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Introduction

The aviation industry has developed rapidly with 
improved living standards and increased economic 
trade between regions. The global passenger turno-
ver (RPK) is expected to increase from 8.68 trillion 
in 2019 to 20 trillion in 2050, growing at 3.0% yearly. 
International air cargo demand increased by 9.6% in 
2019. But the issue of aviation carbon emissions has 
attracted more and more societal attention. The trans-
portation industry is an energy-intensive industry 
globally (Chang et  al., 2013), emitting more green-
house gas than any other sector except the chemi-
cal industry. Meanwhile, energy consumption in the 
aviation industry is increasing by 6% a year. With 
the growth in energy consumption, there has been a 
massive rise in environmental pollution. Data pub-
lished by the International Air Transport Association 
(IATA) show that the carbon emission of the airline 
industrial sector accounts for 2.4% of the total 37.5 
billion tons in 2018, which caused environmental 
destruction. Based on the International Civil Aviation 
Organization (ICAO) forecast, aviation carbon emis-
sions in 2050 will be 4–6 times that of 2010. To alle-
viate the situation, many strategies of international 
guidelines have been implemented. For example, 
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ICAO proposed the Carbon Neutral Growth strat-
egy (CNG2020) in 2016, which requires the global 
aviation sector to offset carbon dioxide emissions to 
achieve carbon–neutral growth by 2021. The motions 
above have a significant impact on the airlines. There-
fore, it is essential to explore the environmental effi-
ciency of airlines so that countermeasures can be put 
forward.

Air transportation usually consists of passen-
ger and freight services. Passenger transportation 
accounts for a large proportion of most companies, 
and its revenue is far more significant than freight 
revenue. However, the air cargo industry generates 
70 billion US dollars in economic value each year, 
accounting for about 15% of the total business of the 
air transportation industry. Air cargo is growing 1.5 to 
2 times faster than GDP, around 3%, even faster than 
air passenger transportation. According to the IATA 
report, the freight revenue of the international aviation 
industry has shown a growing trend in 2020, affected 
by COVID-19, an increase of 15% compared to 2019. 
Many airlines have changed cabins to cargo cabins to 
increase revenue, such as United Airlines and Luf-
thansa. Moreover, empirical data proves that air cargo 
is significantly and positively correlated with national 
GDP and air cargo provides approximately 57 mil-
lion jobs worldwide annually. Therefore, airfreight 
is becoming an important indicator to determine the 
status of a company with its rapid development. Con-
sequently, it is necessary to consider it. About 55% of 
air transport items are placed in the passenger plane, 
so passenger and freight systems are mixed in daily 
operations. As is shown in Table 1, the top ten mixed 

passenger/freight airlines are listed based on Airlin-
eRatings.com (an internationally renowned aviation 
professional website) in 2019 (AirlineRatings, 2021). 
Freight revenue accounts for over 11%, much smaller 
than passenger transportation. Six out of ten airlines 
lie in Asia, and others in Oceania. Table 1 shows that 
the sum of passenger and cargo revenue accounts for 
a substantial proportion of total payment. Passenger 
transport and freight transport are the main business 
income items, but the sum of the two is not equal to 
100%. Airlines have other revenue-generating sub-
systems, such as airplane rental business, advertising 
services, and fleet maintenance services. However, 
these subsystems have a deficient proportion of rev-
enue and are not the primary source of income for air-
lines, so we do not consider these subsystems.

Unlike the entirety of previous studies, this paper 
divides airline transportation into two subsystems. 
Then, decompose the efficiency of two relatively 
independent departments and provide information on 
inefficiency by comparison. Some unique inputs and 
outputs belong to one subsystem: flight attendant, 
passenger volume, and passenger turnover in passen-
ger transportation, while freight volume and loading 
costs in the other. However, some inputs and outputs 
are shared evidently, such as operating costs. Differ-
ent operating costs are allocated to each subsystem to 
realize the company’s normal operation. Meanwhile, 
for the same subsystem, different companies have 
different ratios of operating costs, which are closely 
related to actual production conditions. So previous 
papers may be unreasonable, setting the operating 
costs as input of the passenger transportation. On the 

Table 1   Top ten mixed 
passenger/freight airlines 
in 2019

Airline Freight (%) Passenger (%) Freight + passenger 
(%)

Location

Singapore Airlines 15.00 79.86 94.86 Asia
Air New Zealand 13.54 84.98 98.52 Oceania
Qantas 5.40 87.37 92.77 Oceania
Qatar Airways 4.41 86.43 90.84 Asia
Virgin Australia 11.62 85.62 97.24 Oceania
Emirates 12.30 83.10 95.40 Asia
All Nippon Airways 7.40 65.50 72.90 Asia
EVA Air 18.71 74.19 92.90 Asia
Cathay Pacific Airways 19.78 67.46 87.24 Asia
Japan Airlines 6.49 70.21 76.70 Asia
Average 11.47 78.47 89.94
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other hand, it is more important to measure whether 
the current allocation ratio is reasonable to achieve 
optimal environmental efficiency. How can we get the 
optimal percentage of shared operating costs if not? 
The above questions will be answered in the “Case 
study” section. The results of an empirical study can 
provide helpful advice for airline managers from the-
oretical and practical perspectives.

Many studies measure the energy and environmen-
tal efficiency (EEP) of the system using the stochas-
tic frontier analysis (SFA) approach and data envel-
opment analysis (DEA) (Coelli et  al., 1999; Sickles 
et al., 2002; Zou et al., 2014). The former is a usual 
parametric method with apparent disadvantages. The 
basic assumptions of the stochastic frontier analysis 
model are more complex, and the specific form of the 
production function needs to be considered, so the 
requirements for input–output data are higher. Sup-
pose the input–output data does not meet the basic 
assumptions. In that case, the skewness problem is 
prone to occur, resulting in the technical efficiency 
values of each decision-making unit being very close 
to 1. Furthermore, the probability density distribu-
tion of the index affects the results, and there is no 
theoretical proof that the index obeys any distribu-
tion. Moreover, the improvement by adjusting the 
input and output types or increasing the sample size 
has no apparent effect. DEA, proposed by Charnes 
et  al. (1978), can overcome the above. Recently, 
papers have applied the DEA to evaluate homo-
geneous industries, such as the economic industry 
(Iftikhar et  al., 2018), the banking industry (Ebra-
himnejad et  al., 2014), and the aviation industry (Li 
et  al., 2016a, b; Rajbhandari & Zhang, 2018). This 
paper studies the environmental efficiency of major 
international airlines and proposes a novel input–out-
put shared range adjusted measure (RAM) model to 
analyze the internal network structure. By eliminating 
inefficiencies under the reasonable assumption, the 
strong monotonicity of parallel range adjusted meas-
ure (PRAM) can provide clear priorities between 
decision-making units (DMUs).

Existing literature focuses on applying the RAM 
model to airline efficiency evaluation to improve the 
accuracy of the overall efficiency measure. The focus 
is on a single system, which is generally analyzed in 
multiple stages of operation, ignoring other revenue-
generating subsystems, such as freight transport. Air 
cargo is a robust sunrise industry, less affected by 

economic development fluctuations than air passen-
ger transport. This paper fills the research gap on air 
cargo, emphasizes the position of cargo in the com-
pany’s overall strategy, optimizes the allocation of 
shared resources, and enriches the research connota-
tion on the environmental efficiency of airlines.

The following is a summary of the structure of this 
paper. “Literature review” section presents a literature 
review. “Methodology” section presents a methodol-
ogy to measure the performance of parallel systems 
considering possible shared inputs, desirable outputs, 
and undesirable outputs. “Case study” section applies 
the proposed approach to the 18 airlines worldwide 
and analyzes the obtained efficiency values and distri-
bution ratios. Finally, “Conclusion” section summa-
rizes the conclusions and limitations.

Literature review

The data envelopment analysis on airlines

Recently, the issue of airline environmental efficiency 
evaluation has attracted the attention of many schol-
ars, who mainly use the ratio of outputs divided by 
inputs to measure whether it meets transportation 
needs and environmental protection requirements. 
However, from a methodological point of view, many 
papers mainly apply DEA and its deformation modes.

In 1993, Schefczyk (1993) began to use stand-
ard DEA model technology to conduct a compara-
tive analysis of the energy performance of 15 airlines. 
Traditional DEA models (CCR and BCC models) are 
usually applied to evaluate the airline’s technical and 
scale efficiency. Arjomandi and Seufert (2014) used 
DEA models with a bootstrapped method to examine 
48 airlines of the significant full-service carriers and 
low-cost carriers from 2007 to 2010. Jain and Natara-
jan (2015) investigated the efficiency of all airlines in 
India with the DEA and input efficiency profiling (IEP) 
model from 2006 to 2010. Then a combination of DEA 
models and other methods has long been the most pop-
ular. Since Distexhe and Perelman (1994) combined 
the standard DEA and Malmquist index to analyze 
the production rate of 33 American and European air-
lines. Hu et  al. (2017) applied the bootstrapped DEA 
method to calculate input efficiency and returns to the 
scale of 15 ASEAN airlines. Other main methods com-
bined with DEA are Fisher productivity index (Zofío & 
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Prieto, 2006), Tobit regression (Fethi et al., 2000), bal-
anced score card (Wu & Liao, 2014), and so on. With 
the deepening of research, scholars have developed 
variously extended and improved DEA models under 
complex circumstances. Tavassoli et al. (2014) applied 
the SBM network DEA model to evaluate the operat-
ing efficiency of air passenger and cargo transportation 
services. Cui and Li (2015) innovatively combined the 
virtual frontier benevolent DEA with cross efficiency 
to assess airlines’ efficiency and identified capital effi-
ciency as the determinant. And in 2018, Cui and Li 
used a dynamic RAM model with natural and manage-
rial disposability to evaluate the dynamic efficiency of 
29 airlines. Soltanzadeh and Omrani (2018) applied the 
fuzzy dynamic network DEA to calculate the efficien-
cies of Iranian airlines’ systems and processes. Chen 
et  al. (2021) introduced the network SBM approach 
to explore Chinese airlines’ two-stage and undesirable 
output efficiency. Cui and Arjomandi (2021) utilized 
an epsilon-based measure (EBM) model to analyze the 
efficiency of major airlines worldwide.

The data envelopment analysis from the perspec-
tive of “black boxes” ignores the internal structure of 
airline operations and cannot effectively measure pro-
duction efficiency. Throughout the existing research, if 
we want to consider the internal structure of the airline 
fully, what needs to be done is to analyze the affiliation 
relationship between the internal subsystems: paral-
lel, chained, or a combination of the two, and analyze 
whether there are shared inputs and outputs between 
sub-processes. For example, in addition to exclusive 
inputs and outputs, there are shared resources between 
the passenger and freight subsystems.

Scholars have early paid attention to the complex 
efficiency measurement of the parallel subsystems with 
sharing resources, and the established model system is 
relatively mature. Beasley (1995) proposed a discrimi-
nant method based upon data envelopment analysis to 
apportion shared resources between different activities 
with the same discipline. Cook et al. (2000) constructed 
one DEA framework that can get the optimal ratio of 
resource allocation when inputs are shared among func-
tions. Jahanshahloo et al. (2004) used the dynamic DEA 
model that considers the effect of time with shared 
inputs and outputs. Cook and Zhu (2005) extended the 
previous method and provided a concrete method to 
achieve fair cost distribution. Chen et  al. (2010) pre-
sented an additive model for measuring the efficiency of 
the DMUs that have inseparable inputs. Rogge and De 

Jaeger (2012) proposed an adjusted “shared-input” ver-
sion to measure the efficiency of waste collection and 
processing performances in settings where waste costs 
are shared. Moreno et  al. (2015) introduced two net-
work DEA models, relational and additive approaches 
to assess the efficiency of electricity distribution com-
panies, whose operating costs are shared between the 
stages. Li et  al. (2016a, b) extended the centralized 
model to evaluate 17 city branches of banks sharing the 
same inputs and outputs in Anhui Province. Chao et al. 
(2018) applied a DEA deformation model decompos-
ing the sharing of standard inputs between the two pro-
cesses of 13 major global container shipping companies. 
Zhu et al. (2019) analyzed the efficiency of a randomly 
generated data set by allocating the fixed costs between 
two phases. Song et al. (2020) established a stochastic 
DEA model of shared inputs and unexpected output to 
assess the bank’s performance. Cheng et al. (2020) indi-
cated that relational decomposition and additive network 
models show better discriminating power. Nguyen and 
Yu (2020) adopted a network DEA approach to examine 
the operational efficiency of the top cruise lines when 
sharing inputs. The prominent features of these studies 
are that the shared undesirable output is not considered, 
and applied DEA models are traditional radial models in 
most papers. Omrani et al. (2022) combined DEA mod-
els and the TOPSIS approach to evaluate airlines’ tech-
nical, social, environmental, and sustainable efficiencies, 
but the model was also a radial model.

This paper follows the direction of the above arti-
cles and applies the RAM model to deal with the 
issue. The non-radial RAM model proposed by Aida 
et  al. (1998) and Cooper et  al. (1999) has recently 
been used in airline efficiency evaluation. Compared 
with the standard DEA model, the RAM model can 
also simultaneously process multiple reference sets 
and the negative data of input or output. Wanke 
and Barros (2016) used the virtual frontier dynamic 
RAM model to evaluate the Latin American airlines, 
revealing that the influence of fleet size and owner-
ship nature cannot be ignored. Li and Cui (2018) 
used the network RAM model to study the perfor-
mance of 29 global airlines from 2008 to 2015 when 
setting the number of employees as a stage-sharing 
input to achieve optimal employee allocation. The 
results showed that most airlines’ maximum number 
of employees should be allocated to the sales stage. 
Heydari et al. (2020) introduced an utterly fuzzy net-
work DEA-RAM model for evaluating the overall 
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efficiency of Iranian airlines and extended it to an 
utterly fuzzy setting. However, relatively few papers 
use the RAM model to evaluate airline parallel sys-
tems’ efficiency.

The research gap

In the current research, there is little research on the par-
allel subsystem of airlines. Most discuss the chain struc-
ture (such as operations, services, and sales stage). At 
the same time, they also ignore the sharing of undesir-
able output. As a result, they cannot distinguish the role 
from undesirable production among subsystems, result-
ing in an inaccurate quantitative evaluation of efficiency. 
Furthermore, few papers evaluate the efficiency of par-
allel airline systems, and existing models cannot handle 
shared input and outputs simultaneously.

This paper fills the gap in the efficiency research 
of air passenger transport and freight transport par-
allel subsystem and provides a reference for air-
lines’ recovery in the post-epidemic era. This paper 
innovatively proposes a theoretical framework that 
includes airline passenger and cargo transportation. 
This method of efficiency decomposition can help 
identify the real reason for inefficiency and obtain an 
accurate efficiency evaluation. This paper proposes a 
parallel RAM model with shared inputs and outputs 
to analyze the airline environmental efficiency, which 
can compute the overall efficiency and the subsystem 
efficiency. The results also confirm the robustness and 
reliability of our model. Finally, our case study shows 
how the proposed model works and presents key find-
ings that are helpful to decision-makers.

Methodology

Data envelopment analysis is now widely used to cal-
culate environmental efficiency in aviation industry. 
When considering the undesirable outputs, the pro-
duction set is:

In Eq.  (1), X =
{
xmk

}M×K stands for the M × K 
matrix of the inputs, Y =

{
ynk

}N×K stands for 
the N × K matrix of the desirable outputs, and 

(1)T = {(X, Y , Z) ∶ X can produce (Y , Z)}

Z =
{
zlk
}L×K stands for the L × K matrix of the unde-

sirable output. K is the number of the DMUs and 
M,N,K denotes the number of the inputs, the desir-
able outputs, and the undesirable output, respectively.

Usually, there are five main disposability 
approaches to handle the undesirable outputs: weak 
disposability (Wu et  al., 2013), strong disposability 
(Yang & Pollitt, 2010), natural and managerial dis-
posability (Cui & Li, 2018b), by-production dispos-
ability (Murty et al., 2012), and weak G-disposability 
(Dakpo et  al., 2014). A detailed comparison of five 
methods can get from Cui (2020).

One popular way is strong disposability which beliefs 
in the environment’s capacity to handle a predetermined 
amount of undesirable outputs. Namely, the undesirable 
outputs are treated as inputs. Both methods have been 
studied in academic papers, while the results from Cui 
et  al. (2018) indicate that strong disposability is more 
reasonable when dealing with undesired outputs. So, we 
introduce a RAM model with strong disposability to rea-
sonably compare a parallel system’s efficiency.

First, we introduce the RAM model, whose modi-
fications have been used far and wide recently, such 
as weak disposability in the virtual frontier network 
RAM model (Li and Cui, 2016); natural and manage-
rial disposability in the network RAM model.

The network RAM model (NRAM) is firstly pro-
posed by Avkiran and McCrystal (2012):

xmk, ynk, zlk denote the m th input, the n th desirable 
output, and the l th undesirable output of 
DMUk, k = 1, 2,⋯ ,K   . 

Rm = max
(
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)
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Then we apply the model (2) to a parallel system 
of two subsystems with shared inputs, desirable out-
puts, and the undesirable outputs. Referring, we set 
the allocative factors as �, �, � and then the RAM 
model with strong disposability is:

In model (3), when the value of �, �, � equals to 0 
or 1, it means that the input or output is not a shared 
one but is completely used by a certain subsystem. 
�xmk is the input of the subsystem of the DMUk ; 
�ynk is the desirable output of the subsystem of the 
DMUk ; and �zlk is the undesirable output of the sub-
system of the DMUk . In the objective function, 
R−
�xm0

= � ∗ R−
xm0

 means the range of the allocated 
inputs in the subsystem, others are the same as 
model (2).

The optimal results of model (3) and the values of 
the allocative factors: �, �, � can be obtained by pro-
gramming solution.

The subsystem efficiency of subsystem j is:

(3)
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Case study

One of the most forward-looking applications of DEA 
is efficiency evaluation on airlines. Therefore, a case 
study is presented in this section to illustrate the reli-
ability and rationality of our proposed PRAM model.

The efficiency models

Based on previous academic research and the daily 
operation process of the airline, we select the inputs 
and outputs of airlines and construct a new airline 
internal structure system, as shown in Fig. 1.

Three measurable variables are selected as the 
inputs: available seat kilometers (ASK), available 
ton kilometers (ATK), and operating costs (OC). As 
stated by, passenger transportation needs to fully use 
the human and material resources to increase its pas-
senger delivery capacity, which can be reflected by 
available seat kilometers (ASK). This index reflects 
the most significant economic benefit that an airline 
can generate. The larger the ASK value, the more 
routes and capacity resources the airline has. Simi-
larly, we choose the available ton kilometers (ATK) to 
embody the cargo-carrying capacity of freight trans-
portation. Operating cost is obvious to be a shared 
input in daily operations. For the same subsystem, 
different airlines have different operating costs. For 
example, in 2019, the operating costs proportions of 
Air China were 0.936 and 0.043. The corresponding 
ratios of Singapore Airlines were 0.798 and 0.149. 

Fig. 1   A parallel system 
comprised of two transpor-
tation subsystems
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Compared with the direct input—operating costs, 
employees, and other indicators allocation may affect 
the quickness, satisfaction, repeat business, and prof-
itability. As a result, we select the direct shared inputs 
in our model.

Correspondingly, four variables are selected as 
the outputs: revenue passenger kilometers (RPK), 
revenue ton kilometers (RTK), operating revenue 
(OR), and greenhouse gas emission (GHG). Among 
them, the GHG is an undesirable output that includes 
CO2, HO2, NOx, SOx , and soot, of which CO2 is the 
most important greenhouse gas (Sausen et al., 2005). 
Therefore, we use carbon dioxide emissions to repre-
sent the greenhouse gas. RPK and RTK are compre-
hensive indicators to measure passenger and freight 
traffic. Operating revenue (OR) is another shared 
resource.

In Fig.  1, OC is the shared input that some is 
responsible for passenger subsystem and freight sub-
system. What we do is to use �t denoting the propor-
tion of the operating cost in subsystem j , while �t ≠ 0 
and 

∑J

j=1
�t = 1 . Only in the process of overall opti-

mization efficiency can the optimal value of unknown 
variable �t be solved. The same is true for unknown 
variables �t and �t.

The data

This paper will use the data from 6 years for empir-
ical research from 2014 to 2019. Due to the rela-
tive importance of the freight business, the data of 
the freight department in some airlines is incom-
plete. After careful filtering, the empirical data 
are obtained from 18 global airlines: Aeroflot, 
Air China, All Nippon Airways, British Airways, 
Cathay Pacific Airways, China Airlines, China East-
ern, China Southern Airlines, Emirates, Eva Air, 
Hainan, KLM Royal Dutch Airlines, Korean Air, 
Lufthansa, Scandinavian Airlines, Singapore Air-
lines, Spring Airlines, and Thai Airways. Among 
the above airlines, five airlines (All Nippon Air-
ways, Cathay Pacific Airways, Emirates, Eva Air, 
and Singapore Airlines) ranked top 10 all over the 
world in 2019, announced to Airline Ratings.com.

The data on available seat kilometers, available 
ton kilometers, operating costs, revenue passenger 
kilometers, revenue ton kilometers, and operat-
ing revenues are extracted from the annual reports 
of the 18 airlines. The data on carbon dioxide 

emissions is taken from the sustainability, environ-
ment, and corporate social responsibility reports.

Descriptive statistics of the inputs and outputs 
are provided in Table 2.

Table 2 shows the mean value, the standard devi-
ation, the minimum value, and the maximum value 
in the transportation sector of 18 global airlines. 
The data of operating cost and operating revenue 
has a big difference, the former of which ranges 
from 819.21 to 26,280.32. And the standard devia-
tion is 6440.75. The latter ranges from 1007.57 to 
33,764.46, and the standard deviation is 7316.13. 
This means that passenger and freight transporta-
tion in different airlines have different levels of 
development. Nevertheless, the data of ASK, ATK, 
RPK, and RTK are in line with reality. The range 
of carbon dioxide emissions is from 1.02 to 36.94, 
and the reason is that the development modes of air-
lines are diverse. For example, airlines represented 
by Lufthansa and Scandinavian Airlines focus on 
consuming clean energy to produce less pollution, 
while some airlines use their income to offset envi-
ronmental pollution. Therefore, considering the 
undesirable outputs in energy efficiency assessment 
is of greater significance.

Table  3 shows this paper’s Pearson correlation 
coefficients between the inputs and outputs. Again, 
most coefficients are positive and close to 1, indicat-
ing a strong correlation between input and output. 
Therefore, the selection of indicators is reasonable.

The overall and subsystem efficiencies

The weight ratio of two subsystems is set as [1/2,1/2]. 
We apply the 1st Opt software to compute the model 
(2) and the results are listed in Table  4. Then, we 
apply the RAM model (8) to calculate the overall effi-
ciency of the airlines in Table 5.

In Table  4, columns 2–7 show the overall sys-
tems’ efficiency scores of 18 airlines between 2014 
and 2019, while the last column represents the aver-
age efficiency scores. The numbers in Table  5 are 
the same meaning as Table  4. The yearly efficiency 
of some airlines is 1 indicating the efficient airline. 
Comparing the two tables, we can find that shared 
resources can significantly improve overall efficiency. 
There are five efficient airlines in Table 4, while four 
efficient ones are in Table 5. However, the minimum 
values of yearly efficiency in Table  5 are 0.9200, 
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0.9090, 0.9115, 0.9163, 0.9106, and 0.9285 and the 
values in Table 4 are 0.7829, 0.7815, 0.8079, 0.8196, 
0.8249, and 0.7834, showing that the former are sig-
nificantly higher. The mean values and standard error 
values also verify this situation. Operating costs, rev-
enues, and greenhouse gasses are optimally allocated 
between the two subsystems, which promotes overall 
efficiency. The efficiency in the last column of Table 5 

Table 2   Descriptive 
statistics of the inputs and 
outputs during 2014–2019

Variable Mean Std. dev Min Max

The inputs
Operation cost (1,000,000 dollar) 10,410.62 6440.75 819.21 26,280.32
Available seat kilometers (million) 138,488.60 90,556.08 15,300.88 390,775.00
Available ton kilometers (million) 17,879.66 14,444.87 1820.28 61,425.00
The desirable outputs
Operating revenue (1,000,000 dollar) 11,777.81 7316.13 1007.57 33,764.46
Revenue passenger kilometers (million) 110,067.10 71,067.49 12,851.18 299,967.00
Revenue ton kilometers (million) 12,430.85 9771.16 1213.97 41,250.00
The undesirable output
Carbon dioxide emission (1,000,000 ton) 13.07 8.81 1.02 36.94

Table 3   Input–output correlations

All correlation coefficients are statistically significant at the 1% 
level.

Operating revenue RPK PTK CO2

Operation cost 0.9838 0.8861 0.7101 0.7991
ASK 0.9047 0.9904 0.9017 0.8995
ATK 0.7556 0.9076 0.9945 0.9099

Table 4   Overall efficiency 
of RAM model during 
2014–2019

Airlines 2014 2015 2016 2017 2018 2019 Average

Aeroflot 0.8637 0.8596 0.8940 0.9131 0.9100 0.8809 0.8869
Air China 0.8946 0.8892 0.9144 0.9214 0.9167 0.9096 0.9077
All Nippon 0.8991 0.7815 0.8079 0.8196 0.8249 0.7834 0.8194
British 0.9143 0.9077 0.9170 0.9311 0.9472 0.9517 0.9282
Cathay Pacific 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
China 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
China Eastern 1.0000 0.8913 0.9083 0.9028 0.9563 0.9142 0.9288
China Southern 0.8487 0.8159 0.8678 0.9270 0.9409 0.9353 0.8893
Emirates 0.8989 0.8558 0.8524 0.8844 0.8868 0.9133 0.8819
Eva Air 0.9814 0.9511 0.9775 1.0000 0.9967 0.9826 0.9815
Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 0.9615 0.9936
Juneyao 1.0000 0.9193 1.0000 1.0000 1.0000 1.0000 0.9866
KLM Royal Dutch 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Lufthansa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Scandinavian 0.8670 0.8421 0.8707 0.8814 0.8720 0.8536 0.8645
Singapore 0.8954 0.8804 0.8668 0.8973 0.9326 0.9059 0.8964
Spring 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Thai 0.7829 0.8181 0.8717 0.9323 0.9167 0.9475 0.8782
Min 0.7829 0.7815 0.8079 0.8196 0.8249 0.7834
Mean 0.9359 0.9118 0.9305 0.9450 0.9500 0.9411
Std 0.0696 0.0751 0.0662 0.0563 0.0540 0.0609
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shows that the average efficiency difference of the 18 
airlines is insignificant. In addition, there are some 
airlines with relatively low overall efficiency, such as 
British Airways (0.92905), Thai Airways (0.94669), 
and China Southern Airlines (0.96914), and the 
majority are in Asia. This result shows that airlines 
face the problem of relatively low transportation sys-
tem efficiency in the current real situation.

In Table  5, the annual average efficiency value 
from 2014 to 2019 increased and decreased but 
showed an upward trend from 0.9836 in 2014 to 
0.9901 in 2019. The development prospect of air-
lines is good. Compared with the values in Table 4, 
the average efficiency value of each airline in Table 5 
is higher, which inspires managers to reasonably 
allocate shared input and output indicators. The sub-
system efficiency values in Tables  6 and 7 provide 
ideas. For example, the efficiency value of the pas-
senger transport subsystem of Russian Airlines in 
2014–2019 is 1.0000, while the freight subsystem is 
inefficient. Therefore, improving freight efficiency is 
the direction of improvement. Aeroflot Airlines gen-
erally uses the belly compartment of the passenger 
plane to transport cargo, with a share of about 1.8% 

in the global air cargo market. In 2019, Aeroflot 
joined the Digital Transportation and Logistics Asso-
ciation, created and developed a single multimodal 
digital transportation and logistics environment in all 
parts of Russia, and launched an automated system of 
cargo air based on big data to predict the cargo and 
mail capacity on Aeroflot passenger flights. Aeroflot 
Airlines also needs to make more active exploration 
to develop freight subsystems.

All Nippon Airways, Emirates, Lufthansa, and 
Spring Airlines have the maximum overall efficiency 
during 2014–2019 in Table 5, so they are benchmark-
ing airlines among 18. Inefficient years, four airlines’ 
subsystem efficiencies are all equal to 1. Take Emir-
ates as an example. Emirates’ overall revenue has 
maintained growth through active capacity adjust-
ment and potential flight route development. Dur-
ing these years, Emirates has developed new service 
types and established partnerships with Indian air-
lines to improve convenience. The intelligent combi-
nation of customer needs and actual operations suc-
cessfully implements dynamic scheduling. Moreover, 
Emirates has ordered 50 Airbus A350 XWBs and 30 
Boeing 787 airplanes in 2019. These new aircraft will 

Table 5   Overall efficiency 
of input–output-shared 
RAM model during 
2014–2019

Airlines 2014 2015 2016 2017 2018 2019 Average

Aeroflot 0.9899 0.9720 0.9783 0.9807 0.9861 0.9842 0.9819
Air China 1.0000 1.0000 1.0000 0.9998 0.9749 1.0000 0.9958
All Nippon 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
British 0.9357 0.9185 0.9115 0.9163 0.9106 0.9816 0.9290
Cathay Pacific 0.9869 1.0000 1.0000 0.9644 0.9853 0.9668 0.9839
China 0.9871 0.9671 0.9846 0.9887 0.9879 0.9929 0.9847
China Eastern 0.9824 0.9878 0.9822 0.9832 0.9776 0.9966 0.9850
China Southern 0.9517 0.9574 0.9257 1.0000 0.9800 1.0000 0.9691
Emirates 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Eva Air 0.9898 0.9878 0.9879 0.9947 0.9911 0.9933 0.9908
Hainan 0.9734 1.0000 1.0000 1.0000 1.0000 1.0000 0.9956
Juneyao 1.0000 0.9973 1.0000 1.0000 1.0000 1.0000 0.9995
KLM Royal Dutch 0.9874 0.9862 0.9960 0.9936 1.0000 1.0000 0.9939
Lufthansa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Scandinavian 1.0000 1.0000 1.0000 1.0000 0.9963 1.0000 0.9994
Singapore 1.0000 1.0000 0.9790 0.9784 0.9757 0.9285 0.9769
Spring 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Thai 0.9200 0.9090 0.9156 0.9770 0.9804 0.9781 0.9467
Min 0.9200 0.9090 0.9115 0.9163 0.9106 0.9285
Mean 0.9836 0.9824 0.9812 0.9876 0.9859 0.9901
Std 0.0239 0.0282 0.0304 0.0208 0.0211 0.0182
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Table 6   Subsystem 
efficiency of input–output-
shared RAM model during 
2014–2016

Airlines 2014 2015 2016

Aeroflot 1.0000 1.0000 1.0000 0.7671 1.0000 0.8700
Air China 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
All Nippon 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
British 0.9961 0.9768 0.9973 0.9500 1.0000 0.9460
Cathay Pacific 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
China 0.8971 1.0000 0.8755 1.0000 0.8709 1.0000
China Eastern 1.0000 0.9534 1.0000 0.9327 1.0000 0.9551
China Southern 0.8436 0.9692 0.7892 1.0000 1.0000 0.9796
Emirates 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Eva Air 0.9016 1.0000 0.8959 0.9649 0.8944 0.9561
Hainan 0.9347 1.0000 1.0000 1.0000 1.0000 1.0000
Juneyao 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KLM Royal Dutch 1.0000 0.8023 1.0000 0.7910 1.0000 0.7598
Lufthansa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Scandinavian 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Singapore 1.0000 1.0000 1.0000 1.0000 0.9036 0.7266
Spring 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Thai 0.8379 0.7724 0.8253 0.9330 0.8310 1.0000
Min 0.8379 0.7724 0.7892 0.7671 0.831 0.7266
Average 0.9673 0.9708 0.9657 0.9633 0.9722 0.9552

Table 7   Subsystem 
efficiency of input–output-
shared RAM model during 
2017–2019

Airlines 2017 2018 2019

Aeroflot 1.0000 0.8029 0.9351 0.8261 1.0000 1.0000
Air China 1.0000 0.9702 0.9743 0.9560 1.0000 1.0000
All Nippon 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
British 0.9717 0.9219 0.9628 0.8953 1.0000 0.9467
Cathay Pacific 0.9786 1.0000 0.9664 1.0000 0.9440 1.0000
China 0.8950 1.0000 0.8949 1.0000 0.8956 1.0000
China Eastern 0.9815 0.8823 0.9870 0.8819 1.0000 0.9183
China Southern 1.0000 1.0000 1.0000 0.9935 1.0000 1.0000
Emirates 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Eva Air 0.8744 1.0000 0.9077 0.9308 0.9025 0.9466
Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Juneyao 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KLM Royal Dutch 1.0000 0.7544 1.0000 1.0000 1.0000 1.0000
Lufthansa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Scandinavian 1.0000 1.0000 1.0000 0.8300 1.0000 1.0000
Singapore 0.9172 0.9587 0.9320 0.7333 0.9173 0.9321
Spring 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Thai 0.9244 1.0000 1.0000 0.9232 1.0000 0.9158
Min 0.8744 0.7544 0.8949 0.7333 0.8956 0.9158
Average 0.9746 0.9495 0.9756 0.9428 0.9811 0.9700
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increase fleet mix and keep the average fleet age of 
5.7  years, well below the industry. As a result, fuel 
efficiency improved with the retirement of older air-
craft and the introduction of new aircraft. Besides, 
Emirates supports the development of a supply and 
demand network for sustainable aviation kerosene and 
uses operational procedures to reduce aircraft noise. 
Emirates is trying to realize emissions by reducing 
the adverse global influence of greenhouse gas emis-
sions and establishing a positive image as a sustain-
able and green corporation. The above measures sig-
nificantly improve Emirates’ overall and subsystem 
efficiency and provide a reference for other airlines.

Then we pay attention to airlines with an inef-
fective system whose efficiency is not equal to 1. It 
means there is room for further improvement that 
other airlines should focus on. The overall efficiency 
of the entire system is decomposed into the efficiency 
of the two subsystems, and the results are listed in 
Tables  6 and 7 from 2014 to 2019. The passenger 
transport system is more efficient, which can be seen 
from the results that, except for 2014, the average effi-
ciency of the passenger transport system from 2015 
to 2019 is higher than that of the freight system. The 
number of airlines whose passenger subsystem is effi-
cient is 12, 13, 14, 11, 10, and 14, while the number 
of freight subsystems is 13, 12, 11, 12, 9, and 13. 
Volatility in the price of petroleum products and the 
significant level of ATC strikes in Europe over the 
summer of 2018 can significantly impact the airlines’ 
operating results. The maximum average passenger 
and freight transportation subsystem efficiencies are 
0.9811 and 0.9708, respectively, showing that the 
efficiency of the passenger subsystem is more deci-
sive for overall efficiency than the freight subsystem, 
and the latter is a breakthrough for the rapid develop-
ment of most airlines.

Combined with subsystem efficiency, airlines can 
clarify specific measures to improve efficiency. Brit-
ish Airways performed poorly among the 18 airlines, 
with the lowest average efficiency score of 0.9290. 
Analyzing the subsystem efficiency is always ineffi-
cient from 2014 to 2019, except for the passenger sub-
system in 2016 and 2019. Therefore, freight efficiency 
is the main direction to improve overall efficiency. 
The inputs and outputs of the freight subsystem are 
OC, ATK, RTK, OR, and GHG in the model (10), and 
the slacks of these indices are adjustment directions. 
After calculation, the proportion of slacks are 0.2589 

(OC), 1.2727 (OR), 5.6647 (GHG), − 1.42559E − 16 
(ATK), and 1.91E − 16 (RTK). Among them, the 
slack of GHG has the largest value, so British Air-
ways should focus on reducing greenhouse gas emis-
sions. In strong disposability, the undesirable outputs 
are treated as inputs, while the slacks mean input 
redundancy. Thence British Airways should lead avi-
ation action on climate change and step up its com-
mitment with a package of new measures to reduce 
its carbon footprint. British Airways is the first UK 
airline to announce it would offset carbon emissions 
on its domestic flights from 2020 and lead the way in 
sustainable fuel development. However, there is more 
to do, and change takes time. Similarly, the operating 
costs invested in the passenger transport system must 
be reduced. The analysis process is the same for other 
inefficient airlines.

The optimal allocation ratios

The optimal allocation values of α, β, and γ during 
2014–2019 are enumerated in Tables  8 and 9. The 
comprehensive efficiency decomposition method pro-
posed in this paper can obtain the optimal rates of 
shared resources between passenger and freight sub-
systems. And then, each airline can understand how 
to choose the optimal division of shared resources. 
Take China Southern Airlines, for example. The opti-
mal proportions of OC, OR, and GHG for the pas-
senger subsystem were 0.6516, 0.3320, and 0.5193, 
respectively, in 2017. In other words, the optimal 
proportions for the freight subsystem are 0.34844, 
0.6680, and 0.4807. The allocation ratios of operat-
ing costs and greenhouse gas are relatively high in the 
passenger subsystem. Comparing these data with the 
actual percentage of China Southern Airlines’ passen-
ger and cargo operating costs (93.25% and 6.75%), it 
should increase resources in the passenger subsystem 
to reduce carbon dioxide emissions in 2017. It can 
be seen from Tables 8 and 9 that there is a big dif-
ference in the optimal allocation of operating costs, 
operating revenues, and CO2 emissions. Indeed, the 
distribution ratio in different years is also different 
for the same company. Just like China Southern Air-
lines, the optimal ratios in 2019 are 0.3676, 0.5300, 
and 0.3211, which is contrary to the situation in 2017. 
The more significant operation cost allocation propor-
tion occurs in the freight subsystem. The results are 
in line with reality because COVID-19 has greatly 
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affected tourism and business visits in the aviation 
industry, and the status of freight transportation has 
begun to rise.

Comparing the optimal distribution ratios of 18 
airlines in Tables 8 and 9, we can find some interest-
ing conclusions. First, the passenger subsystem has a 

Table 8   Three optimal 
allocation ratios during 
2014–2016

Airlines 2014 2015 2016

α β γ α β γ α β γ

Aeroflot 0.2614 0.6468 0.3104 0.3462 0.5432 0.6173 0.6048 0.3697 0.5683
Air China 0.6506 0.4772 0.8969 0.5912 0.3959 0.5153 0.2924 0.4551 0.8869
All Nippon 0.4635 0.6220 0.6879 0.6574 0.6790 0.6689 0.6020 0.4619 0.6164
British 0.3887 0.6681 0.5751 0.4816 0.3553 0.6702 0.4642 0.2764 0.5190
Cathay Pacific 0.3526 0.4008 0.6715 0.4309 0.6398 0.7499 0.4345 0.5783 0.8989
China 0.6138 0.4082 0.8620 0.5312 0.5507 0.6129 0.4916 0.5245 0.8996
China Eastern 0.4927 0.3688 0.2717 0.4374 0.2296 0.4932 0.4500 0.6834 0.7171
China Southern 0.5561 0.3607 0.4201 0.4319 0.7200 0.4952 0.5081 0.4069 0.3409
Emirates 0.3370 0.7193 0.5050 0.4401 0.5720 0.6142 0.5287 0.4571 0.4806
Eva Air 0.2694 0.6400 0.5721 0.5009 0.5126 0.3761 0.4069 0.5494 0.4728
Hainan 0.5180 0.3867 0.5437 0.5527 0.5084 0.8042 0.5560 0.5223 0.9000
Juneyao 0.3286 0.6528 0.5940 0.5754 0.2814 0.5540 0.5536 0.4348 0.8919
KLM Royal Dutch 0.4184 0.5670 0.2940 0.6055 0.4621 0.5033 0.3881 0.7695 0.5369
Lufthansa 0.3912 0.4891 0.7901 0.4369 0.5674 0.8983 0.3541 0.4618 0.8965
Scandinavian 0.4008 0.7281 0.6168 0.5050 0.4657 0.2489 0.3809 0.5207 0.8654
Singapore 0.5454 0.6943 0.7155 0.5050 0.3933 0.6638 0.4533 0.6231 0.5692
Spring 0.6285 0.4262 0.4142 0.5428 0.3900 0.6432 0.4797 0.4022 0.6643
Thai 0.6843 0.4236 0.4713 0.4209 0.6660 0.5067 0.6340 0.7151 0.3763

Table 9   Three optimal 
allocation ratios during 
2017–2019

Airlines 2017 2018 2019

α β γ α β γ α β γ

Aeroflot 0.4665 0.2160 0.5277 0.5416 0.5639 0.3634 0.4031 0.8455 0.3005
Air China 0.1444 0.3138 0.2907 0.4421 0.7630 0.4096 0.4815 0.4317 0.8987
All Nippon 0.4485 0.4657 0.4057 0.5346 0.5516 0.8932 0.4747 0.5728 0.5817
British 0.3819 0.4599 0.6955 0.4617 0.5877 0.7040 0.5113 0.2354 0.5325
Cathay Pacific 0.4845 0.5316 0.7554 0.5165 0.6726 0.8959 0.5435 0.5384 0.8994
China 0.4138 0.6720 0.5623 0.4555 0.5471 0.5347 0.4271 0.5938 0.8502
China Eastern 0.4386 0.4968 0.4417 0.5929 0.4973 0.3548 0.5510 0.5944 0.2798
China Southern 0.6516 0.3320 0.5193 0.4992 0.5138 0.3439 0.3676 0.5300 0.3211
Emirates 0.7228 0.3434 0.4627 0.4959 0.5112 0.5165 0.4837 0.3941 0.3184
Eva Air 0.5454 0.6153 0.5918 0.6150 0.4634 0.4872 0.3678 0.3414 0.5008
Hainan 0.5754 0.3131 0.8875 0.5880 0.5394 0.1000 0.5266 0.5504 0.9000
Juneyao 0.3926 0.5658 0.8948 0.5805 0.4557 0.8846 0.5145 0.6034 0.6595
KLM Royal Dutch 0.4858 0.3461 0.6613 0.3415 0.4967 0.4193 0.3298 0.4775 0.6171
Lufthansa 0.5864 0.5062 0.8988 0.7691 0.6779 0.1000 0.3765 0.2888 0.8972
Scandinavian 0.6137 0.4990 0.6456 0.5928 0.3559 0.2797 0.2877 0.5232 0.9000
Singapore 0.5770 0.5637 0.6578 0.3444 0.5740 0.5180 0.4991 0.8108 0.3692
Spring 0.4447 0.6761 0.5603 0.5019 0.4698 0.5461 0.5942 0.4417 0.5994
Thai 0.6796 0.4076 0.4713 0.3715 0.2889 0.6277 0.3080 0.4453 0.3361
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relatively smaller proportion of operating costs. The 
numbers are 7 (2014), 7 (2015), 6 (2016), 8 (2017), 
9 (2018), and 6 (2019), respectively. It means that the 
importance of the freight transport system is higher, 
so more cost needs to be invested into it in pursuit 
of optimal efficiency. The relatively significant gap 
between the two subsystems in Tables  6 and 7 sup-
ports this view. The accurate values of each year 
guided us to dynamically adjust the operating costs, 
which are formed by the production and operation of 
an airline. It mainly includes direct materials, direct 
labor, and manufacturing costs. Specifically, airlines 
make decisions by adjusting employees’ salaries, 
bonuses and allowances, aviation fuel consump-
tion, passenger and cargo cabin service fees, avia-
tion material consumption, and so on. As an airline’s 
cost expenditure items, operating time and aircraft 
fuel costs are the bulk of the airline’s expenses. For 
some companies, the above two costs account for 
more than 50% of the main business cost. Reducing 
investment targets can be reduced by managing flight 
time and fuel consumption. The rapid development of 
cross-border e-commerce business has promoted the 
recovery of the air cargo market and accelerated pro-
cess modernization to a certain extent. While enter-
ing the next financial year, 2020–2021, the full-scale 
outbreak of COVID-19 has brought an unprecedented 
crisis to airlines. The closure of country borders has 
brought air passenger traffic to a standstill, while 
cargo traffic has increased slowly. Take Hainan Air-
lines as an example. It uses its extensive airline net-
work and efficient services to actively respond to the 
Civil Aviation Administration’s calls. It replaces pas-
senger aircraft with cargo charter services to facilitate 
the rapid turnover of supplies.

Then, we pay attention to the allocation value of 
outputs in Tables  8 and 9. As shown by data, the 
number of airlines with higher operating income dis-
tribution is 9 (2014), 10 (2015), 9 (2016), 7 (2017), 
11 (2018), and 10 (2019), which indicates that the 
passenger transport system generates more operat-
ing revenue. This situation is consistent with reality, 
as shown in Table  1. According to the forecast of 
IATA, the average annual growth rate of air passen-
ger turnover (RPK) will be 4.4–4.7%, which is still 
in a relatively fast growth range in the next 20 years. 
Increasing demand means more competition for air-
line passenger transportation. Then comes the issue 
of greenhouse gas reduction. The number of airlines 

whose distribution ratio of greenhouse gasses in 
Tables  8 and 9 is higher than 0.5000 is 12 (2014), 
14 (2015), 14 (2016), 13 (2017), 9 (2018), and 12 
(2019). Therefore, the passenger subsystem may emit 
more greenhouse gasses, and the airlines should take 
measures according to the situation. The overall effi-
ciency value of Lufthansa in Tables 5 and 6 is 1, indi-
cating that it can be used as a benchmarking airline. 
For many years, the Lufthansa Group has taken steps 
to minimize the environmental impact of its business 
operations. Current examples are developing innova-
tive cleaning processes, applying coatings to make 
aircraft more aerodynamic, and so on.

Some optimal allocation ratios of greenhouse gas 
are an extreme value of 0.1000 in Table 9, such as the 
Hainan Airlines and Lufthansa in 2018. The result 
shows that to achieve the optimal overall efficiency 
of airlines in 2018, the reduction requirements for 
passenger subsystem are minimal. The result is not 
in line with other years because of the relatively tur-
bulent economic situation. Combined with the actual 
operating conditions of Hainan Airlines in 2018, the 
slacks of inputs and outputs are 7.5173E − 15 (OC), 
5.71769E − 15 (OR), and 4.6121E − 15 (GHG). 
Among them, the adjustment ratios of operation cost 
and operating revenue are more prominent so that the 
passenger transportation system can emit few green-
house gasses when pursuing optimal overall effi-
ciency. So there exists the extreme distribution value 
of 0.1000.

The ideal value and actual value

Due to the lack of some data, we compare the optimal 
ratio of operating costs with the actual ratio of Hainan 
Airlines during 2014–2019, as shown in Table 10.

We can find that despite the slight increase, the 
proportion of operating costs allocated to the freight 
subsystem has indeed increased in recent years, from 
2.76% in 2014 to 3.71% in 2019. But the actual dis-
tribution values are much different from the ideal 
ones. In essential operation, the passenger transport 
system investment is higher than 95%, while the 
freight transport system only accounts for a little. The 
optimal allocation ratio is around 50%, and the pas-
senger transportation system accounts for a little bit 
higher. The results show that the specific direction of 
improvement is to increase the operation cost of the 
freight subsystem and play the critical role of cargo 
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subsystems in daily operations. The same efficiency 
analysis is proper for other airlines.

The efficiency comparison between European airlines 
and Asian airlines

Due to the feature of the samples, 18 airlines are 
mainly located in Europe and Asia, and the specific 
distribution is shown in Table 11. Calculate and ana-
lyze the average annual efficiency of each continent in 
Table 12. Figure 2 shows that the yearly efficiencies 
of Asian airlines are higher than those in Europe. The 
overall average efficiency score in Asia is 0.9863, and 
that in Europe is 0.9820 from 2014 to 2019, and the 
efficiency difference is not apparent. Asia’s economic 

and transportation competitiveness has improved in 
recent years. IATA states Asia is one of the world’s 
central air travel regions. In 2016, 35% of global 
travelers chose to fly with airlines in the Asia–Pacific 
region, and the aviation market share in Asia is also 
increasing yearly. We can also find that compared 
with European airlines, the efficiency of Asian air-
lines is higher in the whole parallel system and each 
subsystem.

In addition, we know that the overall efficiency in 
Table 4 and the efficiency of the passenger and freight 
subsystem are relatively low compared with efficien-
cies after the optimal allocation. This shows that air-
lines are focusing on the development of transporta-
tion but not on solving the consequent air pollution 
problems. Therefore, all airlines should consider 
adopting emission reduction measures, strengthening 
pollution prevention, and saving energy. Finally, there 
is a big difference in efficiency between passenger 
and freight subsystems, and airlines should coordi-
nate and balance the development.

Through calculation, we get the optimal allocation 
proportion of shared input and output indicators. We 
draw some interesting conclusions after discussing 
operating costs, income, and carbon dioxide alloca-
tion values. In daily operations, airlines should first 
increase the cost investment of the freight subsystems. 
The operating cost of airlines is mainly composed of 
aviation fuel and operating costs, which account for 
even more than 50%. Aviation fuel is also the leading 
cause of carbon dioxide production. Achieving the 
goal of “carbon neutrality” is the consensus of inter-
national airlines, which requires them to use clean 
energy, update the green fleet, and reduce operating 

Table 10   Comparison between ideal value and actual value of 
Hainan Airlines’ operation cost

Year Passenger 
subsystem

Freight subsystem

2014 Optimal 0.5180 0.4820
Actual 0.9724 0.0276

2015 Optimal 0.5527 0.4473
Actual 0.9706 0.0294

2016 Optimal 0.5560 0.4440
Actual 0.9750 0.0250

2017 Optimal 0.5754 0.4246
Actual 0.9752 0.0248

2018 Optimal 0.5880 0.4120
Actual 0.9697 0.0303

2019 Optimal 0.5266 0.4734
Actual 0.9629 0.0371

Table 11   Geographical distribution of 18 airlines

Continent Airlines

Europe Aeroflot, British Airways, KLM Royal Dutch Airlines, Lufthansa, Scandinavian Airlines
Asia Air China, All Nippon Airways, Cathay Pacific Airways, China Airlines, China Eastern, 

China Southern Airlines, Emirates, Eva Air, Hainan, Korean Air, Singapore Airlines, 
Spring Airlines, Thai Airways

Table 12   The average 
annual efficiency of each 
continent

Continent 2014 2015 2016 2017 2018 2019

Europe 0.9851 0.9776 0.9780 0.9794 0.9786 0.9932
Asia 0.9830 0.9843 0.9824 0.9907 0.9887 0.9889
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costs and carbon dioxide emissions. The business 
model realizes the increase or decrease of operating 
income, and the relaxation value of each input and 
output index provides a specific solution.

The sensitivity analysis

We performed a sensitivity analysis to test the empiri-
cal results’ accuracy. Then, taking 2019 as an example, 
the initial weights of passenger transport and freight 
transport [1/2,1/2] were changed to [3/4,1/4] and 
[1/4,3/4], respectively, and the efficiency scores and 
optimal allocation ratios of the PRAM model were cal-
culated again, as shown in Tables 13, 14, and 15.

The above three tables list the efficiency values 
and the optimal allocation ratio under three different 
ratios. Comparing the efficiency values of 18 airlines, 
we can find that the rankings of efficiencies remain 
the same, except for British Airlines and Cathay 
Pacific Airlines in Table 15. The results indicate that 
the weights of passenger and freight subsystems do 
not affect airlines’ efficiency values, and the PRAM 
model results are robust. In 2019, due to trade ten-
sions between China and the USA, air cargo demand 
remained sluggish throughout the year, resulting 
in a disconnect between supply and demand. But in 
the second half of 2019, the traditional peak season 
improved Cathay Pacific Airlines’ cargo performance, 
with new consumer goods and specialist air cargo 
volumes increasing, while British Airways did not. 
This also explains the rise of Cathay Pacific’s effi-
ciency ranking after the increase in the proportion of 
its cargo subsystem.

Conclusion

In this paper, we evaluate the efficiency of the passen-
ger and freight subsystems. Based on the empirical 
research, the proposed model can provide a ranking 

Fig. 2   The average annual 
efficiency of each continent

0.965

0.970

0.975

0.980

0.985

0.990

0.995
2014

2015

2016

2017

2018

2019

Europe Asia

Table 13   The efficiency scores and optimal allocation ratios 
with the weight [1/2,1/2]

Airlines Ranking Efficiency 2019

α β γ

Aeroflot 14 0.9842 0.4031 0.8455 0.3005
Air China 1 1.0000 0.4815 0.4317 0.8987
All Nippon 1 1.0000 0.4747 0.5728 0.5817
British 15 0.9816 0.5113 0.2354 0.5325
Cathay 

Pacific
17 0.9668 0.5435 0.5384 0.8994

China 13 0.9929 0.4271 0.5938 0.8502
China East-

ern
11 0.9966 0.5510 0.5944 0.2798

China South-
ern

1 1.0000 0.3676 0.5300 0.3211

Emirates 1 1.0000 0.4837 0.3941 0.3184
Eva Air 12 0.9933 0.3678 0.3414 0.5008
Hainan 1 1.0000 0.5266 0.5504 0.9000
Juneyao 1 1.0000 0.5145 0.6034 0.6595
KLM Royal 

Dutch
1 1.0000 0.3298 0.4775 0.6171

Lufthansa 1 1.0000 0.3765 0.2888 0.8972
Scandinavian 1 1.0000 0.2877 0.5232 0.9000
Singapore 18 0.9285 0.4991 0.8108 0.3692
Spring 1 1.0000 0.5942 0.4417 0.5994
Thai 16 0.9781 0.3080 0.4453 0.3361
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that genuinely reflects the environmental efficiency of 
18 airlines. The implications of this paper are drawn 
following.

(1)	 From a macro perspective, an airline’s overall 
environmental efficiency level is determined by 
its subsystems. The empirical results show that 
the different proportional allocation of shared 
resources will change the efficiency of the two 
subsystems. Therefore, our study provides direc-
tions for future resource allocation and improve-
ment measures. Over the past several years, the 
development level of the freight system has been 
relatively low. However, it can be seen from the 
empirical results that too much investment in the 
passenger transport subsystem will slow down 
the overall efficiency improvement. On the other 
hand, increasing inputs in the freight subsystem 
will improve the overall efficiency and bring 
more significant benefits to investors. Therefore, 
airline executives should keep each subsystem in 

line. The direction of improvement is this paper’s 
distribution ratio of operation cost, operating 
revenue, and carbon dioxide emissions. Differ-
ent airlines have operating conditions, including 
geographical location, environmental resources, 
economic level, etc. Therefore, each company 
must use these characteristics to take specific 
measures.

(2)	 Theoretically, we innovatively proposed a PRAM 
model based on shared inputs, shared desir-
able outputs, and shared undesirable outputs. The 
model can compute the system efficiency, the 
subsystem efficiency, and the optimal allocation 
ratios of shared resources. We apply the proposed 
model to assess the performance of 18 global 
airlines from 2014 to 2019. And the purpose of 
efficiency measurement is to find weak areas so 
that appropriate actions can be implemented to 
achieve optimum performance. Moreover, ASK 
and RPK is the specialized input and output in 
the passenger-transportation subsystem. In the 

Table 14   The efficiency scores and optimal allocation ratios 
with the weight [3/4,1/4]

Airlines Ranking Efficiency 2019

α β γ

Aeroflot 14 0.9830 0.5395 0.7839 0.5775
Air China 1 1.0000 0.3760 0.5135 0.5508
All Nippon 1 1.0000 0.6734 0.6936 0.4818
British 15 0.9820 0.8612 0.4983 0.3016
Cathay 

Pacific
17 0.9510 0.3725 0.5452 0.9000

China 13 0.9898 0.5133 0.6252 0.8451
China East-

ern
11 0.9976 0.5215 0.6291 0.6685

China South-
ern

1 1.0000 0.1280 0.6128 0.5007

Emirates 1 1.0000 0.3676 0.4190 0.4927
Eva Air 12 0.9975 0.2075 0.5046 0.5566
Hainan 1 1.0000 0.4399 0.5455 0.1000
Juneyao 1 1.0000 0.3445 0.6134 0.8970
KLM Royal 

Dutch
1 1.0000 0.4225 0.6346 0.4091

Lufthansa 1 1.0000 0.6420 0.3316 0.8990
Scandinavian 1 1.0000 0.6724 0.6096 0.9000
Singapore 18 0.9275 0.4434 0.5834 0.4260
Spring 1 1.0000 0.4589 0.6762 0.7048
Thai 16 0.9725 0.5526 0.4868 0.5987

Table 15   The efficiency scores and optimal allocation ratios 
with the weight [1/4,3/4]

Airlines Ranking Efficiency 2019

α β γ

Aeroflot 14 0.9861 0.3455 0.4450 0.4686
Air China 1 1.0000 0.3055 0.3185 0.3806
All Nippon 1 1.0000 0.5043 0.4735 0.4365
British 17 0.9765 0.5955 0.4969 0.5373
Cathay 

Pacific
15 0.9834 0.4273 0.4039 0.8827

China 13 0.9959 0.3813 0.5494 0.8983
China East-

ern
11 0.9989 0.4345 0.5280 0.4689

China South-
ern

1 1.0000 0.6983 0.4695 0.5250

Emirates 1 1.0000 0.5076 0.2690 0.5032
Eva Air 12 0.9982 0.4346 0.2435 0.4948
Hainan 1 1.0000 0.6075 0.2922 0.1000
Juneyao 1 1.0000 0.5507 0.4452 0.9000
KLM Royal 

Dutch
1 1.0000 0.5715 0.3659 0.3769

Lufthansa 1 1.0000 0.3720 0.4473 0.8991
Scandinavian 1 1.0000 0.3959 0.4566 0.8943
Singapore 18 0.9264 0.4453 0.4453 0.4552
Spring 1 1.0000 0.4007 0.3309 0.7483
Thai 16 0.9820 0.7018 0.4023 0.4935
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freight-transportation subsystem, ATK is the 
input to obtain the RTK. Through decomposition, 
decision-makers can better distinguish between 
these two subsystems’ weaknesses to be more 
effectively committed to improving the overall 
efficiency. The results also provide improvement 
directions for non-benchmark airlines.

From the results of the empirical study, we can 
conclude some exciting findings from the results. 
First, All Nippon Airways, Emirates, Lufthansa, and 
Spring Airlines have the highest overall efficiency 
among these 18 airlines, which is closely related to 
the excellent performance in both passenger and 
freight transportation subsystems. Therefore, it can 
be regarded as a benchmark company. Second, the 
shared inputs and outputs can significantly improve 
overall efficiency. In contrast, the optimal distribution 
ratio is shown in Table 9. Third, by comparison, the 
passenger transportation system is more important. 
However, we can see that airlines with higher cargo 
system efficiency have higher overall efficiency in 
Table 5. Only by eagerly developing the freight trans-
portation networks, updating the fleet size, and so 
on can the efficiency of the freight system improve. 
Fourth, overall, the efficiencies of the 18 airlines are 
not very high in Table  4, and actual operating con-
ditions need to be improved. Finally, the efficiency 
scores of Asian airlines are higher than airlines in 
Europe. Still, the gap between the two is not very big, 
indicating that the Asian aviation market has great 
potential in the future.

We propose the following transformational 
business models. First, change the business 
model. In this paper, the research on the input and 
output indicators provides a new idea for the man-
agement of airlines. By finding the weak links in 
the process of improving the efficiency of air-
lines, they can make up for their deficiencies and 
improve their competitiveness. Second, focus on 
freight systems. This paper proves the importance 
of the cargo subsystem. As COVID-19 continues 
to ferment, the demand for new cargo airports and 
passenger-cargo planes continues to increase, and 
investors are increasingly confident in the cargo 
market. International airlines should seize the 
opportunity to enhance cargo capacity, improve 
the service chain, and improve the level of spe-
cialization in cargo. Third, focus on the aviation 

market in the Asia–Pacific region. The rapid rise 
of the Asia–Pacific region proves its vast develop-
ment potential. In the next 20 years, the passenger 
traffic in the Asia–Pacific region will maintain an 
average annual growth rate of 5.6%. Governments 
worldwide are making continuous efforts to sup-
port the sustainable development of the air trans-
port industry. For example, China has invested 
heavily in green aviation initiatives, and Singa-
pore has established a cross-industry international 
aviation advisory group. Therefore, international 
airlines must deepen their efforts in Asia–Pacific 
and expand their territories.

Meanwhile, this paper also has some limitations. 
First, subjective factors have a noticeable influence 
on the proposed model. Also, the parameters in the 
model are influenced by external factors such as 
economic level, consumer confidence, market struc-
ture, and so on. The second limitation occurs in the 
weights of the two subsystems. We default that the 
two subsystems are equally important. This is not the 
case for some airlines. Finally, the evident limitation 
is the number of sample airlines. Considering the 
data on freight systems is challenging to obtain, we 
select 18 airlines and ignore their types—LCC (low-
cost carrier) or FSC (full-service carrier), which may 
influence empirical results.

Correspondingly, we propose the directions for 
future research. One suggestion for improvement is to 
have an overall view, including the external factors. 
Another advice is to analyze the weights of the two 
subsystems, which can help us conclude whether the 
consequences influence airlines’ efficiency. The third 
topic is considering the difference between low-cost 
and full-service carriers. Furthermore, we can apply 
other modified models to airlines, such as the RAM 
model with managerial disposability, dynamic RAM, 
and the epsilon-based measure (EBM) model. By 
adding time dimensions, airlines’ efficiency can be 
more accurately evaluated. In addition, our model 
does not consider the intermediate outputs, which is 
also a point for improvement.
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