Correction to: Some functional inequalities on non-reversible Finsler manifolds

SHIN-ICHI OHTA(D)
Department of Mathematics, Osaka University, Osaka 560-0043, Japan
E-mail: s.ohta@math.sci.osaka-u.ac.jp

MS received 19 February 2021; accepted 27 April 2021

Correction to: Proc. Indian Acad. Sci. (Math. Sci.) 127 (2017) 833-855
https://doi.org/10.1007/s12044-017-0357-0
Abstract We correct the proof of the Sobolev-type inequality in [2] for $1<p<2$ (called the Beckner inequality).

Keywords. Finsler geometry; Ricci curvature; Sobolev inequality.
Mathematics Subject Classification. Primary: 53C60, Secondary: 58C40, 58 J35.
In [2, Theorem 5.6], we state the following Sobolev-type inequality on a Finsler manifold (M, F) equipped with a measure \mathfrak{m}.

Theorem 1. Assume that $\operatorname{Ric}_{N} \geq K>0$ for some $N \in[n, \infty)$ and $\mathfrak{m}(M)=1$. Then we have

$$
\begin{equation*}
\frac{\|f\|_{L^{p}}^{2}-\|f\|_{L^{2}}^{2}}{p-2} \leq \frac{N-1}{K N} \int_{M} F^{2}(\nabla f) \mathrm{dm} \tag{1}
\end{equation*}
$$

for all $1 \leq p \leq 2(N+1) / N$ and $f \in H^{1}(M)$.
The proof in [2] is, however, incorrect for $1<p<2$ (precisely, the final approximation procedure requires $p>2$). Instead, we can apply the argument in [1] to show (1) for $1<p<2$ (such an inequality is called the Beckner inequality). Furthermore, the argument in [1] gives the following generalization of Theorem 1.

Theorem 2. Assume that (M, F, \mathfrak{m}) is compact and satisfies $\operatorname{Ric}_{N} \geq K>0$ for some $N \in(-\infty,-2)$ and $\mathfrak{m}(M)=1$. Then we have

$$
\frac{\|f\|_{L^{p}}^{2}-\|f\|_{L^{2}}^{2}}{p-2} \leq \frac{N-1}{K N} \int_{M} F^{2}(\nabla f) \mathrm{dm}
$$

The original article can be found online at https://doi.org/10.1007/s12044-017-0357-0.
for all $1 \leq p \leq\left(2 N^{2}+1\right) /(N-1)^{2}$ and $f \in H^{1}(M)$.
We refer to a forthcoming book [3] for details and further discussions.

References

[1] Gentil I and Zugmeyer S, A family of Beckner inequalities under various curvature-dimension conditions, Bernoulli 27 (2021) 751-771
[2] Ohta S, Some functional inequalities on non-reversible Finsler manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 127 (2017) 833-855
[3] Ohta S, Comparison Finsler geometry, in preparation

