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language, can conveniently simulate through large 
ranges of occupant factors. The case studies exploited 
this advantage of grey-box models to simulate empir-
ical data on occupant factors. (For instance, empirical 
data found that home heating setpoints shifted before 
and after home energy retrofit.) In doing so, the data-
sets of simulation results enabled the exploration of 
home heat-energy usage with the normal and Weibull 
statistical distributions. Additionally, the heat-energy 
distributions of case-study homes were statistically 
tested, first for retrofit savings, second for equal-
ity to each other and third for equality to an official 
heat-energy estimate. Results demonstrate that home 
heat-energy usage, at a large scale, is best expressed 
as a Weibull distribution not normality. After home 
energy retrofit, heat-energy usage displays less vari-
ation (in general), less skewness, and thus becomes 
closer to normality. Occupant factors were found to 
vary home heat-energy usage into distinct distribu-
tions, even within similar homes. Therefore, in most 
case-study homes, heat-energy usage did not equal an 
official estimate. Finally, shallow retrofit of a modern 
home in Ireland fails to save heat-energy usage by 
most occupants.

Keywords Home energy retrofit · Building 
performance simulation · Modelica · AixLib 
library · Weibull distribution · Normal distribution · 
Distribution goodness-of-fit · Anderson–Darling test

Abstract Home energy retrofit has recurred in pub-
lic policy throughout recent decades. However, the 
savings in energy usage attributable to home retrofit 
have remained difficult to accurately predict. Occu-
pants cause prediction inaccuracies by varying differ-
ent factors, especially heating setpoints temperatures 
and heating patterns. Acting together, such occupant 
factors result in distributions — not single values — 
of heat-energy usage, even among similar homes. 
Datasets of heat-energy distributions can be found 
by building performance simulation using modern 
grey-box models. This study presents a methodol-
ogy to simulate grey-box models of home heating 
through ranges of heating setpoints and patterns. An 
entire process to calibrate, validate and simulate at a 
large scale is described, and then demonstrated using 
case studies. Grey-box models, written in Modelica 
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Introduction

A consensus has emerged on the need for home 
energy retrofit (HER) and its delivery at large scale 
(Gupta et al., 2015; Mathiesen et al., 2016; McKenna 
et al., 2013). Proponents of HER foresee its contribu-
tion to different goals: reducing greenhouse gas, com-
batting energy poverty, — in addition to —, saving 
energy (DCCAE, 2019; Dixon & Eames, 2013; Fylan 
et  al., 2016; Sdei et  al., 2015). Despite these august 
goals, a gap remains in predicting the energy-usage 
savings attributable to HER. One prediction approach 
is to model homes before and after retrofit, and then 
simulate their performance (Swan & Ugursal, 2009).

Building performance simulation (BPS) can pre-
dict home energy usage under different scenarios, 
but often fail to incorporate heating variations caused 
by occupants (Huebner et al., 2013; Shipworth et al., 
2010). Inaccurate model parameters, such as air 
changes per hour (ACH) or building fabric proper-
ties, further compound the inaccuracies in simulated 
energy usage. Occupants cause the gap between sim-
ulated and measured energy usage for two main rea-
sons during simulation: (1) unrealistic internal tem-
peratures (Jones et al., 2016; Teli et al., 2016) and (2) 
failure to apply dominant occupancy profiles (Zahiri 
& Elsharkawy, 2018). Put simply, different occupants 
operate homes differently.

Occupants also affect HER by causing the rebound 
effect. In the context of home heating, rebound effect 
is post-retrofit overheating or “temperature take back” 
(Sorrell et al., 2009), also known as “comfort taking” 
(Hamilton et al., 2016). Temperature take back occurs 
when occupants prefer warmer internal temperatures 
instead of maximising energy and financial savings. 
In extreme cases, the rebound effect may negate 
energy efficiency savings, an outcome termed “back-
fire” where the intervention actually increases over-
all energy usage (Druckman et al., 2011). Druckman 
et  al. found that the rebound effect results in only a 
portion of the greenhouse gas (GHG) reductions esti-
mated by engineering calculations. Furthermore, the 
largest percentage rebound hampered potential GHG 
reductions by low-income households, according to 
UK analysis (Chitnis et al., 2014). That analysis found 
that the low-income households were mainly affected 
by direct rebound, whereby occupants use more of 
an energy service after an intervention decreases its 
effective price.

In summary, the differences in home operation 
mean that a single energy-usage value cannot rep-
resent every home, even structurally similar homes 
comprising a neighbourhood. A decade ago, neigh-
bourhoods were proposed as a spatial scale offer-
ing the highest potential for large-scale HER (Koch 
& Girard, 2011; Koch et  al., 2012). Koch & Girard 
defined neighbourhoods as groups of structurally 
similar homes — proposing that their energy usage is 
best expressed as statistical distributions. This paper 
now presents a methodology and case studies to cal-
culate the heat-energy usage by structurally similar 
homes as a statistical distribution.

Statistical distributions of home energy usage

Previous research has expressed home energy usage 
as statistical distributions (Irwin et al., 1986; Munk-
hammar et  al., 2014). Both research papers describe 
how meter data was used to find distributions of elec-
tricity usage — an energy vector. Energy vectors 
allow transfer, in space and time, a given quantity of 
energy, hence making it available for use distantly 
(Orecchini & Santiangeli, 2011). When the energy 
quantity is used, it provides useful energy services 
such as heating, cooling, transport and so on. In con-
trast to the previous research, this study finds the sta-
tistical distribution of heat-energy usage for space 
heating — an individual energy service. Further-
more, this study compares heat-energy distributions 
before and after HER. In contrast, savings in electric-
ity usage are difficult to achieve by HER because of 
demand from multiple energy services, such as light-
ing, cooking and supplementary heating (Irwin et al., 
1986), and nowadays dishwashers and other appli-
ances (Munkhammar et al., 2014).

Both Irwin et  al. and Munkhammar et  al. fitted 
Weibull distributions to positively skewed datasets of 
electricity usage. Unlike the popular normal distribu-
tion, a Weibull distribution covers only positive val-
ues in different asymmetric shapes. Figure 1 displays 
a Weibull distribution fitted to a positively skewed 
histogram.

Multiple techniques exist to fit a distribution 
to a dataset of energy values. Munkhammar et  al. 
used the Kolmogorov-Smirov (KS) test to check the 
fit of electricity usage to Weibull and log-normal 
distributions. A similar test by Anderson–Darling 
(AD) improves the KS test by weighting the values 
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at the distribution tails (Keller, 2011), where 
non-normality often manifests (Nelson, 2018). 
Therefore, the AD test is capable of detecting the 
differences between overlapping normal and Weibull 
distributions (Engmann & Cousineau, 2011). 
For these reasons, this study used the AD test for 
distribution fit. Abbreviations, including KS, AD and 
others, plus symbols are organised in Table 1.

Grey-box models for buildings

Building models can be categorised into three general 
approaches: white-box, black-box and grey-box. The 
grey-box approach combines the physics of the white-
box approach, and the statistics or machine learning 
of the black-box approach. Functional labels for the 
three approaches are “physical”, “machine learning” 
and “hybrid” respectively (Foucquier et  al., 2013). 
Two decades have passed since a grey-box model was 
used to represent building envelopes (Déqué et  al., 
2000). In the meantime, other studies have quantified 
uncertain parameters in building models using 
historical time-series data (Bacher & Madsen, 2011; 
Brastein et  al., 2018; Harb et  al., 2016; Reynders 
et  al., 2014). This process is known as parameter 
estimation or “tuning” and is used to calibrate grey-
box models.

One type of grey-box building models, called 
lumped-capacitance, has received much attention and 
been evaluated (Vivian et al., 2017). That evaluation 
described how lumped capacitance models simplify 

(or lump) a building’s distributed thermal mass into 
a discrete number of thermal capacitances. Within 
each model, thermal resistances interconnect the ther-
mal capacitances forming thermal networks; hence, 
lumped-capacitance is often referred to as “thermal 
networks”, “resistance–capacitance” or simply “RC”. 
Henceforth, lumped-capacitance or thermal network 
models are referred to as “RC models”. RC models 
are considered grey-box if their parameters are esti-
mated or “tuned” using available weather and energy-
use datasets, as opposed to analytical calculation. 
This study incorporated parameter estimation into 
its Methodology (section  Calibration procedure and 
validation).

After model calibration, the system domain of RC 
models “can be solved analytically, thus avoiding 
problems of convergence and stability” (Vivian 
et al., 2017). Vivian et al. concluded that RC models 
“reliably calculate” overall energy demand but 
only high-order models, defined by many thermal 
capacitances, can calculate transient hourly demands. 
Low-order models are, however, easier to solve 
during simulation. Easier simulation enables scaling 
up building simulation to city district (Lauster et al., 
2014a, b), or to urban energy in an arid climate (Zekar 
& El Khatib, 2018). The latter research found that 
RC models of cooling load provided a “limited loss 
of accuracy” and “satisfying” level of performance. 
Nowadays, grey-box models still offer the three main 
advantages identified two decades ago (Déqué et al., 
2000), with minor updates:

Fig. 1  Positively skewed 
histogram and fitted 
Weibull distribution
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• Limited number of parameters to be found prior to 
simulation,

• Fewer equations to solve during simulation, ena-
bling larger spatial scale and

• Flexibility to detail a model subsystem amongst 
other model components.

Modelling home archetypes to calculate energy usage

Having introduced grey-box building models, defini-
tion of the homes represented by the models is nec-
essary. For this study, separate building models must 
represent the same home in two states: before and 

Table 1  Abbreviations and 
symbols

Abbreviations

  ACH Air changes per hour
  AD Anderson–Darling, a goodness-of-fit test for statistical distributions
  ASHRAE American Society of Heating, Refrigeration and Air-Conditioning Engineers
  BPS Building performance simulation
  CI Confidence interval, 95% used in this study
  CSO Central Statistics Office
  CV(RMSE) Coefficient of variation of the root mean square error
  DASSL Differential / algebraic system resolver
  DEAP Dwelling Energy Assessment Procedure
  EU European Union
  GHG Greenhouse gas
  GOF Goodness-of-fit
  HER Home energy retrofit
  IWEC International Weather for Energy Calculation
  KS Kolmogorov-Smirov, a goodness-of-fit test for statistical distributions
  kWh kilowatt hour
  MFH Multi-family house
  NMBE Normalised mean bias error
  NREL National Renewable Energy Laboratory
  PID Proportional-integral-derivative
  PDF Probability distribution function
  QQ Quantile–quantile
  RC Resistance–capacitance
  SFH Single-family house
  SEAI Sustainable Energy Authority of Ireland
  Std dev Standard deviation
  TABULA Typology Approach for Building Stock Energy Assessment

Symbols
  �

conv
Convective heat transfer coefficient

  �
rad

Radiative heat transfer coefficient
  h Hour
  m Mean of measured data
   mi Measured data, indexed by i
   mr Statistical moment of  rth order
  n Sample size
  p Number of parameters
  s Standard deviation of a sample
   si Simulated data, indexed by i
  x Mean average of a dataset x, for example energy use
  � Skewness of a statistical distribution
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after home energy retrofit. Henceforth referred to as 
as-built and retrofit states. As already mentioned, 
homes in the same neighbourhood are structurally 
similar. Thus, one building archetype can define the 
structure and fabric of many similar homes forming a 
neighbourhood.

The archetype approach has been used to under-
stand the aggregated impact of energy efficiency poli-
cies and technologies (Monteiro et al., 2017; Reinhart 
& Cerezo Davila, 2016). Similar to this study, Mon-
teiro et  al. selected the neighbourhood spatial scale, 
delineating four neighbourhoods by construction 
period and major urban intervention. They also iden-
tified three stages in archetype generation: classifica-
tion, parameterisation, and modelling. Regarding the 
first stage of archetype generation, an existing classi-
fication of European homes is now introduced.

Archetypes from TABULA typology

Project TABULA, conducted during 2009–2012, was 
formally named “Typology Approach for Building 
Stock Energy Assessment”. It was the second of three 
Intelligent Energy Europe projects, including DATA-
MINE (2006–2008) and EPISCOPE (2013–2016). A 
project summary (Loga, 2010), answers the question 
“What is TABULA about?” as follows:

The objective … is to create a harmonised 
structure for European Building Typologies. 
Each participating country will on that basis 
develop a National Building Typology, that is 

a set of model buildings with characteristic 
energy related properties. The project focuses 
on residential buildings …

Each National Building Typology produced by 
TABULA is a “Building Type Matrix” hereinafter 
“building matrix”, that standardised the classifica-
tion of residential buildings (Loga et al., 2016). This 
study used Ireland’s building matrix in section Home 
archetypes of the Methodology. Figure 2 displays the 
standardised matrix axes:

• Building age classes: the construction period of 
the building.

• Building size classes: clustering the buildings by 
size, such as single-family houses.

Each home archetype within the building matrix 
was accompanied by a complete dataset comprising 
general features such as number of storeys, geomet-
ric data of volume and envelope area, thermal prop-
erties such as U-values and supply system features 
such as heat generator efficiency (Loga, 2010). Sup-
ply systems pertaining to home energy retrofit were 
the home heating and cooling systems. TABULA 
classified heating and cooling systems into three 
types: (1) initial reference system, termed “as-built” 
in this study, (2) standard retrofit or (3) advanced 
retrofit. TABULA archetypes also included energy-
use parameters such as air change rates and heating 
fuels. Simple occupant schedules were assumed by 
TABULA, thus not used in this study because they 

Fig. 2  TABULA webtool displaying an extract of Ireland’s building matrix. The highlighted cell contains a single-family house 
archetype TH.03.Gen: a terraced house constructed during 1930–1949 (TABULA, 2016)
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lacked the variation caused by occupants. TABULA 
assumed a single Irish climate zone but allocates mul-
tiple climate zones to larger countries, for instance 
three zones to Italy.

By focusing on homes, TABULA attempted to 
predict the impact of energy efficiency measures and 
select effective strategies for home energy retrofit 
(Ballarini et al., 2014; Loga et al., 2016). Estimates of 
building energy relied on a quasi-steady-state calcu-
lation over an entire season (TABULA, 2013). Both 
archetype definitions and energy calculations were 
published online (TABULA, 2016), and were adopted 
by other research into Belgium homes (Reynders 
et  al., 2014) and six other countries (Coma et  al., 
2019).

Home types in Ireland

The home archetypes defined in TABULA reflect 
the popularity of single-family houses (SFHs) in Ire-
land, over multi-family houses (MFHs). Furthermore, 

Ireland’s 2016 census confirmed the popularity of 
SFHs and disaggregated their quantities by type: 
detached, semi-detached and terraced (CSO, 2020).

Disaggregated numbers of home types in Table 2 
reveal that detached houses comprised over 80% of 
rural households, motivating previous research into 
their retrofit (Ahern et al., 2013). In contrast, the 2016 
census reported that urban or “town” households 
span the three SFH types more evenly, with semi-
detached and terraced houses dominating (Fig.  3). 
The numbers of urban homes in descending order of 
house type were 406,798 semi-detached, 260,319 ter-
raced and 203,346 detached (CSO, 2020). Given that 
large-scale retrofit applies to urban areas, this study’s 
case studies focus on the popular semi-detached and 
terraced home types.

Apartments or other multi-family homes (includ-
ing bed-sits) constituted 195,148 (under 20%) of all 
urban households, leaving 15,226 home types not 
stated (CSO, 2020). Another factor in home energy 
usage is that Census 2016 recorded an increasing 

Table 2  Home-type 
numbers in Ireland, split by 
rural and urban areas (CSO, 
2020). Bed-sit numbers are 
combined into apartment 
numbers

Home type Rural area (number) Urban area (number) Total (number)

Detached 511,787 203,346 715,133
Semi-detached 65,150 406,798 471,948
Terraced 24,250 260,319 284,569
Apartment 8997 195,148 204,145
Not stated 6644 15,226 21,870
Total 616,828 1,080,837 1,697,665

Fig. 3  Numbers of Irish 
rural and urban home types 
in 2016. Single-family 
houses exceed 80% of urban 
homes
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number of persons per household, reversing the 
downward trend since 1966 (CSO, 2018). Moreover, 
increasing household sizes were confined to urban 
areas.

Turning to the causes of dominant home types, the 
construction of single-family houses permeated both 
rural and urban areas of Ireland during the last cen-
tury. McManus (2011) cited “The typical Irish home, 
whether in the city or countryside, is a one or two sto-
rey, single or semi-detached cottage…” (Pfretzschner, 
1965); before remarking that Pfretzschner’s insight 
described Irish housing in any twentieth century dec-
ade as follows:

The predominance of the standardised three- 
or four-bedroom, semi-detached or detached 
house, was not challenged until the 1990s when 
there was a surge in apartment provision.

This characterisation of semi-detached and detached 
homes as “standardised” implies their structural 
similarity and suitability for classification into home 
archetypes. Multi-family homes, such as apartments, 
remained a minor part of Irish twentieth century 
housing supply. Apartments were perceived as working 
class, associated with overcrowded tenements, and less 
popular than houses (McManus, 2011). An official 
recommendation for the aforementioned “cottages”, 
i.e. suburban two-storey houses, instead of urban flats 
appeared in the 1939/43 Report of Inquiry (Rowley, 
2015). Thus, purpose-built apartments gradually 
reached 5% of new builds during the 1980s, only 
ramping up construction rates during the 1990s (Energy 
Action, 2014). The resultant 85% growth in apartments 
during 2002–2016, captured in the census (CSO, 2018), 
means the average apartment is significantly more 
modern than the average single-family house.

In addition to older construction age, single-family 
houses dominate heat-energy usage due to their larger 
average size and higher specific heat demand. A review 
of building stock retrofit in Germany forecasted that 
single-family houses will account for approximately 
two thirds of heat demand until 2050 (McKenna 
et  al., 2013). Hence, this study selects single-family 
homes constructed before the 1997–2002 changes in 
building regulations (Dineen & Ó Gallachóir, 2011), 
as those most likely to benefit from home energy 
retrofit. However, the benefits attributable to HER 
vary because of the variation in energy usage caused 

by occupants. For instance, different occupants 
prefer different internal temperatures controlled by 
setpoints, and warm their homes at different times of 
the day called heating patterns. Since setpoints and 
heating patterns are critical factors in home heating 
calculations, they were empirically defined in two 
Methodology sections: Data sources for simulations, 
and Heating and internal gains schedules.

Calculation of energy savings attributable to HER

As already mentioned, TABULA defined standard 
and advanced retrofits per archetype that differed 
in their upgrade of each archetype’s heat generator 
(TABULA, 2016). A standard retrofit upgraded a 
boiler, whereas an advanced retrofit replaced a boiler 
and switched fuel by deployment of an electrical 
heat pump. To remain independent of fuel type, 
energy savings attributable to retrofit were measured 
in sensible heat energy for space heating. This study 
analyses the sensible heat energy used to provide one 
energy service: space heating, before and after a deep 
retrofit. The three preceding terms are now defined:

Sensible heat energy or heat energy flows as 
convective energy from heating equipment to 
maintain internal air at a heating setpoint. For 
brevity, sensible heat energy is hereinafter 
shortened to heat energy.
Space heating is the heat energy required to 
offset the thermal losses across the building 
envelope by conduction and radiation, as well 
as air infiltration and ventilation, in an effort 
to maintain the living space at a comfortable 
temperature (Swan & Ugursal, 2009).
Deep retrofit combines multiple measures to 
improve the building envelope fabric and upgrade 
heat generation. Once a building envelope is 
made consistent, it reduces outside air infiltration 
and other thermal losses that must be offset 
by space heating. In contrast, shallow retrofit 
comprises one or two maintenance measures, 
such as increased boiler efficiency or new glazing. 
Deep-retrofit designs are often implemented to 
deliver policy-driven savings in energy or GHG 
emissions. Policy-driven targets vary around 
60% savings (Arcipowska et al., 2017), but have 
extended to 75% savings (GBPN, 2013).
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Contribution

This study contributes to research by providing a 
methodology and case study examples to parameterise 
and evaluate the statistical distributions of heat-energy 
usage for home space heating. Such distributions 
of heat-energy usage are particularly relevant 
to large-scale home energy retrofit, for example 
at neighbourhood scale. While the case studies 
are in Ireland, the methodology can be applied 
internationally, most straightforwardly in countries 
covered by the TABULA research project. The 
preceding Introduction covered the points supporting 
the contribution: the need for home energy retrofit and 
its large-scale delivery.

In addition, this study contributes to the research 
gap that building energy models typically lack empir-
ical data on internal temperature and heating dura-
tion. Furthermore, the same models ignore occupant 
self-rationing known as the prebound effect (Sunikka-
Blank & Galvin, 2012). These findings apply to 
homes in general (Huebner et  al., 2013; Shipworth 
et  al., 2010), and social housing in particular (Jones 
et  al., 2016; Teli et  al., 2016; Zahiri & Elsharkawy, 
2018). Therefore, empirically sourced heating tem-
perature setpoints and heating patterns are defined in 
two sections: Data sources for simulations and Heat-
ing and internal gains schedules. In total, the aims of 
this study are fourfold:

1) Present a calibration and validation methodology 
for grey-box models coded in Modelica language, 
using heat-energy usage data from simulation of 
equivalent white-box models.

2) Convert the heat-energy usage from the simula-
tions into statistical distributions and test their fit 
to the normal and Weibull distributions.

3) Explore the different heat-energy distributions, 
resulting from different heating setpoints and pat-
terns operated by occupants.

4) Use the distributions to calculate mean confidence 
intervals (CIs) and test the hypothesis that heat-
energy usage actually equals an official single value.

The following Methodology covers the selection, 
calibration, and large-scale simulation of grey-box 

models that represent home heating. To simulate dif-
ferent occupant operation, different heating setpoints 
and heating patterns are defined. Both definitions 
originate from published empirical data. The result-
ing distributions and statistics of heat-energy usage 
by the modelled homes are presented and explored in 
the Results and Discussion. Finally, the paper closes 
with Conclusions that include implications and future 
work.

Methodology

After the structure of a grey-box model was selected, it 
was calibrated for each home archetype. Calibration of 
grey-box models relied on the energy usage simulated 
by white-box models of the same home archetypes. 
Both white-box and grey-box models were simulated 
with identical weather files, internal gains, ventilation 
and infiltration; for more details, see the companion 
paper (Beagon et al., 2020). That paper details the cre-
ation of the white-box models — the first step in the 
methodology flow undertaken by this study (Fig. 4).

Home archetypes

Since this study investigated large-scale HER, for 
example at neighbourhood scale, the methodol-
ogy selected urban home archetypes. As discussed 
already in section Home types in Ireland, single-fam-
ily homes dominate Irish housing, primarily as semi-
detached and terraced houses in urban areas.

TABULA’s typography classified both semi-
detached and terraced homes as “terraced”; identified by 
the letters “TH” within the archetype names (TABULA, 
2016). The three archetypes selected as case studies are 
hereinafter referred to as “TH03”, “TH06” and “TH07”. 
The archetypes differed by their construction periods, 
where TH03 and TH07 are the oldest and youngest 
respectively (Table  3). All three archetypes shared 
the same urban area of Dublin, Ireland’s capital city. 
According to the home archetype brochure, TH03 was 
“very common” in Dublin’s 1930s and 1940s building 
stock, TH06 was “commonly built” in Dublin during 
1978–1982 and TH07 was a “very typical house” built 
in Dublin during the 1980s (Badurek et al., 2014).
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Selection of Grey-box model

Section  Grey-box models for buildings introduced 
thermal or RC networks to model building 
performance. Each grey-box model in this study 
represented the space heating of a home archetype 
as one system, containing a RC network to simplify 
the building fabric subsystem. By simplifying the 
building fabrics, the grey-box models facilitated 
the many simulations across a range of heating 
setpoints and heating patterns. As expected, the 
range of setpoints and patterns resulted in statistical 
distributions of heat-energy usage — the main results 
of this study.

All grey-box models were implemented in Mod-
elica code and simulated in the Dymola environ-
ment using its default DASSL solver (differential 
algebraic system resolver). This study used the Mod-
elica library AixLib and its subsystems (Müller et al., 
2016) to implement an existing RC network struc-
ture (Lauster et al., 2014a, b). That model separated 
equivalent air temperatures of wall and windows for 
each building orientation. Thereby, the effect of solar 
radiation was more accurately calculated, including 
long-wave radiation (Lauster et al., 2014a).

Radiative heat traversed the different components 
of the building fabric. For instance, heat energy trans-
ferring from windows to internal walls was impeded 

Fig. 4  Data flow diagram of modelling and simulation by this study

Table 3  Summary details of case-study home archetypes, including unique construction year class and building type of either ter-
raced or semi-detached

Archetype Full name Construction year class Building type Additional classification

TH03 IE.N.TH.03.Gen 1930–1949 Terraced Mass concrete
TH06 IE.N.TH.06.HBlock 1978–1982 Semi-detached Hollow block
TH07 IE.N.TH.07.Hblock 1983–1993 Terraced Hollow block
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by resistor  RWinIntRad. Specific resistor values are 
based on a radiative heat transfer coefficient ( �rad ), 
assumed constant in the simulated temperature range 
at 5  W/(m2K). Concerning convective heat trans-
fer, a coefficient ( �conv ) of 2.7 W/(m2K) is assumed. 
Both �rad and �conv values were sourced from (Lauster 
et  al., 2014a, b). The �conv coefficient determines 
resistances, for example, convective heat transfer at 
windows  RWinCon. Other resistances and capacitances 
were specific to the house fabric construction: exter-
nal wall (ext), internal walls and objects (int), and 
floor plate (floor).

In order to reduce the over-responsiveness of 
simulated internal temperatures, lumped capacitances 
were split in two (Tindale, 1993). For example, the total 
external wall capacitance was apportioned between 
 Cext1 and  Cext2 that interconnected by resistors forming 
a 3R-2C component. These external wall components 
were ordered as:  RextRem,  Cext1,  Rext1,  Cext2,  Rext2 (Fig. 5). 
The resistance (and some capacitance) values of the 
external wall increased after retrofit. Such increases 
reflect the fabric retrofit measures of wall insulation 
and glazing replacement. The next section, Automated 
model calibration, describes how this study quantified 

these RC values by “tuning” grey-box models to 
datasets of white-box models’ heat-energy usage.

Automated model calibration

Model calibration is the process of “tuning” selected 
model parameters to obtain a better agreement 
between the model’s simulated or predicted behaviour 
and observed or measured behaviour (Dassault 
Systèmes AB, 2017). In this study, selected parameters 
of the grey-box models were tuned to match the 
simulated heat-energy usage by the white-box models.

A calibrate task resides in the Dymola 
optimisation library for Modelica (Elmqvist et  al., 
2005). This task iterated through the simulation 
of a grey-box model and compared its energy-
usage dataset to those from previous simulations 
of white-box models (Beagon et  al., 2020). By 
iterating through simulations and comparisons, 
an optimisation was achieved by automatic 
re-estimations of selected model parameters. The 
optimisation objective was to achieve minimum 
error between the two datasets of heat-energy usage. 
The selected parameters for tuning were the three 

Fig. 5  Thermal network (RC) subsystem representing the building fabric of a house, adapted from (Lauster et al., 2014a, b). Walls 
and floors are configured as 3R-2C components
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external wall resistors and its two capacitances: 
 Rext1,  Rext2,  RextRem,  Cext1 and  Cext2 (Fig.  5). After 
updating the tuned parameters with their new 
estimated values, the grey-box models were deemed 
calibrated.

Model validation indices

Validation of calibrated models used two goodness-
of-fit (GOF) indices. The errors between monthly 
heat-energy usage from simulations of white-box and 
calibrated grey-box models were quantified by both 
indices. First, the coefficient of variation of the root 
mean square error (CV(RMSE)) quantified the vari-
ation of errors. Second, normalised mean bias error 
(NMBE) quantified the average of errors. In other 
words, CV(RMSE) and NMBE quantify the standard 
deviation and mean of the errors between two data-
sets (Reddy & Maor, 2006).

Referring to Eqs. (1) and (2), m represents the 
mean of measured data. Throughout this study, the 
existing white-box dataset were represented by the 
“measured” data of month  i  (mi), whereas the grey-
box model produced the “simulated” data of month i 
 (si). Since both models produced monthly results, var-
iable n equalled twelve. Finally, p was the number of 
adjustable model parameters (Robson & McCartan, 
2016); however, this study adopted proposed values: 
p = 1 for CV(RMSE) and p = 0 for NMBE (Reddy & 
Maor, 2006).

ASHRAE1 Guideline 14 stipulates two necessary 
GOF validation criteria: CV(RMSE) < 15%, and 
-5% < NMBE < 5% (Reddy & Maor, 2006). The 
larger CV(RMSE) criterion reflects its absolute 
measurement of all errors (1), whereas the smaller 
NMBE criterion reflects its cancelling out of positive 
and negative bias (2).

(1)CV(RMSE) =
1

m

�∑n

i=i

�
m

i
− s

i

�2

n − p

(2)NMBE =
1

m

�∑n

i=i

�
m

i
− s

i

�

n − p

Calibration procedure and validation

Validated grey-box models met the ASHRAE 
validation criteria using monthly heat-energy usage 
results from two simulations. One simulation was 
under a static “steady-state” schedule, whereas the 
second simulation was under the dynamic DEAP 
(Dwelling Energy Assessment Procedure) schedule. 
The steady-state simulations had constant heating, 
but an unoccupied home. The DEAP simulations had 
heating and an occupied home during the morning 
and evening only (07:00–09:00 and 17:00–23:00).

To achieve both validations, the grey-box model 
calibration procedure comprised two phases. Both 
phases followed an identical data flow (Fig.  6), but 
each phase calibrated the model against a different 
heating schedule:

• Phase 1: heat-energy usage from simulation under 
steady-state schedule and

• Phase 2: heat-energy usage from simulation under 
DEAP schedule.

Home heater sizes in the grey-box models were 
estimated during previous simulations of the white-
box models (Beagon et al., 2020). During calibration 
procedure, the simulations used the heaters to 
maintain a 20ºC setpoint adopted from TABULA 
(2013). Before the first simulation of Phase 1, the 
grey-box models were initialised with manually 
calculated values of tunable parameters. After the 
first simulation, the resulting monthly heat-energy 
usage was tested against that of a white-box model 
simulated under the same schedule. As expected, 
simulations with initial parameter values failed 
validation, and Phase 1 progressed to the automated 
task labelled “calibrate grey-box model” (Fig. 6).

After the automated calibrate task, the results were 
used to update the tunable parameters of the grey-
box models. The updated models were subsequently 
re-simulated under both steady-state and DEAP 
schedules. Each simulation of an updated model 
calculated its monthly heat-energy usage per schedule. 
Those results were compared to the monthly results 
from simulating white-box models under identical 
schedules. The validation results of as-built and retrofit 
models appear in Table 4 and Table 5 respectively.

As mentioned, the validation criteria were 
CV(RMSE) < 15%, and -5% < NMBE < 5%. Since 

1 American Society of Heating, Refrigeration and Air-Condi-
tioning Engineers.
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Phase 1 validation failed in the case of retrofit mod-
els, Phase  2 became necessary. Phase  2 calibrated 
grey-box models, initialised with Phase 1 parameters 

values, to fit monthly heat-energy usage under the 
DEAP schedule.

Phase 1 calibration was sufficient for models of 
as-built archetypes (Table  4). In contrast, models of 

Fig. 6  Calibration procedure and data flow. Identical flows used during both Phase 1 and Phase 2 but differentiated by energy-usage 
data from different heating schedules

Table 4  Validation 
goodness-of-fit indices of 
calibrated as-built models 
using monthly heat-energy 
usage under two heating 
schedules: (1) steady-state 
and (2) DEAP

Label Phase Steady-state schedule DEAP schedule

CV(RMSE) (%) NMBE (%) CV(RMSE) (%) NMBE (%)

TH03 1 2.51  − 0.24 8.08 3.56
TH06 1 0.88  − 0.02 4.70 3.54
TH07 1 2.55  − 0.47 6.46 4.31

Table 5  Validation 
goodness-of-fit indices of 
calibrated retrofit models 
using monthly heat-energy 
usage under two heating 
schedules: (1) steady-state 
and (2) DEAP

Label Phase Steady-state schedule DEAP schedule

CV(RMSE) (%) NMBE (%) CV(RMSE) (%) NMBE (%)

TH03 1 3.31  − 0.07 9.47 8.25
TH06 1 1.48 0.24 22.10 15.11
TH07 1 5.19 4.01 19.04 13.31
TH03 2 3.75  − 2.70
TH06 2 7.06 1.76
TH07 2 6.50 0.85
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retrofit archetypes required Phase  2 calibration to 
achieve validation. The CV(RMSE) and NMBE vali-
dation indices improve significantly after Phase 2 as 
percentage values (Table 5). Note that retrofit arche-
types must achieve smaller validation errors in terms 
of energy values, because retrofitted homes typically 
use less heat energy.

Data sources for simulations

With the RC values of the building fabric subsystem 
now known, the modelling effort focused on the 
subsystem controlled by occupants: the internal 
thermal zone. Different occupant-operated setpoints 
and heating patterns result in different heat-energy 
usage calculated by simulations. Large variations 
in heat-energy usage are expressed as statistical 
distributions — a key result of this study.

Recent literature provided empirical sources to enable 
simulation of heating patterns and setpoints (Table  6). 
A review of gas or oil-fired central heated homes 
found thermostat settings from 13.1 to 27.3ºC — an 
“enormous” range (Shipworth et  al., 2010). Although 
the mean and median temperatures were both 21ºC, the 
sample data was positively skewed with 40% at or above 
22ºC.

Social housing in England displayed large vari-
ations in heating setpoints, even among 62  as-built 
and 49  retrofit homes analysed (Jones et  al., 2016). 
For instance, occupants in retrofit homes chose set-
points from a distribution of higher temperatures 
( x = 21.7ºC, std dev. = 3.2ºC, n = 49) than occupants 

of as-built homes ( x  =  20.2ºC, std dev. = 3.3ºC, 
n = 62). Notably, the same research referred to “ther-
mal upgrade” of wall insulation as opposed to “ret-
rofits”, indicating that primary heat generation (prob-
ably boilers) remained unchanged.

Considering the variation in occupant heating 
preferences, this study adopted setpoint tempera-
tures, heating durations and schedules from avail-
able empirical sources, that themselves differ in 
sample size, home type and location (Table  6). In 
addition to setpoint distributions, three heating pat-
terns emerged in social housing (Jones et al., 2016). 
“Double” (morning and evening) was the most com-
mon (45.9%), followed by “single” (24.3%) and “con-
stant” 24 h (20.3%). Triple heating periods occurred 
in under 10% of weekdays and thus were neglected by 
this study.

Occupants also require ventilation to maintain 
good health. As explained in the companion paper 
(Beagon et al., 2020), the simulations maintained the 
minimum 0.4 ACH recommendation during occu-
pancy periods (Ramos et al., 2015; Wargocki, 2018). 
Where lower levels of air permeability are achieved, 
Part  L regulations require purpose provided venti-
lation (DECLG, 2011). Therefore, the simulations 
assumed that retrofit homes operated demand con-
trolled ventilation (DCV) simultaneous with occu-
pant-caused internal gains.

Finally, heating and ventilation operated upon a 
single internal zone within all models. This study’s 
AixLib model of a single zone building appears in 
(Fig.  7); it displays the four building elements of 

Table 6  Empirical data sources of weather, home archetypes, household heating and occupancy. Descriptions of household data 
include sample size, location, and home type

Data type Sample size (n) Location Home type Source

IWEC2 Not applicable Dublin Airport, Ireland Not applicable NREL, 2018
Home archetypes Not applicable Dublin, Ireland Semi-detached and ter-

raced
Badurek et al., 2014

Heating setpoints 49 retrofit, 62 as-built Plymouth, England Flats, semi-detached and 
terraced

Jones et al., 2016

Heating pattern types Weekday: 43 retrofit, 75 
as-built

Weekend: 40 retrofit, 74 
as-built

Plymouth, England Flats, semi-detached and 
terraced

Jones et al., 2016

Heating times 275 (silent on retrofit 
state)

England nationally Detached, flats, semi-
detached and terraced

Huebner et al., 2015

Occupancy times 32 as-built London, England Flats Zahiri & Elsharkawy, 2018
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exterior walls, interior walls, floor plate and roof 
(IEA Annex 60, 2017). A proportional-integral-deriv-
ative (PID) controller, recommended in the AixLib 
library (RWTH EBC, 2020), tracked the temperature 
setpoint of the internal zone. Controller parameters 
enabled activation of heating when internal air tem-
perature dropped 0.5ºC below setpoint, accompanied 
by limitation of short cycling by one-minute off-time. 
This controller was easily configured, closely tracked 
every setpoint, and limited short cycling (where a 
heat generator turns on and off too frequently).

Heating and internal gains schedules

As listed in Table  6 data sources, research on 275 
homes throughout England plotted four heating 
schedules as daily time-series: “Steady rise”, “Flat 
line”, “Two peak” and “Steep rise” (Huebner et  al., 

2015). Simulation heating times were extracted 
from the time-series plots by Huebner et  al., (2015) 
and other research (Jones et al., 2016). Both sources 
lengthened weekend heating durations which this 
study also incorporated into simulation schedules 
(Table 7).

The Steep rise time-series plot increased tempera-
ture from the morning throughout the day, peaking 
“before 21:00”, specifically 20:30 in its diurnal plot 
(Huebner et  al., 2015). Since Steep rise descended 
to the lowest temperature of 16ºC among all four 
time-series plots, it resembled the single heating pat-
tern identified by Jones et al. (2016). Occupants sig-
nificantly increased the duration of the single heating 
pattern after retrofit, compared to the double pattern. 
Durations of the single heating pattern were length-
ened: weekdays 4.9  h to 8.4  h, and weekends 5.4  h 
to 8.6 h (Table 7). Weekday and weekend durations 

Fig. 7  Modelica model of four building elements enclosing one indoor thermal zone labelled “Indoor Air volAir” (IEA Annex 60, 
2017)
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of the double pattern lengthened marginally after ret-
rofit: weekday 5.4 h to 6.0 h, and weekend 6.1 h to 
6.2 h.

Longer heating durations after retrofit indicated 
that the occupants had been rationing their home 
heating. While occupants ought to be comfortable in 
their homes, the lengthening of heating durations and 
other “comfort taking” may have reduced or negated 
any savings in heat energy. Occupant “comfort tak-
ing” and the resulting rebound effect and potential 
“backfire” have been outlined in the Introduction.

Finally, internal gains caused by occupants were 
already calculated (Beagon et  al., 2020), and their 
schedules lengthened at weekends for the single and 
double heating patterns in Table  8. Schedules of 
internal gains under the constant and single heating 
patterns were derived from the dominant occupancy 
patterns defined for a London tower block by Zahiri 
and Elsharkawy (2018). The dominant occupancy 
patterns emerged from 32 responses to the 108 ques-
tionnaires distributed to every tower block flat. This 
sample size of 32 exceeded the 25 necessary for valid 
correlation tests according to Oppenheim (1992), 
whom Zahiri & Elsharkawy cited as justification.

Regarding the double heating pattern, Marshall et al. 
(2016) provided detailed times of internal gains by an 
applicable “Working Family”. This presented study 
used a double heating pattern where the morning heat-
ing coincided with internal gains (Table 7, Table 8). At 
the weekend, the double heating pattern and associated 
internal gains did not start until 07:00, as extracted from 
time use surveys (Buttitta et al., 2017).

Characterising heat-energy distributions

With the heating patterns and internal gains defined 
(Table  7 and Table  8), simulations then calculated 

heat-energy usage across two ranges of heating set-
points. As described in section  Data sources for 
simulations, setpoint distribution parameters differed 
between as-built ( x  =  20.2ºC, std dev. = 3.3ºC) and 
retrofit homes ( x  = 21.7ºC, std dev. = 3.2ºC). An R 
function used the parameters of the two setpoint dis-
tributions to randomly generate separate sets of as-
built or retrofit setpoints. Normal distributions were 
assumed. Each of the two sets contained 300 sample 
setpoints (n = 300), to enable distribution fitting (Kel-
ler, 2011). Note that n = 300 did not imply that each 
neighbourhood comprises over 300 similar homes.

The 300 as-built setpoints were applied to all as-
built models, then simulated under the as-built sched-
ules of each heating pattern. Similarly, the 300 retro-
fit setpoints were applied to all retrofit models, then 
simulated under the retrofit schedules of each heating 
pattern. A total of 18 models represented every com-
bination of three archetypes, three heating patterns, 
and two states of as-built and retrofit. Thus, the 18 
models were each simulated under 300 heating set-
points to produce 5400 values of yearly heat-energy 
usage.

All 300 simulations of an archetype and heat-
ing pattern combination, modelled in either as-built 
or retrofit state, calculated one value of heat-energy 
usage. After the simulations, the 300 usage values 

Table 7  Heating patterns schedules by time of day and hours (h) duration. Each pattern comprises four schedules, split by as-built 
and retrofit state, and weekday and weekend. Times adapted from Huebner et al., 2015; Jones et al., 2016

Pattern As-built Retrofit

Weekday Weekend Weekday Weekend

Constant 00:00–24:00 (24 h) 00:00–24:00 (24 h) 00:00–24:00 (24 h) 00:00–24:00 (24 h)
Single 15:30–20:25 (4.9 h) 15:15–20:35 (5.4 h) 13:20–21:45 (8.4 h) 13:15–21:50 (8.6 h)
Double 06:40–08:10 & 16:40–20:35 

(5.4 h)
07:00–09:00 & 16:30–20:35 

(6.1 h)
06:40–08:10 & 16:20–20:50 

(6.0 h)
07:00–09:00 & 

16:20–20:30 
(6.2 h)

Table 8  Simulated internal gains schedules by heating pattern. 
Schedules apply to both as-built and retrofit home archetypes

Pattern Weekday Weekend

Constant 08:00–22:00 08:00–22:00
Single 06:30–22:00 08:30–22:30
Double 06:40–08:30 & 

16:20–22:15
07:00–10:30 

& 15:30–
22:30
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formed a dataset representing that archetype, heat-
ing pattern and state. Each energy-usage dataset was 
itself a distribution, characterised by sample statis-
tics of mean ( x ) standard deviation (s) and skewness 
( � ). Skewness, a dimensionless statistic, indicates a 
distribution’s shape and symmetry. A perfectly sym-
metrical distribution was measured at zero skew-
ness. Positive or negative skewness values indicated 
a longer right or left tail respectively. Multiple skew-
ness formulas existed in literature (Tabor, 2010; Ver-
sluis & Straetmans, 2015); the former publication 
defined 11 skewness formulas and the latter 14. This 
study adopted the “formal” or “textbook” formula; 
the Fisher-Pearson third moment coefficient of skew-
ness (3), unadjusted due to the large sample n = 300 
(Joanes & Gill, 1998; NIST, 2013).

A highly skewed distribution requires � > 1, a 
moderately skewed distribution 0.5 ≤ |�| ≤ 1, and an 
approximately or “fairly” symmetrical distribution 
|�| < 0.5 (Brown, 2016; Bulmer, 1979). All calcula-
tions and plots were executed in R statistical lan-
guage. Function skewness(x,  type = 1) calculated the 
textbook skewness (Meyer, 2020), and ggplot2 func-
tions plotted the graphs (Beagon, 2020; Wickham, 
2016).

As introduced in section  Statistical distributions 
of home energy usage, the Anderson–Darling (AD) 
technique was selected to test fit of the heat-energy 
datasets to statistical distributions. The AD test 
adopted a null hypothesis that sample values arose 

(3)

Skewness ∶ � =
m

3√
m

3

2

[−] where m
r
=

1

n

∑
(x

i
− x)r

from a common statistical distribution, specified by 
name or as another dataset. Smaller AD statistics and 
larger p-values indicated no evidence of deviation 
from the hypothesised common distribution. Thus, 
AD test statistics reduced with increasing goodness-
of-fit (GOF) with the hypothesised common distri-
bution. This study uses the AD test function within 
the R kSamples package (Scholz & Zhu, 2019). As 
a kSamples function, it tested the hypothesis that k 
number of independent samples arose from a com-
mon continuous distribution.

Results

Statistics of heat-energy usage

The heat-energy usage statistics of all nine combina-
tions of heating pattern and home archetype appear 
in Table  9. Only five of the combinations, however, 
show decreased mean heat-energy usage after retro-
fit. Four combinations increased mean heat-energy 
usage, including all three TH07 heating patterns. 
Among the shallow TH07 retrofits, heat-energy sav-
ings by building fabric upgrades were counteracted 
by higher occupant heating demands.

Table  10 displays the decreases and increases in 
mean heat-energy usage as positive and negative sav-
ings respectively. Paired t-tests were performed on 
each combination’s heat-energy usage between their 
as-built and retrofit states. The null hypothesis of no 
difference between as-built and retrofit states was 
rejected with a p-value below 0.001 for all combina-
tions of archetype and heating pattern.

Table 9  Heat-energy 
usage by combination of 
archetype and heating 
pattern, in as-built and 
retrofit states. Sample 
statistics comprise the mean 
( x ), standard deviation (s) 
and skewness ( �)

Pattern Label As-built Retrofit

x (kWh) s (kWh) � x (kWh) s (kWh) �

Constant TH03 9654 4236 0.462 4437 2151 0.507
Constant TH06 11,553 4653 0.415 6201 2637 0.423
Constant TH07 6215 2913 0.502 6992 2686 0.363
Single TH03 5079 2371 0.510 3155 1667 0.601
Single TH06 4184 1878 0.697 4357 1798 0.411
Single TH07 3035 1656 0.696 4050 1789 0.490
Double TH03 7016 2804 0.345 3903 1694 0.382
Double TH06 7275 2656 0.382 4805 1848 0.355
Double TH07 4893 2110 0.426 5328 1881 0.303
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Based on the mean values in Table 10, the single 
heating pattern fails to save heat energy in archetype 
TH06, and the aforementioned TH07. An explanation 
is that occupants extend the weekday duration of the 
single heating pattern by three and half hours after 
retrofit (section Heating and internal gains schedules). 
The short duration of the single pattern, however, 
means that it minimises the heat-energy usage by all 
archetypes in both as-built and retrofit states.

Exploring distributions of heat-energy usage

Having calculated the statistics from each dataset of 
heat-energy usage, the datasets were then analysed 
as probability density distributions. As mentioned, 
each dataset of 300 energy-usage values represents 
one combination of archetype and heating pattern 
in as-built or retrofit state. These distributions were 
explored using quantile–quantile plots, goodness-of-
fit (GOF) evaluation and hypothesis testing.

Quantile–quantile plots

A quantile–quantile (QQ) plot is an initial exploration 
of a dataset’s fit to normality. All QQ plots appear in 
this paper’s Supplementary Material. The plots dis-
play a dataset of heat-energy usage, alongside the 
theoretical normal distribution parameterised from 
energy-usage dataset. Every plot’s horizontal axis dis-
plays Z-scores representing the distance between an 

energy-usage value and the dataset mean. Since the 
distance is expressed in standard deviations, the range 
from − 3 to + 3 captures 99.7% of the theoretical nor-
mal distribution. All QQ plots approximate to nor-
mality at central values but diverge at their tails. The 
largest proportional divergence at the tails manifests 
under the single heating pattern.

Goodness-of-fit to normal distributions

The Anderson Darling (AD) technique, described in 
section Characterising heat-energy distributions, was 
used to test the fit between two 300-sample datasets. 
The first dataset contained the simulation heat-energy 
usage and the second dataset contained 300 quantiles 
of the theoretical normal distribution. The mean and 
variance parameters of that theoretical normal distri-
bution were calculated from the simulation dataset. 
Results of the AD tests appear in Table 11, compris-
ing the test statistics and the p-values. Despite devia-
tions from normality seen in the QQ plots, there is 
insufficient evidence to reject the null hypothesis of 
normality at a standard p-value of 0.05.

Goodness-of-fit to Weibull distributions

Weibull distributions, introduced in section Statistical 
distributions of home energy usage, have been used to 
represent home energy use at different spatial scales 
(Irwin et  al., 1986; Munkhammar et  al., 2014). Fur-
thermore, the Weibull distribution is the most popular 

Table 10  Savings in mean heat-energy usage by combination 
of archetype and heating pattern. The mean value is accompa-
nied by its 95% confidence interval (CI)

Heating pat-
tern

Archetype 
label

Mean 
heat-energy 
saving
(kWh)

CI of mean 
heat-energy 
saving
(kWh)

Constant TH03 5217 4981, 5454
Constant TH06 5352 5213, 5581
Constant TH07  − 777  − 805, − 747
Single TH03 1924 1843, 2004
Single TH06  − 173  − 192, − 153
Single TH07  − 1014  − 1034, − 996
Double TH03 3113 2987, 3239
Double TH06 2470 2397, 2562
Double TH07  − 436  − 463, − 408

Table 11  Anderson–Darling tests of fit between heat-energy 
usage datasets and normal distribution datasets. Results com-
prise test statistics and asymptotic p-values. All sample sizes 
were n = 300

Pattern Label As-built Retrofit

AD statistic p-value AD statistic p-value

Constant TH03 0.671 0.585 0.807 0.476
Constant TH06 0.515 0.732 0.538 0.709
Constant TH07 0.769 0.504 0.413 0.836
Single TH03 0.914 0.405 1.180 0.273
Single TH06 1.500 0.175 0.509 0.737
Single TH07 1.590 0.157 0.759 0.512
Double TH03 0.414 0.835 0.534 0.712
Double TH06 0.494 0.753 0.401 0.848
Double TH07 0.605 0.644 0.334 0.911
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model of wind energy evaluation (Wais, 2017). Wind 
energy analysts often estimate Weibull parameter by 
the “graphical method”, that is mathematically simi-
lar to a linear regression technique.

Applying the graphical method to the energy-usage 
datasets enabled estimation of the Weibull param-
eters of shape and scale. Shape and scale parameters 
were estimated for each combination of archetype 
and heating pattern, in both as-built and retrofit states 
(Table  13). The larger AD p-values in both as-built 
and retrofit states (Table 13) indicate that heat-energy 
distributions fit closer to Weibull distributions com-
pared to normality (Table 11).

Hypothesis test that mean heat-energy usage equals 
an official estimate

The hypothesis test was a one sample t-test against 
a population average (μ). It tested the null hypoth-
esis that the difference between each distribution of 
heat-energy usage and μ = 4600  kWh was zero. The 
4600-kWh value reflects the SEAI estimate that a ter-
raced, “efficient” home demands 4.6 MWh/year heat 
energy (SEAI, 2015). Confidence intervals (CI) were 
calculated at 95% for all combinations of archetypes 
and heating patterns, in as-built and retrofit state 
(Table 12).

In all but two combinations of retrofit archetype 
and heating pattern, p-values show sufficient evidence 
to reject the null hypothesis at the 5% significance 
level. In conclusion, the null hypothesis that mean 

heat-energy usage equals 4600  kWh is rejected by 
all archetypes in as-built state, and seven of the nine 
archetypes in retrofit state, at the 0.05 significance 
level.

Discussion

Discussion of heat-energy statistics

The statistics of the heat-energy usage are now dis-
cussed in the sequence of constant, single and double 
heating patterns.

Constant heating pattern

As expected, the largest savings in heat-energy usage 
attributable to retrofit were achieved under the con-
stant heating pattern. Within the constant pattern, the 
mean values of heat-energy usage decreased under 
deeper retrofits of archetypes TH03 and TH06 but 
increased after the shallow retrofit of TH07, caus-
ing positive and negative energy savings respec-
tively (Table 10). Thus, the retrofit of TH07 actually 
“backfired” by actually increasing the archetype’s 
mean heat-energy usage. As described in the Intro-
duction, cases where occupant “comfort taking” 
exceeded savings in energy usage were termed “back-
fire” by (Druckman et  al., 2011). Specific to the 
constant pattern, the TH07 backfire entailed a 10% 
increase in mean (95%  CI) heat-energy usage: from 

Table 12  Mean ( x ) and 95% confidence interval (CI) of heat-energy usage, by combination of archetype and heating pattern in as-
built and retrofit states. The p-value results from the hypothesis that mean heat-energy use equals 4600 kWh

Archetype label Heating pattern As-built Retrofit

x and CI (kWh) p-value x and CI (kWh) p-value

TH03 Constant 9654 (9173, 10 136)  < 0.001 4437 (4192, 4681) 0.190
TH03 Single 5079 (4810, 5348)  < 0.001 3155 (2966, 3345)  < 0.001
TH03 Double 7016 (6697, 7334)  < 0.001 3903 (3710, 4095)  < 0.001
TH06 Constant 11 553 (11 025, 12 082)  < 0.001 6201 (5901, 6500)  < 0.001
TH06 Single 4184 (3971, 4397)  < 0.001 4357 (4152, 4561) 0.020
TH06 Double 7275 (6973, 7577)  < 0.001 4804 (4594, 5015) 0.056
TH07 Constant 6215 (5884, 6546)  < 0.001 6992 (6686, 7297)  < 0.001
TH07 Single 3035 (2847, 3224)  < 0.001 4050 (3847, 4254)  < 0.001
TH07 Double 4893 (4653, 5133) 0.017 5328 (5115, 5542)  < 0.001
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6215 (5884,  6546) kWh to 6992 (6686,  7297) kWh 
(Table 12).

Under the constant heating pattern, variations of all 
archetypes’ heat-energy usage reduced from as-built 
to retrofit state. The variations, expressed as ranges 
of standard deviation (s), reduced from asbuilt state 
2913–4653  kWh to retrofit state 2151–2686  kWh 
(Table  9). As expected, the largest reductions in 
standard deviation were achieved by deeper ret-
rofits of older archetypes: TH03 − 2085  kWh and 
TH06 − 2016 kWh, whereas the shallow retrofit of the 
youngest archetype TH07 reduced standard deviation 
by merely − 227 kWh.

Despite their reductions in variation after retro-
fit, the heat-energy distributions of TH03 and TH06 
slightly increased positive skew. Retrofit TH03 
entered the moderate skewness range 0.5 ≤ |�| ≤  1. 
The as-built and retrofit skewness ranges were 
0.415–0.502 and 0.363–0.507 respectively (Table 9). 
In Appendix Fig.  9, heat-energy distributions under 
the constant pattern displayed the manifestations of 
positive skew — extending right-hand tails over high 
values and diverging from the symmetry that charac-
terises a normal distribution.

Single heating pattern

The smallest heat-energy savings were achieved 
under the single heating pattern, because of the pat-
tern’s longer heating durations after retrofit (sec-
tion Heating and internal gains schedules). Under the 
single pattern, only the deepest retrofit of archetype 
TH03 delivered savings in mean heat-energy usage. 
Archetypes TH06 and TH07 actually increased heat-
energy usage, shown as negative savings (Table 10). 
A shallow retrofit of TH07, compounded by longer 
and warmer heating durations after retrofit, resulted 
in the study’s largest retrofit backfire. Specific to 
the single pattern, the TH07 backfire entailed a one-
third increase in mean (95% CI) heat energy: from 
3035 (2847, 3224) kWh to 4050 (3847, 4254) kWh 
(Table 12).

Under the single heating pattern, the smallest 
reductions in variation from as-built to retrofit state 
occurred. Variations, expressed as ranges of stand-
ard deviation, reduced from as-built state 1656–2371 
kWh to retrofit state 1667–1798 kWh (Table  9). 
Within the pattern, retrofit of the oldest archetype 
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TH03 again achieved the largest reduction in standard 
deviation, from 2371 to 1667 kWh.

In Appendix Fig.  10, heat-energy distributions 
under the single pattern displayed the variation 
and skewness across archetypes. Overall, the 
distributions’ skewness ranges in the as-built state 
(0.510–0.696) or retrofit state (0.411–0.601) were 
moderately skewed or mainly “fairly” symmetrical 
respectively (Table  9). However, the skewness 
of the TH03 distribution increased from 0.510 to 
0.601, although remained within the moderate range 
0.5 ≤ |�| ≤  1, while the younger TH06 and TH07 
archetypes reduced their distribution skewness. The 
post-retrofit increase in TH03 skewness reflected 
the non-linear increases in heat-energy usage to 
maintain the highest heating setpoints.

Double heating pattern

Energy savings achieved under the double heating 
pattern exceeded those under the single pattern, 
but undershot those under the constant pattern 
(Table  10). Like the constant heating pattern, 
savings in mean heat-energy usage are achieved by 
deeper retrofits of older archetypes TH03 and TH06. 
The shallow retrofit of TH07 consistently failed to 
save heat energy under all heating patterns. Specific 
to the double pattern, the TH07 backfire entailed a 
9% increase in mean (95% CI) heat energy: from 
4893 (4653, 5133) kWh to 5328 (5115, 5542) kWh 
(Table 12).

The variations in heat-energy distributions, 
expressed as ranges of standard as-built deviation, 
reduced from as-built state 2110–2804 kWh to retrofit 
state 1694–1881 kWh (Table 9). As expected, retrofit 
of the oldest archetype TH03 achieved the largest 
reduction in standard deviation from 2804 to 1694 
kWh.

In Appendix Fig.  11, heat-energy distributions 
under the double pattern displayed the variation 
and skewness across archetypes. All archetype 
distributions met the “fairly” symmetrical 
definition where 0.0  ≤  |�| ≤  0.5. The as-built 
and retrofit skewness ranges were 0.345–0.426 
and 0.303–0.382 respectively (Table  9). These 
variation and skewness statistics manifested in 
heat-energy distributions that resemble normal 

distributions and peaked over mean values, 
especially after retrofit (Fig. 11).

Discussion of heat-energy distribution fitting

The fit of the heat-energy distributions with normal 
and Weibull distributions are now discussed.

Quantile–quantile plots

It is important to note that all heat-energy usage results 
are, by their nature, positive. Therefore, positive 
values of heat-energy usage must diverge from any 
negative values extrapolated by the lowest Z-scores 
of a QQ plot. The QQ plots assumed a theoretical 
normal distribution. For instance, as-built QQ plots 
under the constant pattern extended into negative 
values because of large standard deviations with the 
energy-usage datasets. Note that standard deviation is 
both a measure of dispersion, and a parameter of the 
theoretical normal distribution. To summarise, as-built 
heat-energy usage appeared to diverge further from 
normality, because of their larger standard deviations 
compared to retrofit heat-energy usage.

Exploring the goodness-of-fit to normal distributions

The QQ plots displayed evidence of divergence from 
normality at the distribution tails. While it remained 
relatively small, the divergence was also reflected in 
distribution statistics. For instance, as-built archetypes 
heated under the single pattern resulted in the largest 
AD statistic (Table  11), and the most skewed plots 
(Appendix Fig. 9).

All AD test p-values were too large to reject the 
null hypothesis of a common normal distribution at 
the significance value of 0.05. However, as seen in the 
QQ plots, there were deviations from normality and 
the p-values were inconsistent, ranging from 0.157 
to 0.911. Therefore, AD tests were repeated in case 
each dataset fitted better with its theoretical Weibull 
distribution.

Exploring the goodness-of-fit to Weibull distributions

Weibull shape parameters range from 1.94 to 3.22 
(Table  13), and a majority of 13 achieved the 
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log-normal distribution criteria of shape value ≥ 
2.5 (NCSS LLC, 2019). The double heating pattern 
was the only pattern that was consistently expressed 
as a log-normal distribution of heat-energy usage. 
Nonetheless, the pattern’s highest shape value of 3.22 
revealed a significant shortfall below the 3.6 value of 
a normal distribution.

While four of the largest shape parameters manifest 
under the double heating pattern, a well-defined 
association between shape parameters and heating 
patterns fails to appear. Retrofitting the archetypes 
does not consistently reduce, increase or transform 
the shape parameters of heat-energy distributions. 
As expected, Weibull scale parameters reduce after 
retrofit, due to the savings in heat-energy usage.

The goodness-of-fit achieved by each Weibull 
distribution is measured by model calibration indi-
ces: CV(RMSE) and NMBE. Almost universally, 
these indices improve slightly after retrofit. All 

heating combinations, as-built and retrofit, achieve 
both model calibration standards: CV(RMSE) ≤ 5% 
and −5% ≤ NMBE ≤ 5% . Weibull distributions can 
be seen to maximise these fitting errors at their plot 
peaks (Appendix Figs. 9, 10 and 11).

Hypothesis that mean heat-energy usage equals an 
official estimate

Finally, the discussion reviews which one of the mean 
values of heat-energy usage approaches the official 
estimate. All the confidence intervals (CI) are dis-
jointed, highlighting how occupants cause different 
mean values of heat-energy usage in the same home 
archetype. Most of the CIs exclude the official 4600-
kWh estimate of mean heat-energy usage (Fig. 8).

Two combinations in retrofit state contain 
4600 kWh within their mean 95% CIs: TH03 constant 
heating pattern 4192–4681  kWh, and TH06 double 

Fig. 8  Mean (95% CI) of heat-energy usage by combinations of archetype and heating pattern in as-built and retrofit states. Across 
the three heating patterns, retrofit TH06 approaches the 4600-kWh official estimate (dashed line)
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heating pattern 4594–5015 kWh (Table 12). After ret-
rofit, the semi-detached TH06 reduces its heat energy 
to become the closest archetype to the 4600 kWh 
value. Under the constant, single and double patterns, 
retrofitted TH06 used three different means of heat 
energy: 6201 (5901, 6500) kWh, 4357 (4152, 4561) 
kWh and 4804 (4594, 5015) kWh.

Overall, archetypes in the retrofit state diverge less 
from the official 4600  kWh value, than those in the 
as-built state (Fig.  8). Considering all heating pat-
terns, the retrofit TH06 archetype of a semi-detached 
house comes closest to the official estimate. There-
fore, there is evidence that the official estimate is 
representative of “efficient” medium homes — espe-
cially retrofit semi-detached houses, as opposed to 
low-performing homes.

Discussion of study limitations

Certain limitations existed in the models and in 
the predictive application of their results. Starting 
with the models themselves, the heating controller 
assumed heating setpoints were maintained through-
out the year, even after the heating season. Occupants 
may have behaved otherwise, and completely deacti-
vated space heating during the summer months.

While the Modelica models did incorporate 
increased air infiltration due to temperature differen-
tials, they lacked a realistic response to wind speeds. 
In general, the models also assumed the correct instal-
lation and operation of demand controlled ventilation.

This study ignored uncommon occupant heat-
ing patterns, for example the triple heating pattern. 
A mass transition to working from home is covered 
by the constant heating pattern. Any evaluation of 
large-scale home energy retrofit must re-assess the 
popularity of heating patterns, especially for working 
families.

The weather file used by all simulations com-
prised selected days from previous years. Therefore, 
simulations exclude extreme weather conditions that 
are more likely in the future. Conventionally, homes 
located in cool temperate climates, such as Ire-
land’s, lacked built-in air conditioning. Certain cli-
mate change outcomes would make air-conditioning 

necessary for human comfort, necessitating a holistic 
reassessment of home energy usage.

Conclusions

This paper defined a methodology to calibrate and 
realistically simulate grey-box models representing 
home heating. By incorporating occupant variables 
of heating setpoints and heating patterns, the meth-
odology provides a distribution of heat-energy usage 
instead of a single value. Three case studies, of home 
archetypes in a cool temperate climate, demonstrated 
the results of the methodology.

Regarding the results of the methodology, all data-
sets of home heat-energy usage formed distributions 
that were positively skewed instead of normality. 
Positively skewed distributions cluster most values 
around their lower left tail, while the distribution’s 
right tail extends longer — pulled rightward by a few 
high values.

After retrofit however, most distributions were 
classified as fairly symmetric, having a skewness 
value below 0.5, with a minority remaining moder-
ately skewed, having a skewness value between 0.5 
and 1.0. There is no evidence of deviations from the 
Weibull distributions parameterised from the heat-
energy dataset. However there exists, some evidence 
of deviation from log-normal distributions and evi-
dence to reject fitting to normal distributions. Other 
remarks on the heat-energy usage distributions 
include:

• Heat-energy usage distributions are different 
between heating patterns of the same home arche-
type, both as-built and retrofit.

• Only deepest retrofit, implemented on the oldest 
archetype TH03, appears to consistently reduce 
the mean average of heat energy use.

• Retrofit of a higher performing home tends to 
increase the distribution symmetry but significant 
variance persists.

• These large variances in home heat-energy values 
require Weibull distributions that cannot extend 
into negative values.
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• Positive skewness, albeit reduced, persists in the 
heat-energy usage of retrofitted homes.

Turning to the hypothesis that average heat-energy 
usage by an “efficient medium” home in Ireland 
equals a single value of 4600 kWh/year: this study 
finds evidence contrary to this hypothesis. Of the 18 
heat-energy datasets, only two produced a mean value 
confidence interval that overlapped with the hypoth-
esised average value. Two retrofit archetypes TH03 
and TH06, each under a different heating pattern, 
produce a mean 95% confidence interval containing 
4600 kWh/year. Since “double” is the most popular 
heating pattern, retrofit TH06 double heating pattern 
is the more likely source of a 4600 kWh/year average 
than retrofit TH03 under a constant heating pattern. 
TH06 is a semi-detached home constructed during 
1978–1982, while TH03 is a terraced home con-
structed during 1930–1949.

Implications and future work

The hypothesis results imply that an official estimate 
of heat demand by a medium-sized, efficient home 
archetype (SEAI, 2015), does not equal the mean 
heat-energy usage by most combinations of the stud-
ied home archetypes and heating patterns (Fig.  8). 
The reason is that heat-energy usage by each combi-
nation is itself a distribution, characterised by its own 
distinct average.

Evidence does exist that the estimated 4600 kWh 
of heat demand by efficient “medium” homes, defined 
by SEAI as terraced homes, is relevant. Heat-energy 
usage by retrofitted (and arguably efficient) archetype 

TH06 approaches the official estimate. However, 
TH06 represents a semi-detached home a home type 
that fits SEAI’s third, and final, category labelled 
“large” (SEAI, 2015).

In conclusion, evidence exists that the range of 
nine archetypes used by SEAI need expansion in 
order to accurately represent the Irish housing stock 
(SEAI, 2015). Higher resolution in home archetypes 
is needed, especially among the terraced and semi-
detached homes that are popular in urban areas. 
Given their similar floorspace but different envelope, 
terraced and semi-detached homes warrant their own 
archetypes. Such archetypes should be further sub-
divided by as-built and retrofit state, to assist home-
owners in selecting the optimum combination of fab-
ric retrofit and heat pump. Elements of this proposed 
work will form part of SEAI’s National Heat Study: a 
“comprehensive assessment of the potential for effi-
cient heating and cooling in Ireland” (SEAI, 2021).

Looking forward, work could extend from home 
archetype’s usage of heat energy to secondary energy. 
Research questions could be (1) what are the second-
ary-energy savings attributable to boiler upgrades 
or replacement by heat pumps? and (2) what is the 
energy usage across a neighbourhood of home arche-
types before and after retrofit? Any new neighbour-
hood analysis would require new proportions of heat-
ing patterns, given the pandemic-induced shift to 
home working. Realistic distributions of secondary 
and primary energy usage — and savings attributable 
to large-scale home energy retrofit — could then be 
calculated.
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Fig. 9  Distributions of 
yearly heat-energy usage 
by as-built and retrofit 
archetypes under constant 
heating pattern. The three 
distributions are histogram 
bars, smoothed histogram 
density and Weibull density

TH03 as-built TH03 retrofit

TH06 as-built TH06 retrofit

TH07 as-built TH07 retrofit

Appendix. Distributions of heat‑energy usage

The following distributions plots display how prob-
ability density distributions of heat-energy usage 
by home archetypes fit to Weibull distributions. 
Separate plots are presented for archetypes in both 

as-built and retrofit states. Heat energy is the energy 
type that warms homes’ internal air to setpoint 
temperatures at scheduled times. Occupants vary 
heating setpoints and schedules, thus varying heat-
energy usage across the same archetype. Savings in 
heat energy are attributable to the fabric-only retro-
fits analysed in this study.
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Fig. 10  Distributions of 
yearly heat-energy usage by 
as-built and retrofit arche-
types under single heating 
pattern. The three distribu-
tions are histogram bars, 
smoothed histogram density 
and Weibull density

TH03 as-built TH03 retrofit

TH06 as-built TH06 retrofit

TH07 as-built
TH07 retrofit
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Fig. 11  Distributions of 
yearly heat-energy usage by 
as-built and retrofit arche-
types under double heating 
pattern. The three distribu-
tions are histogram bars, 
smoothed histogram density 
and Weibull density

TH03 as-built TH03 retrofit

TH06 as-built TH06 retrofit

TH07 as-built TH07 retrofit
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