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Abstract. We report the development of a finite-element-based solver to compute transport of mass,

momentum and energy during evaporation of a sessile droplet on a heated surface. The evaporation is assumed

to be quasi-steady and diffusion-limited. The heat transfer between the droplet and substrate and mass transfer of

liquid-vapor are solved using a two-way coupling. In particular, here, we develop and implement the formulation

of fluid flow inside the droplet in the model. The continuity and Navier–Stokes equations are solved in

axisymmetric, cylindrical coordinates. Jump velocity boundary condition is applied on the liquid–gas interface

using the evaporation mass flux. The governing equations are discretized in the framework of the Galerkin

weight residual approach. A mesh of finite triangular elements with six nodes is utilized, and quadratic shape

functions are used to obtain the second-order accurate numerical solution. Two formulations, namely, penalty

function and velocity pressure, are employed to obtain discretized equations. The numerical results are the same

using both methods, and the latter is around 30–50% faster than the former for the cases of refined grid.

Computed flow fields are in excellent agreement with published results. The solver’s capability is demonstrated

by solving the internal flow field for a case of a heated substrate.

Keywords. Droplet evaporation; finite-element method.

1. Introduction

Understanding the evaporation of a sessile droplet on a

solid surface has been a much-studied problem in the last

two decades [1]. It is central to several technical applica-

tions such as ink-jet printing, spray cooling, and bioassays.

Recently, sessile droplet evaporation has been studied in

the context of fomite transmission of COVID-19 [2–4]. The

flow field inside the droplet is essential for designing the

above-mentioned technical applications. In particular, self-

assembly of colloidal particles is dictated by the internal

flow during the evaporation [5–9]. The computational

modeling of the internal fluid flow is challenging since fluid

flow inside the droplet, heat transfer between the droplet

and substrate, and mass transfer of liquid vapor from the

droplet are coupled. The evaporation mass flux on the liq-

uid–gas interface is non-uniform, and it influences the

temperature and flow field inside the droplet.

Previous numerical studies reported evaporation

dynamics of a sessile droplet on a non-heated substrate.

These reports made certain assumptions for the sake of

computational tractability. Girard et al [10] investigated

Marangoni convection inside the evaporating droplet using

a commercial finite-element solver while neglecting the

pressure gradient terms in the Naiver-Stokes equations.

Widjaja et al [11] tested two meshing techniques, namely,

spine and elliptic, in their FE model and reported that

elliptic mesh provides more accurate results and resolves

flow near the contact line. Barash et al [12] developed a

finite-difference model to investigate evaporation of dro-

plets and flow inside them. They compared their simulation

results with experimental measurements for evaporation of

toluene droplets. They reported different stages of vortices

formation inside the droplet as it evaporates.

Bourantas et al [13] solved fluid flow inside the evapo-

rating droplet using the velocity-correction method with

meshless point collocation. They reported better accuracy

and convergence rate compared to traditional mesh-based

models. Using commercial FE solver, Barmi and Mein-

hart [14] simulated the convective flow inside the pinned

evaporating droplet while assuming axisymmetric flow

field, temperature, and vapor concentration distribution.

They concluded that flow inside the droplet is responsible

for particle deposition patterns, but it does not influence

heat transfer much, and conduction remains the primary

mode of heat transfer. Barash [15] investigated the depen-

dence of vortex structures in the droplet on substrate

properties using a transient Navier–Stokes solver. The*For correspondence
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transient model solves the evaporation profile while

neglecting the contribution of convection inside the droplet

and uses it to calculate boundary conditions at the liquid–

gas interface.

Al-Sharfi et al [16] used a finite element method-based

software on studying flow and heat transfer characteristics

inside evaporating droplets resting on hydrophilic and

hydrophobic substrates. They reported strong dependence

of the heat transfer rate on the droplet contact angle.

Pradhan and Panigrahi [17] investigated flow inside sessile

and pendant droplets of aqueous salt solution using com-

mercial software. They showed that the orientation of the

droplet strongly influences the convection inside it. Bou-

chenna et al [18] developed a finite volume model to study

the effect of substrate heating on flow pattern inside the

droplet with quasi-steady evaporation while accounting for

thermal buoyancy and thermocapillary effect on the flow.

Chen et al [19] reported the effect of substrate thermal

properties on the bulk fluid flow inside the droplet, using a

commercial finite element solver.

A brief literature survey shows that previously-reported

computational methods developed in this context focused

on the non-heated substrate. To the authors’ knowledge, no

studies have reported high-fidelity modeling of the sessile

droplet evaporation on a heated surface thus far. To this

end, we report a finite-element method based solver to

compute diffusion-limited and quasi-steady droplet evapo-

ration on a heated surface. In our previous work [20], we

reported a finite-element method-based solver for calcu-

lating heat transfer between the droplet and substrate, and

mass transfer of liquid-vapor, using a two-way coupling. In

the present work, we extend this solver to account for fluid

flow inside the droplet. Here we benchmark and validate

the solver with previous studies and demonstrate the sec-

ond-order accuracy of the solver. Lastly, the solver has

been demonstrated to compute the flow field inside the

evaporating droplet on a heated surface.

2. Computational model

2.1 Assumptions and limitations of the model

We present the computational model for quasi-steady, dif-

fusion-limited evaporation of a sessile droplet, with a pin-

ned contact line during the evaporation. The flow, thermal

and concentration of liquid vapor fields are to be considered

as axisymmetric. The assumptions in the model, justified in

previous works [21–24] are briefly described as follows.

The evaporation occurs by diffusion of liquid-vapor in

quiescent air. The droplet’s wetted diameter is lesser than

the capillary length such that the droplet assumes a spher-

ical cap during the evaporation. For the evaporation of

microliter droplets, the internal flow is on the order of lm/s,

and therefore, inertial terms in Navier–Stokes equation are

neglected, due to small Reynolds number (O(10�3)). The

Reynolds number is based on the evaporation-induced

velocity inside the droplet and wetted radius of the droplet.

In the context of heat transfer, convection inside and out-

side of the droplet, and radiative heat transfer from the

liquid–gas interface are neglected.

2.2 Heat and mass transfer

Using a two-way coupling, reported in our earlier work

[20], we solved temperature field in the droplet and sub-

strate, and concentration of liquid vapor outside the droplet

in asymmetric cylindrical coordinates (figure 1). The

details of the model and numerical methodology are given

in Ref. [20] and here we briefly describe governing equa-

tions and boundary conditions used in this model. In the

framework described in section 2.1, the energy equations

for droplet and substrate are given by,

r2Ti ¼ 0 ð1Þ

where T is temperature and, i ¼ 1 and 2 correspond to the

droplet and substrate, respectively.

The following heat transfer boundary conditions are

applied. The substrate bottom surface is prescribed with a

given temperature. The side and top surface of the substrate

are insulated. A perfect thermal contact is considered at

liquid–solid interface. At liquid–gas interface, the follow-

ing jump energy condition is enforced [25]:

jL ¼ �krT jLG � n ð2Þ

where j is the evaporative flux [kg m�2 s�1] at the liquid–

gas interface, L is the latent heat of the evaporation

[J kg�1], k is thermal conductivity of the droplet

Figure 1. Computational domain and boundary conditions used

in the present computational model.
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[W m�1 K�1], LG denotes liquid–gas interface and n is

unit normal vector on the liquid–gas interface.

The concentration, c [kg m�3] of liquid vapor outside

droplet in ambient is governed by the following equation,

r2c ¼ 0 ð3Þ

The boundary conditions for mass transport of liquid vapor

are described as follows. The value of c on the far-field

boundaries is taken as Hcsat;1, where csat;1 is the saturated

concentration (kg m�3) of the water vapor in the far-field

and H is relative humidity. The concentration at the liquid–

gas interface is prescribed at its saturated value at the

interface temperature. The evaporative mass flux j at the

liquid–gas interface is expressed in terms of c as follows

[7, 21, 23],

jðr; TÞ ¼ DðTÞrcjLG � n ð4Þ

where r is radial coordinate and D(T) is diffusion coeffi-

cient of liquid vapor in air as a function of temperature [7].

Eqs. 1–4 are solved using finite-element method using

two-way coupling, as described in our previous work [20].

The thermal and concentration field are obtained after a

successful convergence of the coupling. Using computed j,
evaporation rate _m is computed by integrating j over area of

liquid–gas interface by the following expression:

_m ¼ q
oV

ot
¼

Z
A

2prjds ð5Þ

where q is droplet density, V is instantaneous droplet vol-

ume and A is area of liquid–gas interface. j and _m are used

while applying boundary conditions of flow solver, as

described in next section. The modules of the solver are

schematically shown in figure 2.

2.3 Fluid flow in the droplet

In the framework described in section 2.1, the governing

equation of the fluid flow inside the droplet are continuity

and Navier–Stokes equations. The equations are written in

axisymmetric cylindrical coordinates (r, z) as follows:

1

r

oðruÞ
or

þ ov

oz
¼ 0 ð6Þ

1

r

oðrrrrÞ
or

þ orrz
oz

� rhh
r

¼ 0 ð7Þ

1

r

oðrrzrÞ
or

þ orzz
oz

¼ 0 ð8Þ

where the components of the stress tensor are defined as

follows:

rrr ¼ 2l
ou

or
� P ð9Þ

rzz ¼ 2l
ov

oz
� P ð10Þ

rhh ¼ 2l
u

r
� P ð11Þ

rrz ¼ rzr ¼ l
ov

or
þ ou

oz

� �
ð12Þ

The boundary conditions for the fluid flow (figure 1) are

expressed as follows: At liquid–solid interface (z ¼ 0,

r�R), no slip boundary condition (u ¼ 0; v ¼ 0) is applied.

At r ¼ 0, axisymmetric boundary condition is applied:

u ¼ 0 and ov / or ¼ 0. At liquid–gas interface, two

boundary conditions are applied: (a) zero shear stress

boundary condition in tangential direction to the interface

(st ¼ 0) (b) Jump velocity or kinematic boundary condi-

tion, given by [26],

un ¼
j

q
� nz

oh

ot
ð13Þ

where un is fluid velocity at liquid–gas interface, normal to

the interface, oh=ot is the velocity of the interface in axial

direction and nz is component of unit normal vector n in

axial direction. The radial and axial components (nr and nz)
of the normal vector are defined as follows [26],

nr ¼
r sin h
R

nz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðnrÞ2

q ð14Þ

where h and R are contact angle and wetted radius,

respectively. The volume of the spherical cap droplet as a

function of droplet height H is given by,

V ¼ ph
6
ð3R2 þ H2Þ ð15Þ

We consider a pinned contact line or constant contact

radius (CCR) mode of evaporation. The velocity at the top

(r ¼ 0) of the droplet (dH/dt) is obtained by differentiating

eq. 15 with respect to t, keeping R as constant [14]. After

differentiation and using eq. 5, we obtain dH/dt as follows,Figure 2. Different modules of the solver and data exchange

between them.
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dH

dt
¼ 2 _m

qpðR2 þ H2Þ ð16Þ

The height of liquid–gas interface h(r, t) is defined as fol-

lows [21],

hðr; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

sin2 h
� r2

� �s
� R

tan h
ð17Þ

Differentiating eq. 17 and using definition of contact angle,

tanðh=2Þ ¼ H=R, we obtain expression of oh=ot as follows

[26]:

oh

ot
¼ dH

dt

H4 � R4

4H3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2þR2

2H

� �2�r2

q þ R2 þ H2

2H2

2
64

3
75 ð18Þ

In case of constant contact angle (CCA) mode of

evaporation, V in eq. 15 is expressed in terms of h and

H and eq. 15 is differentiated, keeping h as constant. In

case of a mixed mode of evaporation, say CCR mode

followed by CCA mode, formulations of both CCA and

CCR can be combined together. In this case, receding

contact angle hrec, the contact angle at which contact

line recedes, may be available from companion

experiment.

2.4 FEM formulation

We implement Galerkin weighted residual approach, in

which, weight function (wi) are the same as shape function

or approximation function [27]. Using weight function, the

following weak form of Navier–Stokes equation was

obtained to lower the requirement of choosing higher-order

approximation function [27]:

Z
Xe

wi
1

r

oðrrrrÞ
or

þ orrz
oz

� rhh
r

� �
dX ¼ 0 ð19Þ

Z
Xe

wi
1

r

oðrrzrÞ
or

þ orzz
oz

� �
dX ¼ 0 ð20Þ

where dX ¼ 2prdrdz is differential volume in axisym-

metric cylindrical coordinates and Xe represents a finite-

element. After solving and rearranging differential terms

in integrals in Eqs. 19–20, we get the following

equations:

Z
Xe

owiðrrrÞ
or

þ owirrz
oz

þ wirhh
r

� �
rdrdz

¼
Z
Ce

wiðtrÞrds
ð21Þ

Z
Xe

owiðrzrÞ
or

þ owirzz
oz

� �
rdrdz ¼

Z
Ce

wiðtzÞrds ð22Þ

where tr ¼ rrrnr þ rrznz and tz ¼ rzrnr þ rzznz are the

boundary stress components in radial and axial directions,

respectively. Ce represents the boundary of the element and

differential surface area (dC) of the axisymmetric geometry

is 2prds, where ds is differential arc length of the boundary

or liquid–gas interface.

2.4.1 Penalty function formulation In penalty

function formulation, pressure (P) is eliminated from

Navier–Stokes equations [27]. The elimination of

pressure leads to a constrained problem and where

constrained equation is the continuity equation (eq. 6).

The constrained problem is reformulated as an

unconstrained problem and pressure P is replaced by

following function [27]:

P ¼ �c
ou

or
þ ov

oz
þ u

r

� �
ð23Þ

where c is a penalty factor which should be a large arbitrary

value [27], i.e. l� 1010. After calculating velocities,

pressure (P) is recovered using eq. 23. Substituting rrr, rzz,
rhh, rrz and P from eq. 9, 10, 11, 12 and 23, respectively,

in eqs. 21 and 22, the following equations are obtained:

Z
Xe

2l
owi

or

ou

or
þ l

owi

oz

ou

oz
þ ov

or

� �
þ 2l

wi

r

u

r

�

þc
owi

or

ou

or
þ ov

oz
þ u

r

� �

þc
wi

r

ou

or
þ ov

oz
þ u

r

� ��
rdrdz ¼

Z
Ce

wiðtrÞrds

ð24Þ

Z
Xe

l
owi

or

ou

oz
þ l

owi

or

ov

or
þ 2l

owi

oz

ov

oz

�

þc
owi

oz

ou

or
þ ov

oz
þ u

r

� ��
rdrdz

¼
Z
Ce

wiðtzÞrds

ð25Þ

To discretize continuous eqs. 24–25 within each finite

element, the velocities (u, v) are approximated by the fol-

lowing trial solution:

u ¼
Xn
j¼1

wjðr; zÞuj

v ¼
Xn
j¼1

wjðr; zÞvj
ð26Þ

where uj and vj are the radial and axial velocity, respec-

tively, at the nodal points of the element. n and wj are the

number of nodes in the element and shape function,

respectively. As mentioned earlier, in Galerkin weighted

residual approach, weight functions are same as shape

functions, therefore, wi ¼ wi. Substituting trial solution and
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weighting function, we write eq. 24 and 25 in compact

matrix notation as follows [27]:

2l Srr½ � þ l Szz½ � þ 2l M½ �ð
þc Srr½ � þ Sro½ � þ Sor½ � þ M½ �ð ÞÞfujg
þ l Szr½ � þ c Srz½ � þ c Soz½ �ð Þfvjg ¼ fFrg

ð27Þ

l Srz½ � þ c Szr½ � þ c Szo½ �ð Þfujg
þ l Srr½ � þ 2l Szz½ � þ c Szz½ �ð Þfvjg ¼ fFzg

ð28Þ

Eqs. 27–28 are further simplified in matrix notation as

follows:

Krr½ � Krz½ �
Kzr½ � Kzz½ �

� � fujg
fvjg

	 

¼

fFrg
fFzg

	 

ð29Þ

where,

Krr½ � ¼ 2l Srr½ � þ l Szz½ � þ 2l M½ �

þ c Srr½ � þ Sro½ � þ Sor½ � þ M½ �ð Þ

Krz½ � ¼ l Szr½ � þ c Srz½ � þ c Soz½ �

Kzr½ � ¼ l Srz½ � þ c Szr½ � þ c Szo½ �

Kzz½ � ¼ l Srr½ � þ 2l Szz½ � þ c Szz½ �

ð30Þ

The element coefficient matrices are defined as follows:

Mij ¼
Z
Xe

wiwj

r
drdz ð31Þ

Srrij ¼
Z
Xe

owi

or

owj

or
rdrdz Srzij ¼

Z
Xe

owi

or

owj

oz
rdrdz ð32Þ

Szrij ¼
Z
Xe

owi

oz

owj

or
rdrdz Szzij ¼

Z
Xe

owi

oz

owj

oz
rdrdz ð33Þ

Sroij ¼
Z
Xe

owi

or
wjdrdz Sorij ¼

Z
Xe

wi

owj

or
drdz ð34Þ

Szoij ¼
Z
Xe

owi

oz
wjdrdz Sozij ¼

Z
Xe

wi

owj

oz
drdz ð35Þ

Fr
i ¼

Z
Ce

wiðtrÞrds Fz
i ¼

Z
Ce

wiðtzÞrds ð36Þ

2.4.2 Velocity-pressure formulation In velocity-

pressure formulation, a natural and direct formulation, the

weak form of continuity equation is obtained using weight

function, one order less than used for Navier–Stokes

equations [27]. Both Navier–Stokes equation physically

represents force, hence same weighting function can be

used. However, continuity equation represents the volume

change. Volume change occur under the action of

hydrostatic pressure, hence weight function (w2k) for

continuity, equation should like the pressure (P) or the

shape function of pressure. The weak form of the continuity

equation can be written as follows [27]:

�
Z
Xe

w2k
ou

or
þ ov

oz
þ u

r

� �
rdrdz ¼ 0 ð37Þ

The minus sign is inserted to make the resulting finite

element model symmetric. Equation 37 is rewritten as

follows,

�
Z
Xe

w2k
ou

or
þ w2k

ov

oz
þ w2k

ou

or

� �
rdrdz ¼ 0 ð38Þ

Substituting components of stress tensor from

eqs. 9, 10, 11 and 12 in eqs. 21 and 22, the following

equations are obtained:

Z
Xe

2l
owi

or

ou

or
þ l

owi

oz

ou

oz
þ ov

or

� ��

þ2l
wi

r

u

r
� owi

or
P� wi

r
P

�
rdrdz

¼
Z
Ce

wiðtrÞrds

ð39Þ

Z
Xe

l
owi

or

ou

oz
þ l

owi

or

ov

or

�

þ2l
owi

oz

ov

oz
� owi

oz
P

�
rdrdz ¼

Z
Ce

wiðtzÞrds
ð40Þ

To discretize continuous eqs. 39–40 within each finite

element, the velocities (u, v) are approximated by the trial

solution defined in eq. 26 and pressure (P) is approximated

by following trial solution, that is one order less than used

for the velocities:

P ¼
Xm
l¼1

/lðr; zÞPl ð41Þ

where Pl is the pressure at the corner nodal points of the

element. m and /l are the number of corner nodes in the

element and shape functions respectively. As explained

before, in Galerkin weighted residual approach, wi ¼ wi

and w2k ¼ /l. On putting trial solution and weighting

function, we can write eqs. 39, 40 and 38 in compact

matrix notation as follows:

2l Srr½ � þ l Szz½ � þ 2l M½ �ð Þfujg þ l Szr½ �ð Þfvjg
� Gro½ � þ Goo½ �ð ÞfPlg ¼ fFrg

ð42Þ

l Srz½ �ð Þfujg þ l Srr½ � þ 2l Szz½ �ð Þfvjg
� Gzo½ �ð ÞfPlg ¼ fFzg

ð43Þ
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� Gro½ �Tþ Goo½ �T
� �

fujg � Gzo½ �T
� �

fvjg ¼ 0 ð44Þ

Further, we can write above three equations in more sim-

plified way in matrix form as follows:

Krr½ � Krz½ � Kro½ �
Kzr½ � Kzz½ � Kzo½ �
Kor½ � Koz½ � 0½ �

2
64

3
75

fug
fvg
fPg

8><
>:

9>=
>; ¼

fFrg
fFzg
f0g

8><
>:

9>=
>; ð45Þ

where,

Krr½ � ¼ 2l Srr½ � þ l Szz½ � þ 2l M½ �

Krz½ � ¼ l Szr½ �

Kro½ � ¼ � Gro½ � þ Goo½ �ð Þ

Kzr½ � ¼ l Srz½ �

Kzz½ � ¼ l Srr½ � þ 2l Szz½ �

Kzo½ � ¼ � Gzo½ �

Kor½ � ¼ � Gro½ �Tþ Goo½ �T
� �

Koz½ � ¼ � Gzo½ �T

ð46Þ

where the [S], [M] and fFg element coefficient matrices are

defined as before from eq. 31 to eq. 36. The remaining

element coefficient matrices are defined as follows:

Gro
kl ¼

Z
Xe

owk

or
/lrdrdz ð47Þ

Gzo
kl ¼

Z
Xe

owk

oz
/lrdrdz ð48Þ

Goo
kl ¼

Z
Xe

wk/ldrdz ð49Þ

2.4.3 Mesh generation and evaluation of element
coefficient matrices A six node triangular element

(figure 3a) was chosen over three-node element as it

improves the solution accuracy and reduce the overall

solution time by reducing the number element required.

Quadratic and linear shape functions were used to compute

velocity and pressure field, respectively. A three-node

triangular mesh inside the droplet domain was generated

using Matlab� function ‘initmesh’. To generate six-node

mesh, we developed an in-house code, which places a node

at the exact midpoint of the each side of triangular element

and updates the point matrix, element connectivity matrix,

boundary matrix. The mesh generated using MATLAB

function ‘initmesh’ and modified using in-house code is

shown in figure 3(b).

In order to evaluate the integrals of element coefficient

matrices, numerical integration was employed. To do

numerical integration, first we need to map real element in (r,
z) coordinates to a master or parent element in generic (n, g)

coordinates over which integration will performed using

Gaussian quadrature points. As in our real element all three

nodes located at side of triangle are located at mid-point of

each triangle side, so it is sufficient to use linear shape

function to do coordinate transformation. The following

expression facilitates the (r, z) to (n, g)coordinate

transformation:

r ¼
X3

k¼1

rk/kðn; gÞ z ¼
X3

k¼1

zk/kðn; gÞ ð50Þ

where rk and zk is kth radial and axial coordinates of corner

nodes of the triangle element. Shape functions /k can be

defined as follows:

/1 ¼ n

/2 ¼ g

/3 ¼ 1 � g� n

ð51Þ

To evaluate integrals, the following expression is required

to map infinitesimal area of real element to corresponding

area of parent element:

Figure 3. (a) Six-node triangular element. (b) Six-node mesh in droplet domain and red dots represent nodes.
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drdz ¼ det Jcð Þdndg ð52Þ

where detðJcÞ is the determinant of the Jacobian (Jc) for the

element under consideration and is defined as follows:

Jc½ � ¼

or

on
oz

on
or

og
oz

og

2
664

3
775 ð53Þ

For linear mapping detðJcÞ is equal to 2 times of the area of

triangle in consideration. Next, we need to convert partial

derivative of (r, z) into derivatives of (n,g) which is done

using the following relationship:

owi

or
owi

oz

8>><
>>:

9>>=
>>;

¼ Jc½ ��1

owi

on
owi

og

8>><
>>:

9>>=
>>;

ð54Þ

where shape function wi is quadratic shape function for a

six-node triangle element as mentioned before. Quadratic

shape function is defined as follows:

w1 ¼ 2n2 � n

w2 ¼ 2g2 � g

w3 ¼ 1 � 3n� 3gþ 4ngþ 2n2 þ 2g2

w4 ¼ 4ng

w5 ¼ 4ðg� ng� g2Þ

w6 ¼ 4ðn� ng� n2Þ

ð55Þ

Using eqs. 52, 54 and 55, the integrals specified in equa-

tions from eqs. 31 to 35 can be converted to (n,g) coordi-

nates and numerical integration can be performed using

Gaussian quadrature as follows:

Z
Xe

f ðn; gÞdndg ffi 1

2

Xgp
l¼1

wlf ðnl; glÞ ð56Þ

where f ðn; gÞ is any function in (n, g) coordinates and (nl,
gl) are the Gaussian points [27]. gp is the number of

Gaussian points used to evaluate the integral. Three and

one-point Gaussian quadrature was used to evaluate

integrals.

To calculate coefficient of force vector on the right hand

side of eq. 29 or to apply stress boundary condition on the

boundary of the domain, we need to transform the boundary

or open side of the triangle to one dimensional line coor-

dinate (s) whose origin at first point of boundary. As we are

using six-node or quadratic triangular element, we have

three nodes on each side of the triangle, so we need to use

quadratic shape function (wbi). These three shape functions

(wbi) can be defined as follows:

wb1 ¼ 1 � s

h

� �
1 � 2s

h

� �

wb2 ¼ 4s

h
1 � s

h

� �

wb3 ¼ � s

h
1 � 2s

h

� �
ð57Þ

where h is the length of the side or boundary of the element.

The elements which are inside the domain, for them, the

value of coefficients in force vector are need not to be

calculated as the force acting on the side or boundary of the

neighboring elements cancels out each other. Therefore, we

need to calculate coefficient of force vector only at the

boundary of elements that are located at boundary of the

domain and some external force or stress is applied.

2.4.4 Liquid–gas interface boundary conditions The

boundary conditions at liquid–gas interface, as described in

section 2.3, are applied using the following approach. As

the shape of droplet is spherical cap, the liquid–gas

interface is not parallel to r or z axis. To apply the both

boundary conditions precisely, coordinate rotation must be

done for the nodes at the liquid–gas interface of the droplet

[27], which can be done with the help of rotation matrix

[Q]. Equation 29 can be written in more compact form as

follows:

K½ �fug ¼ fFg ð58Þ

To perform the coordinate rotation on the nodes at the

liquid–gas interface of the droplet following mathematical

operation can be done:

Q½ �T K½ � Q½ �fug ¼ fFg ð59Þ

where rotation matrix [Q] can be defined as follows:

Q½ � ¼

. .
.

� � � � � � � � �
� � � nr;i nz;i � � �
� � � � nz;i nr;i � � �

� � � � � � � � � . .
.

2
666664

3
777775

ð60Þ

where nr;i and nz;i are the normal vector in radial and axial

direction for ith node on the liquid–gas interface.

2.4.5 Algorithm The algorithm was implemented in

Matlab� [28] and the flow chart of the algorithm is

shown in figure 4. The sequential steps in the algorithm are

as follows:
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1. Solve the evaporation mass flux on liquid–gas interface

(j) by a two-way coupling [20] between heat transport

inside droplet-substrate and mass transport of liquid

vapor in surrounding air (figure 2).

2. Calculate _m, dH/dt and oh=ot using eqs. 5, 16 and 18,

respectively.

3. Calculate velocity boundary condition at liquid–gas

interface using eq. 13 and data obtained in steps 1 and 2.

4. Generate six node mesh inside the droplet domain.

5. Calculate element coefficients defined in section 2.4.1 or

section 2.4.2 using numerical integration technique

explained in section 2.4.3 for six node triangular

elements.

6. Assemble K and F matrices given by eq. 29 or eq. 45 for

penalty function or Velocity-pressure formulation,

respectively.

7. Apply boundary conditions on the boundary nodes in the

assembled matrices (section 2.4.4).

8. Solve system of equations (Ax ¼ b) for u, v and P using

inbuilt solver backslash (\) in Matlab�.

3. Testing of the solver

We have used two formulations (Penalty function formu-

lation and Velocity-pressure formulation) to solve flow

field inside the droplet. Here, we are presenting validation

for these both formulations. We consider evaporation of a

microliter water droplet on a heated and non-heated copper

substrate. The values of the thermophysical properties and

parameters used in the present study are given in table 1.

3.1 Grid-size independence test

In order to achieve grid size convergence, we test six grids

with respect to most refined grid using penalty function

formulation. Number of nodes in computational domain of

droplet are listed in table 2. We compute L2-norm error (�)
with respect to the most refined mesh is expressed as

follows:

� ¼ 1

N2

XN
i¼1

uNi � uNmax
i

� �" #1=2

ð61Þ

where i represents the indices of grid points of the mesh and

N is the number of nodes in the considered mesh. Nmax is

Figure 4. Flow chart of the solver.

Table 1. Thermophysical properties and parameters used in the

present study

Properties/parameters Value

Viscosity of water 8:9 � 10�4 Pa s

Density of water 1000 kg m�3

Latent heat of evaporation of water 2:2635 � 106 J kg�1

Thermal conductivity of water 0.61 w m�1K�1

Thermal conductivity of copper 401 w m�1K�1

Saturated water vapor concentration (csat)

at 25�C
0.023 kg m�3

Diffusion coefficient of water vapor (D) at

25�C
2:6 � 10�5 m2 s�1

Variation of D and csat with temperature Taken from Ref. [20]

Ambient temperature 25�C

Humidity 0.35

Contact angle 40�

Wetted radius 1 mm

Substrate width 5 mm

Substrate thickness 0.1 mm

Substrate temperature (non-heated case) 25�C

Substrate temperature (heated case) 40�C, 55�C, 70�C
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number of nodes in the most refined mesh (Nmax ¼ 15865)

and represents the reference solution. Figure 5 shows L2-

norm error of a solution variable (radial velocity u, axial

velocity v and pressure p) as function of number of nodes in

the computational domain. As figure 5 shows, L2-norm

error for radial velocity (u), axial velocity (v) and pressure

(P) solutions for different mesh follows the slope of the

slope-2 line. Therefore, we can conclude that our solutions

are second-order accurate and grid independent.

3.2 Code validation

We validate the code by comparing flow field inside the

droplet with the published data. Computed velocity profiles

obtained using different formulations are compared in

figure 6. The published data is also plotted in this figure.

At radial location r ¼ 0:1 mm, maximum velocity is

0:13 � 10�3 mm/s and as fluid move radially outward at

location r ¼ 0:6 and 0.9 mm radial velocity of fluid

increases to 0:8 � 10�3 mm/s and 1:6 � 10�3 mm/s,

respectively. However, in axial direction, from z ¼ 0 to

liquid-air interface of droplet, first, droplet velocity

increases with the increase of axial distance and after

attaining a maximum value it starts decreasing. To validate

the code radial velocity at different radial location along the

height of the droplet has been compared with results of

model of Hu and Larson [26]. Figure 6 shows the radial

velocity (u) profiles calculated along axial direction (z) at

different radial locations, r ¼ 0:1, 0.6 and 0.9 mm, using

Velocity-pressure and Penalty function formulation with

Table 2. Number of nodes in different grids used in grid-size

convergence study

S. No. Nodes in droplet Minimum grid size (mm)

Grid 1 728 4:0 � 10�2

Grid 2 1348 2:0 � 10�2

Grid 3 2909 1:0 � 10�2

Grid 4 4005 6:5 � 10�3

Grid 5 5253 5:5 � 10�3

Grid 6 9490 3:8 � 10�3

Grid 7 15865 3:8 � 10�3

1/Number of nodes

L
2 - 

no
rm

10-4 10-3 10-2
10-9

10-8

10-7

10-6

10-5

10-4

u
v
P

Slo
pe =

 2

Figure 5. Grid-size independence test: L2-norm errors of radial

velocity (u), axial velocity (v) and pressure (P) are plotted with

respect to different grids tested. A dashed line of slope 2 is plotted

for reference.

u (mm/s)

z 
(m

m
)

0.0005 0.001 0.0015 0.002
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Hu & Larson, r = 0.1
Hu & Larson, r = 0.6
Hu & Larson, r = 0.9
VP, r = 0.1
VP, r = 0.6
VP, r = 0.9
PF, r = 0.1
PF, r = 0.6
PF, r = 0.9

Figure 6. Validation of penalty function (PF) and velocity-

pressure (VP) formulation. Comparison of radial velocity profiles

at different radial locations obtained from present model with data

of Hu and Larson [26].

Figure 7. Comparison of computational time taken by penalty

function (PF) and velocity pressure (VP) formulation, with respect

to number of nodes.
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direct approach of applying boundary conditions. These

profiles were compared with the profiles obtained by Hu

and Larson [26]. The radial velocity profile obtained from

present models are in good agreement with the profiles

obtained by Hu and Larson [26].

3.3 Computational time

Figure 7 shows the comparison of computational time

taken by both formulations. These computations were

performed on a computer having following specifications;

4.84 GHz, 8-core Intel core i9 processor, 64 GB RAM,

SSD data storage. As the number of computational nodes

increases computational time increases non-linearly for the

both formulations. However, velocity pressure formulation

consumes more computational time as compared to penalty

function formulation and as the number of nodes increases

computational time difference for velocity pressure for-

mulation with respect to the penalty function formulation

also increases for the computation performed on the same

number of nodes. Which concludes that velocity pressure

formulation gets slower with increment of number of

nodes. Hence, it is preferable to use the penalty function

formulation in order to save the computational cost and

time.

3.4 Flow and pressure field on a non-heated
and heated substrate

Figure 8a shows the computed streamlines and contours of

radial velocity (u) using penalty function formulation. The

streamlines start from the apex of the droplet and end in the

the region close to contact line, implying a radially outward

flow inside the droplet. Contours of radial velocity (u),

plotted in figure 8a indicate that in the central region the

flow velocity (	 0.6 lm/s) is much slower than near the

contact line region (	 1.6 lm/s). Therefore, u increases

from droplet interior to the contact line and the maximum u
occurs near the contact line. This is attributed to the largest

evaporation mass flux j near the contact line, which results

in larger mass loss near the contact line. The fluid from the

interior of the droplet rushes towards the contact line to

maintain droplet spherical cap shape, dictated by the sur-

face tension forces [5, 21]. On a heated substrate, a larger j
and _m accelerate the evaporation and reduces the total

evaporation time of the droplet, consistent with prior

experiments [20, 29].

Figure 8(b) shows the axial velocity (v) contour inside

the evaporating droplet. The minus (-) sign represents the

downward axial direction of the flow. The magnitude of

v decreases from liquid–gas interface to liquids–solid

interface, which implies that as the liquid moves from

liquid–gas interface towards substrate or contact line

region, the axial velocity decelerates. Comparison of

figure 8(a) and b show that the axial velocity is smaller than

radial velocity, suggesting a dominating flow in the radial

direction compared to axial direction. This fact is also

confirmed by direction of the streamlines. Figure 8(c)

shows contours of computed pressure (P) inside the droplet.

The pressure is the lowest near the contact line due to the

largest velocity in this region.

Figure 9 shows radial velocity (u) profiles at different

radial locations, when droplet is placed on a heated sub-

strate. Each frame of figure 9 plots the variation of radial

velocity with respect to axial coordinate of the droplet for

different cases of substrate temperatures and fixed radial

locations r ¼ 0:3, 0.5, 0.7 and 0.9 mm. At axial location,

Figure 8. (a) Streamlines and contours of radial velocity

(u) inside the evaporating droplet (b) Contours of axial velocity

(v) inside the evaporating droplet (c) Contours of pressure field

(P) inside the evaporating droplet.
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z ¼ 0, radial velocity is zero for all cases and at all radial

locations, due to zero slip condition. As axial location

increases, radial velocity initially increases and reaches to a

maximum value before it slightly decreases. With the

increase in substrate temperature, radial velocity at any

fixed axial location increases at all radial location inside the

droplet. As the substrate temperature increases, it results in

overall increase of liquid–gas interface temperature. This

promotes the larger vapor concentration at the liquid–gas

interface and consequently, mass loss is larger from the

interface. Hence, it results in a larger evaporation rate (j),
thereby increasing the liquid–gas interface normal velocity

(un) defined by eq. 13 and resulting in larger radial velocity

(u) inside the droplet.

Lastly, we discuss the effect of flow field inside a droplet

on a heated substrate on self-assembly of colloidal parti-

cles, if present in the droplet. Studies have shown a

departure from a typical ring-like pattern formed by

colloidal particles to a thinner ring and central deposit of

particles on a heated surface [29]. Similar patterns of

deposits have been obtained for a initially-heated droplet on

substrate at ambient temperature [30] and on a non-

uniformly heated substrate [31]. In general, these changes

in the pattern have been attributed to evaporation-driven

flow and flow driven by Marangoni stress along the liquid–

gas interface. The pinning or depinning of the contact line

by colloidal particles also play an important role in this

context [31].

4. Conclusions

We have presented the development of a finite element solver

for computing fluid flow inside an evaporating sessile droplet.

The evaporation is considered as quasi-steady with a pinned

contact line. Galerkin weighted residual approach is used to

formulate weak form of the numerical equations. Penalty

function and velocity-pressure formulation are applied to

discretise the Navier–Stokes equation in cylindrical coordi-

nates. Six-node triangular mesh is used for higher accuracy of

the solution. The solver shows a second order accuracy in grid-

size convergence study. Results obtained from the simulations

are compared with prior numerical results and found to be in

good agreement. Both formulations show similar accuracy in

the computed results. However, since penalty function for-

mulation uses one lesser degree of freedom on each node

compared to velocity-pressure formulation, resulting in lesser

computational time in the former as compared to latter. The

solver is tested for simulating the evaporation of a sessile

microliter droplet on a heated copper substrate. The future

development will involve the implementation of Marangoni

stress and buoyancy terms in the FE solver.

Figure 9. Radial velocity (u) profiles at different radial locations for a droplet evaporating on a heated substrate.
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