randomized con-
trol, in that program administrators “can learn what 
is working and what is not and can thereby develop 
more innovative and effective programs.”

When the object of inquiry is consumer prefer-
ence, a controlled experiment represents an attempt 
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to acquire a rudimentary understanding of the factors 
that influence observed market behavior. For example, 
randomized eligibility for a high, low, or no incentive 
or a 2 × 2 factorial design to analyze the effects of two 
different types of intervention, e.g., informational and/
or financial, could provide some limited insight into 
the influence of program design elements on measure 
adoption, as well as produce a valid estimate of net 
impact. As in any field of scientific inquiry, progress 
toward knowledge of behavioral determinants would 
be incremental and contingent upon replication of 
findings in other populations. Such efforts, however 
limited in scope, would make better use of ratepayer 
funds than the continued reliance on methods which 
can only perpetuate the “climate of uncertainty” sus-
tained by uncritical acceptance of “heroic and unwar-
ranted assumptions” incorporated within models of the 
science (Rubin, 2005). Indeed it was the explicit inten-
tion to remove the burden of untestable assumptions 
concerning potential outcomes that motivated Rubin’s 
insistence on a posited assignment mechanism as the 
sine qua non of causal inference from observed data.

Randomization is a confession of ignorance. In 
Fisher’s (1971, p. 44) words, “Randomisation prop-
erly carried out … relieves the experimenter from the 
anxiety of considering and estimating the magnitude 
of the innumerable causes by which his data may be 
disturbed.” There are no intermediate solutions to the 
problem of attribution. The hypothesis of randomi-
zation cannot be construed as an approximation to 
knowledge of the physical act of random selection for 
eligibility, and analysis of the data as if it were gener-
ated by such a process cannot produce a credible esti-
mate of net impact. By the same token, models based 
on assumptions about the observable and unobserv-
able determinants of measure adoption or program 
participation, however plausible, cannot provide a 
scientific solution in the absence of prior knowledge 
of the relevant causal factors, knowledge which can 
only be gained by an experimental approach. How-
ever, alternative randomized designs which selec-
tively control exposure to interventions other than 
program implementation, notably RED, cannot iden-
tify the policy-relevant population parameters that 
define program impact, and therefore, the findings of 
such studies cannot be relied upon to support a valid 
inference of attribution.

Estimation of net energy savings via compari-
son of the metered consumption of participants and 

nonparticipants, or some other baseline surrogate, 
confounds two questions of attribution. As distinct 
populations, participants and nonparticipants have dif-
ferent rates of baseline measure adoption and different 
potential measure savings. The primary conclusion of 
this analysis is that, when randomized exposure is not 
feasible, there is no solution to the problem of attri-
bution of measure adoption — and hence energy sav-
ings — to program influence. Even when sufficient 
site measurement and verification data are collected 
to condition on the known determinants of measure 
savings, Eq. (10) reveals that the net savings estimate 
within each stratum will be biased by the unknown 
difference between participant and nonparticipant 
rates of baseline measure adoption. However, in prac-
tice, the bias may be compounded by conditioning on 
covariates that cannot adequately control for differ-
ences between participant and nonparticipant site-spe-
cific end-use determinants of measure savings, e.g., 
equipment capacity and annual hours of operation.

An important implication of this confounding of 
measure savings and net adoption is that compari-
sons of participant and nonparticipant metered con-
sumption cannot serve as a valid standard to evalu-
ate the accuracy of projections of measure savings, 
and hence the potential benefits of measure adoption, 
which are critical determinants of measure and pro-
gram cost-effectiveness. Such comparisons confound 
net adoption and gross realization rates and, even in 
applications in which the assumption of negligible 
baseline adoption may be credible, there remains the 
bias generated by the failure to control for systematic 
variation between participants and nonparticipants in 
the demand for end-use service.

The statistical and scientific solutions can provide 
valid answers to the respective questions of attribu-
tion that they are designed to address. Randomized 
exposure yields observations of potential outcomes 
that are representative of the target population under 
the baseline as well as the program conditions of 
intervention. Measurement and verification of end-
use demand and installed efficiency at program par-
ticipant sites provide the data required to estimate 
individual energy consumption under the alternative 
conditions of installed and baseline efficiency, which 
determine measure savings defined as the reduction in 
energy required to supply the same level of service.

This analysis has focused on methods that are based 
on a comparison of the energy consumption or measure 
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adoption of program participants and a baseline surrogate 
population: ROI, RED, and quasi-experimental analyses 
of opt-in or upstream programs that compare participant 
outcomes to outcomes of eligible nonparticipants or ineli-
gible customers located in other service territories. How-
ever, the most common approach to net savings estimation 
in the USA is to adjust site-specific estimates of measure 
savings by an estimated net-to-gross ratio derived from 
survey methods which solicit responses from participants, 
nonparticipants, and trade allies to hypothetical questions 
regarding market behavior under the counterfactual condi-
tion of no program implementation.

A key advantage of the survey approach is that 
separate estimation of site measure savings and net-to-
gross factors avoids the problem of confounding and 
therefore can produce valid estimates of individual 
measure and gross program energy savings. Further-
more, as discussed above, site M&V data can be used 
to identify the sources of low or high gross realization 
rates, by comparing the tracking assumptions used to 
calculate projected measure savings to observed val-
ues of equipment-rated capacity, thermostat settings, 
building occupancy, and other determinants of end-
use service demand. Analysis of discrepancies in these 
assumptions also enables quantification of their sepa-
rate contributions to the value of the realization rate. 
However, like other nonexperimental methods, the use 
of interview data to derive estimates of net-to-gross 
adjustments depends on the untestable assumption that 
program participant responses to hypothetical ques-
tions can serve as a valid substitute for observations of 
baseline market behavior; nevertheless, the bias is con-
fined to the quantification of net impact.

In conclusion, these findings refute the presump-
tion of validity accorded to methods of attribution 
that do not effectively randomize the exposure to the 
influence of the evaluated program as designed. This 
presumption has been sustained by an understandable 
reluctance of evaluators to raise fundamental questions 
about evaluation methods that have been in common 
use and generally approved by regulators in jurisdic-
tions that require estimation of net savings to assess 
program performance. Nevertheless, it is incumbent 
upon evaluators to advise program administrators 
and regulators against unwarranted interpretations 
of impact evaluation findings which may misinform 
program implementation and funding decisions that 
are not aligned with public policy objectives. Evalu-
ators and regulators are further encouraged to work 

collaboratively with other interested parties toward a 
reorientation of evaluation protocols and reallocation 
of EM&V resources to make better use of ratepayer 
EM&V funding. Evaluators could propose an overall 
shift in emphasis from production of summative net 
impact metrics to expanded site measurement and veri-
fication that can provide a more comprehensive under-
standing of potential measure savings opportunities in 
diverse segments of customer populations. This highly 
disaggregated information could be complemented by 
focused experimental studies of alternative program 
design elements to provide a strong empirical basis for 
enhanced program design and the development of port-
folio plans which advance the long-term policy objec-
tives of energy efficiency programs.
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