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Abstract. In this paper, the solution methodology of higher-order linear fractional partial deferential equations
(FPDEs) as mentioned in eqs (1) and (2) below in Caputo definition relies on a new analytical method which is
called the Laplace-residual power series method (L-RPSM). The main idea of our proposed technique is to convert
the original FPDE in Laplace space, and then apply the residual power series method (RPSM) by using the concept
of limit to obtain the solution. Some interesting and important numerical test applications are given and discussed to
illustrate the procedure of our method, and also to confirm that this method is simple, understandable and very fast
for obtaining the exact and approximate solutions (ASs) of FPDEs compared with other methods such as RPSM,
variational iteration method (VIM), homotopy perturbation method (HPM) and Adomian decomposition method
(ADM). The main advantage of the proposed method is its simplicity in computing the coefficients of terms of
series solution by using only the concept of limit at infinity and not as the other well-known analytical method such
as, RPSM that need to obtain the fractional derivative (FD) each time to determine the unknown coefficients in
series solutions, and VIM, ADM, or HPM that need the integration operators which is difficult in fractional case.
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1. Introduction and basic concepts

The fractional differential equations (FDEs) and frac-
tional partial differential equations (FPDEs) have
become more popular nowadays due to their numerous
applications in areas of physics and engineering. Addi-
tionally, most of the solutions of FPDEs and FDEs do
not have exact solutions (ESs), and therefore approxi-
mate solutions (ASs) are used extensively.

In recent decades, FDEs have been focussing on
several models and applications such as in signal pro-
cessing, biological population, space–time, dynamical
systems, electrical circuits, control theory etc [1–4].
Many researchers have used various methods to solve
FPDEs, for example, Zhang and Zhang [3] proposed

a new direct algebraic method named fractional sube-
quation method for solving FPDEs based on the homo-
geneous balance principle. Meng [4] proposed a new
approach for solving time biological population and
(4 + 1)-dimensional space–time Fokas FPDEs based
on a nonlinear fractional complex transformation and
the general Riccati equation. Behzad et al [5] applied
an analytical generalised exponential rational function
technique to acquire wave solutions of a PDE involv-
ing a local fractional derivative (FD). Khalid et al
[6] used a computational approach for solving time-
fractional differential equation via spline functions and
Bonyah et al [7] established the existence and unique-
ness of solution of the fractional corona virus model
by using the Banach fixed point theorem approach.
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Variational iteration method (VIM) [8,9], homotopy
perturbation method (HPM) [10–15], Adomian decom-
position method (ADM) [9] and residual power series
method (RPSM) [16–22] are also applied to solve prob-
lems in science and engineering.

In our previous work [23], we proposed the Laplace-
residual power series method (L-RPSM), which is an
analytical method, to increase the efficiency of the
RPSM and to solve linear and nonlinear FDEs. The L-
RPSM is based on employing the Laplace transform
(LT) on the specific equation and then applying a par-
ticular expansion to indicate the solution of the FDE
in the new space. Lastly, the obtained solution is trans-
formed into the original space by employing the inverse
LT to exhibit the solution of the required FDE. This new
method (L-RPS) is guaranteed to have higher efficiency
and more simplicity than RPSM for creating the ESs
and ASs to the linear and nonlinear neutral FDEs [23],
a class of hyperbolic system of time-FPDEs with vari-
able coefficients [24], nonlinear time-dispersive FPDEs
[25], time-fractional nonlinear water wave PDE [26] and
fuzzy quadratic Riccati differential equations [27].

The main aims of this work can be summarised as
follows: First, we propose a new L-RPSM to solve the
following linear FPDE [9,10,28]:

∂αu(x, t)

∂tα
+

z∑

c=0

ac(x)
∂cu(x, t)

∂xc
= g(x, t), (1)

subject to:

∂ j u(x, 0)

∂t j
= φ j (x), j = 0, 1, . . . ,m − 1, (2)

where x ∈ R, 0 ≤ m − 1 < α ≤ m, m ∈ N, α

is the order of the Caputo FD, ai (i = 0, 1, 2, . . . , z)
all are continuous function, and φ j (x), g(x, t) are the
analytic functions on R. Secondly, several attractive
numerical test applications such as are given: time-
fractional wave (T-FW), space-fractional telegraph (S-
FT), time-fractional vibration (T-FV), time-fractional
Swift–Hohenberg (T-FSH) and time-fractional Navier–
Stokes (T-FNS) equations. Finally, we analyse the
solutions of eqs (1) and (2) by comparing our suggested
method with other methods such as HPM, VIM and
ADM and we show that our method is simple, under-
standable and very fast for obtaining the ESs and ASs
for FPDEs with higher orders.

Now, we introduce some basic concepts and theories
related to the FDs and LT that are used to construct
the L-RPS solution for the FPDEs. For a more detailed
discussion, the reader is referred to [29–34].

DEFINITION 1

The Caputo α-derivative of the multivariable function
u(x, t) is defined as [20,22,23]

Dα
t u(x, t)

= ∂αu(x, t)

∂tα

=

⎧
⎪⎨

⎪⎩

Jm−α
t

(
∂mu(x, t)

∂tm

)
, m − 1 < α < m,

∂mu(x, t)

∂tm
, α = m ∈ N,

(3)

where α ∈ (m − 1,m],m ∈ N and Jβ
t is the Riemann–

Liouville with β order that is defined as [20,22,23]

Jβ
t u = 1

Γ (β)

∫ t

t0
(t−τ)β−1u (x, τ ) dτ ,

t > τ ≥ t0 ≥ 0, β > 0,

J 0
t u = u (x, t) . (4)

The following lemma includes some properties related
to the Dα

t operator.

Lemma 1. For t ≥ 0, γ > −1, α ∈ (m − 1,m],m ∈ N

and c ∈ R. Then

1. Dα
t t

γ =
	(γ + 1)

	(γ + 1 − α)
tγ−α .

2. Dα
t c = 0.

3. Dα
t J

α
t u(x, t) = u(x, t).

4. Jα
t Dα

t u(x, t) = u(x, t) −
m−1∑
j=0

u( j)
t (x, 0+)

t j

j ! .

DEFINITION 2

Letu(x, t)be a multivariable function on I1×I2×[0, ∞)
and of exponential order (EO) δ, then the LT of u(x, t)
is

U (x, s) = L[u(x, t)] :=
∫ ∞

0
e−st u(x, t)dt, s > δ,

(5)

and the inverse LT of U (x, y, s) is given by

u(x, t) = L−1[U (x, s)] :=
∫ c−i∞

c+i∞
estU (x, s)ds,

c = Re(s) > c0. (6)

The next lemma illustrates some basic and important
properties of our workers related to the LT.

Lemma 2. Suppose that u(x, t) and v(x, t) are multi-
variable functions on [0, ∞) and of EO δ, U (x, s) =
L[u(x, t)],V (x, s) = L[v(x, t)],α ∈ (m−1,m], k,m ∈
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N and Dnα
t means Dα

t .Dα
t . . . Dα

t (n times). Then

1. lim
s→∞sU (x, s) = u(x, 0).

2. L[Dk
t u(x, t)] = skU (x, s)

−
k−1∑

j=0

sk− j−1D j
t u(x, 0).

3. L[Dα
t u(x, t)] = sαU (x, s)

−
m−1∑

j=0

sα− j−1D j
t u(x, 0).

4. L[Dk
t D

α
t u(x, t)] = sα+kU (x, s)

−
m−1∑

j=0

sα+k− j−1D j
t u(x, 0)

−
k−1∑

j=0

sk− j−1D j
t D

α
t u(x, 0).

5. L[Dk
t D

2α
t u(x, t)] = s2α+kU (x, s)

−
m−1∑

j=0

s2α+k− j−1D j
t u(x, 0)

−
m−1∑

j=0

sα+k− j−1D j
t D

α
t u(x, 0)

−
k−1∑

j=0

sk− j−1D j
t D

2α
t u(x, 0).

We can find the proofs of the parts from (1) to (3) in
refs [23,30–35]. The proof of parts (4) and (5) are trivial
by using the parts (2) and (3) in the above lemma.

Theorem 1. [36]. Assume that u(x, t) has a multiple
fractional power series (FPS) representation at t = t0
of the following form:

u(x, t) =
∞∑

n=0

m−1∑

j=0

fn j (x)(t − t0)
j+nα,

t0 ≤ t < t0 + R. (7)

If u(x, t) ∈ C[t0, t0 + R), Dnα
t0 u(x, t) ∈ C(t0, t0 + R),

and Dnα
t0 u(x, t) can be differentiated (m − 1) times on

(t0, t0 + R) for n = 0, 1, 2, . . ., where 0 ≤ m − 1 <

α ≤ m. Then the coefficients fn j (x) of eq. (7) are given
by the formula

fn j (x) = D j
t0 D

nα
t0 u(x, t0)

	( j + nα + 1)
, n = 0, 1, . . . , j

= 0, 1, . . . ,m − 1. (8)

Remark 1. Different from classical (or integer-order)
derivative, there are several kinds of definitions for
FDs. These definitions are generally not equivalent
with each other, among which the Riemann—Liouville
and the Caputo FDs are two of the most important
ones in applications [37]. The Risez FD is a linear
representation of the left Riemann–Liouville FD and
right Riemann–Liouville FD. A close relationship exists
between the Riemann–Liouville FD and the Caputo FD.
The Riemann–Liouville FD can be converted to the
Caputo FD under some regularity assumptions of the
function [31,37]. In FPDEs, the time-FDs are commonly
defined using the Caputo FD. The main reason lies in that
the Riemann–Liouville approach needs initial condi-
tions containing the limit values of Riemann–Liouville
FD at the origin of time t = 0, whose physical mean-
ings are not very clear. However, in cases with the
time-fractional Caputo derivative, the initial conditions
take the same form as that for integer-order differen-
tial equations, namely, the initial values of integer-order
derivatives of functions at the origin of time t = 0
[28,37,38]. In other words, comparing Caputo fractional
definition with the Riemann–Liouville one, functions
which are derivable in the Caputo sense are much fewer
than those which are derivable in the Riemann–Liouville
sense. In general, the main advantage of derivatives
and integrals of fractional order is modelling of the
physical system with full memory effect [39]. Also,
real world problems associated with fractional oper-
ators are able to give better physical description of
the model than the derivatives and integrals of classi-
cal nature. The fractional model represents the system
with more efficient, complex nonlinear phenomena with
high-order dynamics. It happens mainly due to three
reasons: (i) There is freedom to select any arbitrary
order of fractional operators whereas it is not appli-
cable to standard order derivative, (ii) since classical
order derivative is local in characteristics, it does not
describe the whole memory and physical aspects of the
model whereas fractional-order derivative is non-local
in nature, and hence it narrates the complete memory and
physical behaviour of the system and (iii) useful anal-
ysis of fractional blood alcohol model with composite
FD [39].

2. Fractional multiple of new form of Taylor’s
series

In this section, we introduce a fractional multiple new
form of Taylor’s series in Laplace space that will be
used to build a series solution for the linear FPDEs
in §3.
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Theorem 2. Assume that U (x, s) = L[u(x, t)] has a
multiple FPS as follows:

U (x, s) =
∞∑

n=0

m−1∑

k=0

fnk(x)

sk+nα+1 , 0 ≤ m − 1 < α ≤ m,

m ∈ N. (9)

Then, the coefficients, fnk(x) of eq. (9) are given by the
formula

fnk(x)

=

⎧
⎪⎨

⎪⎩

Dk
t u(x, 0), k = 0, 1, . . . ,m − 1, n = 0,

Dk
t D

nα
t u(x, 0), k = 0, 1, . . . ,

m − 1, n = 1, 2, . . .

(10)

where Dnα
t means Dα

t .Dα
t . . . Dα

t (n times).

Proof. Let U (x, s) be a function that can be presented
as in eq. (9). If we multiply both sides of eq. (9) by
s and take the limit as s → ∞, we get f00(x) =
lims→∞ sU (x, s) = u(x, 0).

Now, multiplying eq. (9) by s2 leads to the following
equation of f01(x):

f01(x)

= s2U (x, s) − su(x, 0) − f02

s

− f03

s2 − · · · − f0(m−1)

sm−2

−
∞∑

n=1

m−1∑

k=0

fnk(x)

sk+nα−1 . (11)

Take the limit as s → ∞ to eq. (11). Through part (2)
of Lemma 2, it is clear that

f01(x) = lim
s→∞(s2U (x, s) − su(x, 0))

= lim
s→∞s(sU (x, s) − u(x, 0))

= lim
s→∞s(L[Dtu(x, t)]) = Dtu(x, 0). (12)

Now, by multiplying eq. (9) by s3 and taking the limit
as s → ∞, we have

f02(x) = lim
s→∞(s3U (x, s) − s2u(x, 0) − sDtu(x, 0))

= lim
s→∞s(s2U (x, s) − su(x, 0) − Dtu(x, 0))

= lim
s→∞s(L[D2

t u(x, t)]) = D2
t u(x, 0). (13)

The pattern is clear, if we multiply sk on the series
in eq. (9) and take the limit as s → ∞ in the resulting
equation, then we obtain

f0k(x) = Dk
t u(x, 0). (14)

Back to eq. (9), multiplying sα+1 on both sides, we
get

sα+1U (x, s) =
m−1∑

k=0

sα−k Dk
t u(x, 0) + f10(x) + f11(x)

s

+ f12(x)

s2 + · · · + f1(m−1)(x)

sm−1

+
∞∑

n=2

m−1∑

k=0

fnk(x)

sk+(n−1)α
. (15)

By taking the limit as s → ∞ in eq. (15), then accord-
ing to part (3) of Lemma 2, we get

f10(x) = lim
s→∞

(
sα+1U (x, s) −

m−1∑

k=0

sα−k Dk
t u(x, 0)

)

= lim
s→∞s

(
sαU (x, s) −

m−1∑

k=0

sα−k−1Dk
t u(x, 0)

)

= lim
s→∞s(L[Dα

t u(x, t)]) = Dα
t u(x, 0). (16)

On the other hand, multiplying eq. (9) by sα+2, and
taking the limit as s → ∞, according to part (4) of
Lemma 2, we have

f11(x) = lim
s→∞

(
sα+2U (x, s) −

m−1∑

k=0

sα−k+1Dk
t u(x, 0)

−sDα
t u(x, 0)

)

= lim
s→∞s

(
sα+1U (x, s) −

m−1∑

k=0

sα−k Dk
t u(x, 0)

−Dα
t u(x, 0)

)

= lim
s→∞s(L[Dt D

α
t u(x, t)]) = Dt D

α
t u(x, 0).

(17)

In the same manner, by multiplying eq. (9) by sα+3

and taking the limit as s → ∞, we have

f12(x) = lim
s→∞

(
sα+3U (x, s) −

m−1∑

k=0

sα−k+2Dk
t u(x, 0)

−s2Dα
t u(x, 0) − sDt D

α
t u(x, 0)

)

= lim
s→∞s

(
sα+2U (x, s) −

m−1∑

k=0

sα−k+1Dk
t u(x, 0)

−sDα
t u(x, 0) − Dt D

α
t u(x, 0)

)
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= lim
s→∞s(L[D2

t D
α
t u(x, t)]) = D2

t D
α
t u(x, 0).

(18)

Similar to the previous pattern, we can obtain

f1k(x) = Dk
t D

α
t u(x, 0). (19)

Multiplying s2α+1 on the series expansion in eq. (9),
one can get

s2α+1U (x, s)

=
m−1∑

k=0

s2α−k Dk
t u(x, 0) +

m−1∑

k=0

sα−k Dk
t D

α
t u(x, 0)

+ f20(x) + f21(x)

s
+ · · · + f2(m−1)(x)

sm−1

+
∞∑

n=3

m−1∑

k=0

fnk(x)

sk+(n−2)α
. (20)

The limit as s → ∞ into eq. (20) gives

f20(x) = lim
s→∞

(
s2α+1U (x, s) −

m−1∑

k=0

s2α−k Dk
t u(x, 0)

−
m−1∑

k=0

sα−k Dk
t D

α
t u(x, 0)

)

= lim
s→∞s

(
s2αU (x, s) −

m−1∑

k=0

s2α−k−1Dk
t u(x, 0)

−
m−1∑

k=0

sα−k−1Dk
t D

α
t u(x, 0)

)

= lim
s→∞s(L[D2α

t u(x, t)]) = D2α
t u(x, 0). (21)

Again, by multiplying eq. (9) by s2α+2 and taking
limit as s → ∞, we get

f21(x) = lim
s→∞

(
s2α+2U (x, s) −

m−1∑

k=0

s2α−k+1Dk
t u(x, 0)

−
m−1∑

k=0

sα−k+1Dk
t D

α
t u(x, 0) − sD2α

t u(x, 0)

)

= lim
s→∞s

(
s2α+1U (x, s) −

m−1∑

k=0

s2α−k Dk
t u(x, 0)

−
m−1∑

k=0

sα−k Dk
t D

α
t u(x, 0) − D2α

t u(x, 0)

)

= lim
s→∞s(L[Dt D

2α
t u(x, t)]) = Dt D

2α
t u(x, 0).

(22)

If we multiply s2α+k+1 by eq. (9) and take the limit
as s → ∞, we can have the coefficients f2k(x), k =

0, 1, 2, . . . ,m−1 of eq. (9) as the following expansion:

f2k(x) = Dk
t D

2α
t u(x, 0). (23)

Now we can see the pattern completely. However, if
we multiply snα+k+1 by both sides of eq. (9) and take
the limit as s → ∞ on the resulting equation, then we
get the formula of the coefficients, fnk(x) as in eq. (10).

By substituting the formula of fnk(x) into the series
as in eq. (9), we see that if U (x, s) has a multiple FPS
expansion, then it must be of the following form:

U (x, s) =
∞∑

n=0

m−1∑

k=0

Dk
t D

nα
t u(x, 0)

sk+nα+1 , (24)

which is a fractional multiple new form of the Taylor’s
series. �	

Remark 2. If we take the inverse LT of the multiple FPS
as in eq. (9), then we have

u(x, t) =
∞∑

n=0

m−1∑

k=0

Dk
t D

nα
t u(x, 0)

	(nα + k + 1)
tnα+k, (25)

which corresponds to eq. (7) at t0 = 0.

Theorem 3. Let U (x, s) = L[u(x, t)] be the multiple
FPS as in eq. (9). If |sL[D(n+1)α

t u(x, t)]| ≤ M(x) on
I × (δ, γ ], then

|Rn(x, s)| ≤ M(x)

s1+(n+1)α
, x ∈ I, δ < s ≤ γ, (26)

whereRn(x, s) is the reminder of the multiple FPE (9).

Proof. Suppose that L[Dkα
t u(x, t)](s) is on I × (δ, γ ]

for k = 0, 1, . . . , n + 1 and

|sL[D(n+1)α
t u(x, t)]| ≤ M(x), x ∈ I, δ < s ≤ γ.

(27)

The definition of the remainder, Rn(x, s), is

Rn(x, s) = U (x, s) −
n∑

k=0

Dkα
t u(x, 0)

s1+kα
. (28)



  207 Page 6 of 17 Pramana – J. Phys.          (2022) 96:207 

Multiply both sides of eq. (28) by s1+(n+1)α we get

s1+(n+1)αRn(x, s) = s1+(n+1)αU (x, t)

−
n∑

k=0

s(n+1−k)αDkα
t u(x, 0)

= s

(
s(n+1)αU (x, t)

−
n∑

k=0

s(n+1−k)α−1Dkα
t u(x, 0)

)

= sL[D(n+1)α
t u(x, t)]. (29)

From eqs (27) and (29) we have |s1+(n+1)αRn
(x, s)| ≤ M(x). Hence,

−M(x) ≤ s1+(n+1)αRn(x, s) ≤ M(x), x ∈ I,

δ < s ≤ γ. (30)

Thus, we can rewrite eq. (30) to obtain the result as
in eq. (26). �	

3. Constructing the L-RPSM solution for the linear
FPDE

In this section, we use the new L-RPSM to build the
solutions of the initial value problem (IVP) as in eqs (1)
and (2). According to [23], we first start by applying LT
on eq. (1) and using eq. (2), to get

sαU (x, s) −
m−1∑

j=0

sα− j−1φ j (x)

+
z∑

c=0

ac(x)
∂cU (x, s)

∂xc
= G(x, s), (31)

where U (x, s) = L[u(x, t)] and G(x, s) = L[g(x, t)].
We can rewrite eq. (31) as

U (x, s) −
m−1∑

j=0

φ j (x)

s j+1

+
z∑

c=0

s−αac(x)
∂cU (x, s)

∂xc
− G(x, s)

sα
= 0. (32)

The L-RPSM expresses the solution of eq. (32) as a
multiple FPS expansion as follows:

U (x, s) =
m−1∑

j=0

f0 j (x)

s j+1 +
∞∑

i=1

m−1∑

j=0

fi j (x)

siα+ j+1 , s > 0.

(33)

By using initial conditions in eq. (2) and referring
to eq. (33), one can get f0 j (x) = D j

t u(x, 0) = φ j (x),

j = 0, 1, . . . ,m−1. Hence, the multiple FPS expansion
in eq. (33) becomes

U (x, s) =
m−1∑

j=0

φ j (x)

s j+1 +
∞∑

i=1

m−1∑

j=0

fi j (x)

siα+ j+1 , s > 0.

(34)

Now, let Uk(x, s) be the kth-truncated series of
U (x, s). That is

Uk(x, s) =
m−1∑

j=0

φ j (x)

s j+1 +
k∑

i=1

m−1∑

j=0

fi j (x)

siα+ j+1 , s > 0.

(35)

Before applying the L-RPSM for obtaining the form
of coefficients fi j (x) in eq. (35), we must define the
Laplace residual (LR) function for eq. (32) as follows:

LRes(x, s) = U (x, s)

−
m−1∑

j=0

s− j−1φ j (x) − s−αG(x, s)

+
z∑

c=0

s−αac(x)
∂cU (x, s)

∂xc
, s > 0 (36)

and the following kth-truncated LR function:

LResk(x, s) = Uk(x, s)

−
m−1∑

j=0

s− j−1φ j (x) − s−αG(x, s)

+
z∑

c=0

s−αac(x)
∂cUk(x, s)

∂xc
. (37)

As in [23], it is clear that LRes(x, s) = 0 and
lims→∞ sLRes(x, s) = lims→∞ sLResk(x, s). In fact,
this shows that lims→∞ siα+ j+1LRes(x, s) = 0 and
one can write

lim
s→∞siα+ j+1LRes(x, s) = lim

s→∞siα+ j+1LResk(x, s)

= 0, i = 1, 2, 3, . . . , k, j = 0, 1, . . . ,m − 1.

(38)

To find out the form of the unknown coefficients
fi j (x) in eq. (35) for i = 1, . . . , k and j = 0, 1, . . . ,m−
1, we substitute kth-truncated series of U (x, s) into eq.
(37), multiply the resulting function by siα+ j+1, take
the limit as s → ∞ and solve the obtained equation for
fi j (x).

On other aspects as well, to obtain the form of the
first unknown coefficients, f1 j (x), j = 0, 1, . . . ,m −
1 in eq. (35), we substitute the first-truncated series,
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U1(x, s), into the first-LR function, LRes1(x, s), to get

LRes1(x, s) = U1(x, s)

−
m−1∑

j=0

s− j−1φ j (x) − s−αG(x, s)

+
z∑

c=0

s−αac(x)
∂cU1(x, s)

∂xc
. (39)

Since

U1(x, s) =
m−1∑

j=0

φ j (x)/s
j+1 +

m−1∑

j=0

f1 j (x)/s
α+ j+1,

then eq. (39) can be formulated as

LRes1(x, s) =
m−1∑

j=0

s−α− j−1 f1 j (x) − s−αG(x, s)

+
z∑

c=0

ac(x)
∂c

∂xc

( m−1∑

j=0

s−α− j−1φ j (x)

+
m−1∑

j=0

s−2α− j−1 f1 j (x)

)
. (40)

To find the form of f10(x), we multiply eq. (40) by
sα+1 to get

sα+1LRes1(x, s) = f10(x)+
m−1∑

j=1

s− j f1 j (x) − sG(x, s)

+
z∑

c=0

ac(x)
∂c

∂xc

( m−1∑

j=0

s− jφ j (x)

+
m−1∑

j=0

s−α− j f1 j (x)

)
. (41)

Applying limit on both sides of eq. (41) as s → ∞,
we get

lim
s→∞sα+1LRes1(x, s) = f10(x)

+
z∑

c=0

ac(x)D
c
xφ0(x) − g(x, 0). (42)

Refer to eq. (38) for k = 1 and j = 0 and solve eq.
(42) for f10(x), we have

f10(x) = g(x, 0) −
z∑

c=0

ac(x)D
c
xφ0(x). (43)

To find the form of f11(x), we multiply both sides of
eq. (40) by sα+2, to get

sα+2LRes1(x, s)

= f11(x) +
m−1∑

j=2

s1− j f1 j (x)

−s(sG(x, s) − g(x, 0))

+
z∑

c=0

ac(x)
∂c

∂xc

(
φ1(x) +

m−1∑

j=2

s1− jφ j (x)

+
m−1∑

j=0

s1−α− j f1 j (x)

)
. (44)

Again, applying limit on both sides of eq. (44) as
s → ∞ and using the fact in eq. (38) for k = 1 and
j = 1, then the form of f11(x) is

f11(x) = (Dtg) (x, 0) −
z∑

c=0

ac(x)D
c
xφ1(x). (45)

We can find the form of f12(x), by multiplying eq.
(44) by s to get the following equation:

sα+3LRes1(x, s)

= f12(x) +
m−1∑

j=3

s1− j f1 j (x)

+
z∑

c=0

ac(x)
∂c

∂xc

(
φ2(x) +

m−1∑

j=3

s2− jφ j (x)

+
m−1∑

j=0

s2−α− j f1 j (x)

)

−s(s2G(x, s) − sg(x, 0) − (Dtg) (x, 0)). (46)

Refer to the facts in eq. (38) that lims→∞ skα+ j+1

LResk(x, s) = 0 for k = 1, j = 2 and solving the
obtained algebraic equation for f12(x), to get

f12(x) = (D2
t g)(x, 0) −

z∑

c=0

ac(x)D
c
xφ2(x). (47)

We have a pattern in the form of the unknown coef-
ficients f1 j (x), j = 1, 2, . . . ,m − 1. Therefore, the
general form of f1 j (x) can be predicted and given in
the following relation:

f1 j (x) = (D j
t g)(x, 0) −

z∑

c=0

ac(x)D
c
xφ j (x). (48)

Again, to determine the form of the unknown coeffi-
cients, f2 j (x), j = 0, 1, . . . ,m − 1, we substitute the
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second-truncated seriesU2(x, s) in the second-LR func-
tion LRes2(x, s), to get the following form:

LRes2(x, s)

=
m−1∑

j=0

s−α− j−1 f1 j (x) +
m−1∑

j=0

s−2α− j−1 f2 j (x)

+
z∑

c=0

ac(x)
∂c

∂xc

( m−1∑

j=0

s−α− j−1φ j (x)

+
m−1∑

j=0

s−2α− j−1 f1 j (x) +
m−1∑

j=0

s−3α− j−1 f2 j (x)

)

−G(x, s)

sα
. (49)

Now, to find the form of f20(x) we will multiply both
sides of eq. (49) by s2α+1 to get the following expansion:

s2α+1LRes2(x, s)

= f20(x) +
m−1∑

j=1

s− j f2 j (x)

+
z∑

c=0

ac(x)
∂c

∂xc

(
f10(x) +

m−1∑

j=1

s− j f1 j (x)

+
m−1∑

j=0

s−α− j f2 j (x)

)
− s

(
sαG(x, s)

−
m−1∑

j=0

sα− j−1(D j
t g)(x, 0)

)
. (50)

Using the fact in eq. (38) for k = 2, j = 0 and solving
the obtained equation for f20(x), we get

f20(x) = (
Dα
t g

)
(x, 0) −

z∑

c=0

ac(x)D
c
x f10(x). (51)

Again, to find the form of f21(x) we will multiply eq.
(49) by s2α+2 to get the following expansion:

S2α+2LRes2(x, s)

= f21(x) +
m−1∑

j=2

s1− j f2 j (x)

+
z∑

c=0

ac(x)
∂c

∂xc

(
f11(x)

+
m−1∑

j=2

s1− j f1 j (x) +
m−1∑

j=0

s1−α− j f2 j (x)

)

−s

(
sα+1G(x, s) −

m−1∑

j=0

sα− j
(
D j
t g

)
(x, 0)

− (
Dα
t g

)
(x, 0)

)
. (52)

By using the fact in eq. (38) for k = 2, j = 1 and
solving the obtained equation for f21(x), we get

f21(x) = (
Dt D

α
t g

)
(x, 0) −

z∑

c=0

ac(x)D
c
x f11(x). (53)

In the same manner, multiply both sides of eq. (52)
by s, then using the fact in eq. (38) for k = 2, j = 2 and
solving the equation, lims→∞ s2α+3LResk(x, s) = 0,
for f21(x), one can get

f22(x) = (D2
t D

α
t g)(x, 0) −

z∑

c=0

ac(x)D
c
x f12(x). (54)

Therefore, we can give the general form of the coef-
ficients f2 j (x) as follows:

f2 j (x) = (D j
t D

α
t g)(x, 0) −

z∑

c=0

ac(x)D
c
x f1 j (x). (55)

We can notice that there is an obvious pattern in the
form of the unknown coefficients in the series expansion
as in eq. (33). Thus, the general form of the coefficients
fi j (x), j = 0, 1, 2, . . . ,m − 1 can be obtained as:

fi j (x) =
{

φ j (x), i = 0

(D j
t D

(i−1)α
t g)(x, 0) − ∑z

c=0 ac(x)D
c
x f(i−1) j (x), i > 0 (56)

Therefore, the kth-AS of eq. (32) can be given as fol-
lows:

Uk(x, s) =
m−1∑

j=0

φ j (x)

s j+1 +
k∑

i=1

m−1∑

j=0

(
(D j

t D
(i−1)α
t g)(x, 0)

siα+ j+1

−
∑z

c=0 ac(x)D
c
x f(i−1) j (x)

siα+ j+1

)
. (57)

Finally, apply the inverse LT onto eq. (57) to return
the solution in eq. (57) to the original space. Thus, the
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kth-AS of the linear FPDE in eqs (1) and (2) can be
given as follows:

uk(x, t)

=
m−1∑

j=0

t j

j !φ j (x) +
k∑

i=1

m−1∑

j=0

(
(D j

t D
(i−1)α
t g)(x, 0)

	(iα + j + 1)

−
∑z

c=0 ac(x)D
c
x f(i−1) j (x)

	(iα + j + 1)

)
t iα+ j , k=1, 2, . . . .

(58)

4. Some applications

To validate our new approach, we considered six attrac-
tive and important applications. The MATHEMATICA
11 and MAPLE 2018 are applied in our computational
process.

Application 1. Consider the homogeneous T-FW equa-
tion:

∂αu(x, t)

∂tα
= 1

2
x2 ∂2u(x, t)

∂x2 , x ∈ R, t ≥ 0, 1 < α ≤ 2,

(59)

subject to

u(x, 0) = x, ut (x, 0) = x2. (60)

By comparing the T-FW as in IVP (59) and (60)
with the general form as in IVP (1) and (2), we have
m = 2, φ0(x) = x, φ1(x) = x2, a2(x) = −1

2 x
2

and g(x, t) = ac(x) = 0, c = 0, 1, 3, 4, . . . , z. Thus,
according to eq. (56), we can easily find the forms of
fi j (x), i = 0, 1, 2, 3, j = 0, 1, respectively:

f00(x) = x, f01(x) = x2,

f10(x) = 0, f11(x) = x2,

f20(x) = 0, f21(x) = x2,

f30(x) = 0, f31(x) = x2. (61)

Therefore, according to eq. (33), the third-AS of the
LT of eqs (59) and (60) can be written as

U3(x, s) = x

s
+ x2

(
1

s2 + 1

sα+2 + 1

s2α+2 + 1

s3α+2

)
.

(62)

The inverse LT of eq. (62) represents the third-AS of
eqs (59) and (60) as

u3(x, t) = x

+x2
(
t + tα+1

	(α + 2)
+ t2α+1

	(2α + 2)
+ t3α+1

	(3α + 2)

)
.

(63)

There are patterns between the terms of the series
solution. Thus, the ES of the IVP (59) and (60) can be
given as follows:

u(x, t) = x + x2
∞∑

i=0

t iα+1

	(iα + 2)
. (64)

When α = 2, the solution of eq. (59) becomes

u(x, t) = x + x2
(
t + t3

3! + t5

5! + t7

7! + · · ·
)

. (65)

So, the ES of IVP (59) and (60) will be u(x, t) =
x + x2 sinh t .

We noted that the third-truncated solution by L-RPSM
as in eq. (63) is the same as (3,1)-truncated series solu-
tion that was obtained by RPSM [40] and as the third-AS
that was obtained by ADM [9], whereas the fourth term
AS for IVP (59) and (60) that were obtained by the HPM
[10] and the VIM [9] are the same and are given as

u4(x, t)

= x + x2
(
t + t3

2
+ t5

40
+ t7

7! + 3t5−α

	(6 − α)

+ 2t7−α

	(8 − α)
+ t7−2α

	(8 − 2α)

)
.

(66)

Tables 1–3 show the values of the residual error (Re.
Err) when α = 1.5, 1.75, 2, respectively, and for dif-
ferent values of x and t . Those values are obtained from
the third-AS for the L-RPSM and the fourth term AS for
the VIM, HPM, ADM and RPSM of eqs (59) and (60),
where the Re. Err of u3(x, t) of eq. (59) is

Re.Err(x, t) =
∣∣∣∣
∂αu3(x, t)

∂tα
− 1

2
x2 ∂2u3(x, t)

∂x2

∣∣∣∣. (67)

From tables 1–3, we can conclude that the L-RPSM
provides us with the accurate AS and clarify the rapid
convergence in AS of the IVP (59) and (60) from the
other methods such as the VIM and HPM. Furthermore,
the results show that the L-RPSM is simple, understand-
able and very fast to obtain ASs compared with other
methods such as the HPM, VIM, ADM and RPSM.

Figure 1 shows the surface graphs of the third-AS
obtained by L-RPSM and ES of Application 1 for dif-
ferent values of α. It is clear from the subfigures that
the L-RPSM solution of Application 1 is in very good
agreement with ES.

Application 2. Consider the following homogeneous
S-FT equation:

∂αu(x, t)

∂xα
= ∂2u(x, t)

∂t2 + ∂u(x, t)

∂t
+ u(x, t),
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Table 1. The numerical results of Re. Err for Application 1 when α = 1.5.

t x VIM HPM ADM RPSM L-RPSM

0.2 −10 5.51277 5.51277 4.97102 × 10−5 4.97102 × 10−5 4.97102 × 10−5

1 5.51277 × 10−2 5.51277 × 10−2 4.97102 × 10−7 4.97102 × 10−7 4.97102 × 10−7

10 5.51277 5.51277 4.97102 × 10−5 4.97102 × 10−5 4.97102 × 10−5

0.4 −10 5.31407 5.31407 2.24963 × 10−3 2.24963 × 10−3 2.24963 × 10−3

1 5.31407 × 10−2 5.31407 × 10−2 2.24963 × 10−5 2.24963 × 10−5 2.24963 × 10−5

10 5.31407 5.31407 2.24963 × 10−3 2.24963 × 10−3 2.24963 × 10−3

0.6 −10 4.64626 4.64626 2.09224 × 10−2 2.09224 × 10−2 2.09224 × 10−2

1 4.64626 × 10−2 4.64626 × 10−2 2.09224 × 10−4 2.09224 × 10−4 2.09224 × 10−4

10 4.64626 4.64626 2.09224 × 10−2 2.09224 × 10−2 2.09224 × 10−2

0.8 −10 4.91059 4.91059 0.101806 0.101806 0.101806
1 4.91059 × 10−2 4.91059 × 10−2 1.01806 × 10−3 1.01806 × 10−3 1.01806 × 10−3

Table 2. The numerical results of Re. Err for Application 1 when α = 1.75.

t x VIM HPM ADM RPSM L-RPSM

0.2 −10 1.15719 1.15719 3.70435 × 10−6 3.70435 × 10−6 3.70435 × 10−6

1 1.15719 × 10−2 1.15719 × 10−2 3.70435 × 10−8 3.70435 × 10−8 3.70435 × 10−8

10 1.15719 1.15719 3.70435 × 10−6 3.70435 × 10−6 3.70435 × 10−6

0.4 −10 0.92375 0.92375 2.81935 × 10−4 2.81935 × 10−4 2.81935 × 10−4

1 9.23749 × 10−3 9.23749 × 10−3 2.81935 × 10−6 2.81935 × 10−6 2.81935 × 10−6

10 0.92375 0.92375 2.81935 × 10−4 2.81935 × 10−4 2.81935 × 10−4

0.6 −10 1.06133 1.06133 3.55402 × 10−3 3.55402 × 10−3 3.55402 × 10−3

1 1.06133 × 10−2 1.06133 × 10−2 3.55402 × 10−5 3.55402 × 10−5 3.55402 × 10−5

10 1.06133 1.06133 3.55402 × 10−3 3.55402 × 10−3 3.55402 × 10−3

0.8 −10 1.73713 1.73713 2.14579 × 10−2 2.14579 × 10−2 2.14579 × 10−2

1 1.73713 × 10−2 1.73713 × 10−2 2.14579 × 10−4 2.14579 × 10−4 2.14579 × 10−4

0 < x < 1, t ≥ 0, 1 < α ≤ 2, (68)

with the non-homogeneous initial conditions

u(0, t) = ux (0, t) = e−t . (69)

For the space-fractional applications, we will replace
x by t and t by x in the equations in previous sections.

So, by referring to the general form as in the IVP (1)
and (2) and comparing it with the S-FT equation as in
the IVP (68) and (69), we obtain that m = 2, φ0(t) =
φ1(t) = e−t , a0(t) = a1(t) = a2(t) = −1 and
g(x, t) = ac(t) = 0, c = 3, 4, 5, . . . , z.

Equation (56) leads to fi j (t) = e−t , j = 0, 1, i =
0, 1, 2, . . .. Therefore, according to eq. (33), the AS of
the LT of eqs (68) and (69) can be given as

U (s, t) = e−t
(

1

s
+ 1

s2 + 1

sα+1 + 1

sα+2 + 1

s2α+1

+ 1

s2α+2 + · · ·
)

. (70)

The inverse LT of eq. (70) represents the infinite series
L-RPSM solution of the S-FT equation as in IVP (68)

and (69) as follows:

u(x, t)

= e−t
(

1 + x + xα

	(α + 1)
+ xα+1

	(α + 2)
+ x2α

	(2α + 1)

+ x2α+1

	(2α + 2)
+ · · ·

)
, (71)

the above equation are exactly the same as those given
by LT and homotopy analysis method (HATM) [41],
Decomposition method [42] and RPSM [40].

When α = 2, the L-RPSM solution of S-FT equation
as in IVP (68) and (69) has the general pattern which
tend to the ES of the following series:

u(x, t) = e−t
(

1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
)

,

(72)

which is equivalent to the exact form u(x, t) = ex−t .
Table 4 shows the values of the third-approximate L-

RPSM solution when α = 1.25, 1.5, 1.75, 2 and the
ES of S-FT equation as in IVP (68) and (69) for different
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Table 3. The numerical results of Re. Err for Application 1 when α = 2.

t x VIM HPM ADM RPSM L-RPSM

0.2 −10 2.53968 × 10−7 2.53968 × 10−7 2.53968 × 10−7 2.53968 × 10−7 2.53968 × 10−7

1 2.53968 × 10−9 2.53968 × 10−9 2.53968 × 10−9 2.53968 × 10−9 2.53968 × 10−9

10 2.53968 × 10−7 2.53968 × 10−7 2.53968 × 10−7 2.53968 × 10−7 2.53968 × 10−7

0.4 −10 3.25079 × 10−5 3.25079 × 10−5 3.25079 × 10−5 3.25079 × 10−5 3.25079 × 10−5

1 3.25079 × 10−7 3.25079 × 10−7 3.25079 × 10−7 3.25079 × 10−7 3.25079 × 10−7

10 3.25079 × 10−5 3.25079 × 10−5 3.25079 × 10−5 3.25079 × 10−5 3.25079 × 10−5

0.6 −10 5.55429 × 10−4 5.55429 × 10−4 5.55429 × 10−4 5.55429 × 10−4 5.55429 × 10−4

1 5.55429 × 10−6 5.55429 × 10−6 5.55429 × 10−6 5.55429 × 10−6 5.55429 × 10−6

10 5.55429 × 10−4 5.55429 × 10−4 5.55429 × 10−4 5.55429 × 10−4 5.55429 × 10−4

0.8 −10 4.16102 × 10−3 4.16102 × 10−3 4.16102 × 10−3 4.16102 × 10−3 4.16102 × 10−3

1 4.16102 × 10−5 4.16102 × 10−5 4.16102 × 10−5 4.16102 × 10−5 4.16102 × 10−5

Figure 1. The surface graphs of the AS and ES of Application 1: (a) u3(x, t) when α = 4/3, (b) u3(x, t) when α = 5/3, (c)
u3(x, t) when α = 2, (d) u(x, t) = x + x2 sinh t (the ES).

values of x and t on the domain (0, 1)×[0, 1]. From the
results, we conclude that the L-RPSM is a simple and
attractive method for finding the solution.

Application 3. Consider the following non-homo
geneous S-FT equation:

∂αu(x, t)

∂xα
= ∂2u(x, t)

∂t2 + ∂u(x, t)

∂t
+ u(x, t) − xα

−t + 1, x ≥ 0, t ≥ 0, 1 < α ≤ 2, (73)

subject to

u(0, t) = t, ux (0, t) = 0. (74)
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Table 4. The numerical results of the AS and ES for Application 2.

x t α = 1.25 α = 1.5 α = 1.75 α = 2 ES

0.1 0 1.1528283840 1.1249113028 1.1114863557 1.1051709180 1.1051709180
0.25 0.8978236482 0.8760818035 0.8656264442 0.8607079764 0.8607079764
0.5 0.6992257603 0.6822931946 0.6741505526 0.6703200460 0.6703200460

0.75 0.5445575696 0.5313704742 0.5250289782 0.5220457767 0.5220457767
1 0.4241018616 0.4138317414 0.4088929794 0.4065696597 0.4065696597

0.3 0 1.5388954231 1.4433675568 1.3852246836 1.3498588058 1.3498588075
0.25 1.1984929606 1.1240957835 1.0788140683 1.0512710950 1.0512710963
0.5 0.9333872562 0.8754466764 0.8401812411 0.8187307520 0.8187307530

0.75 0.7269227260 0.6817985571 0.6543338085 0.6376281508 0.6376281516
1 0.5661279882 0.5309852502 0.5095956825 0.4965853031 0.4965853037

0.5 0 2.0193007631 1.8435124031 1.7270532932 1.6487211681 1.6487212707
0.25 1.5726330156 1.4357289031 1.3450304571 1.2840253368 1.2840254166
0.5 1.2247678240 1.1181467940 1.0475107733 0.9999999378 1.0000000000

0.75 0.9538501404 0.8708135988 0.8158022105 0.7788007346 0.7788007830
1 0.7428592363 0.6781903126 0.6353474003 0.6065306219 0.6065306597

0.7 0 2.6071247987 2.3354214282 2.1472885459 2.0137511581 2.0137527074
0.25 2.0304308348 1.8188280371 1.6723100010 1.5683109789 1.5683121854
0.5 1.5813011241 1.4165046996 1.3023963383 1.2214018184 1.2214027581

0.75 1.2315185537 1.1031749692 1.0143072882 0.9512286926 0.9512294245
1 0.9591076140 0.8591535299 0.7899433103 0.7408176507 0.7408182206

0.9 0 3.3221660984 2.9361819817 2.6611880427 2.4595912626 2.4596031111
0.25 2.5873055589 2.2867008266 2.0725353315 1.9155316014 1.9155408290
0.5 2.0149955953 1.7808843944 1.6140921391 1.4918175111 1.4918246976

0.75 1.5692801475 1.3869541609 1.2570562219 1.1618286459 1.1618342427
1 1.2221566077 1.0801609866 0.9789963700 0.9048330592 0.9048374180

We noted that this application is an extension of the
third example in [41], where it was converted to the
general form that is suggested in (1) by replacing x2 by
xα since x2 is of a power 2 which must be of the form
j + iα, j = 0, 1, . . . ,m − 1, i = 0, 1, 2, . . . , that is
either of the form iα or iα + 1 since m = 2.

By referring to the general form as in the IVP (1)
and (2) and comparing it with the S-FT equation as in
the IVP (73) and (74), we obtain that m = 2, φ0(t) =
t, φ1(t) = 0, a0(t) = a1(t) = a2(t) = −1, ac(t) =
0, c = 3, 4, 5, . . . , z and g(x, t) = −xα − t + 1 (recall
that in the space applications, we replace x by t and t
by x).

To determine the form of the coefficients fi j (t), j =
0, 1, i = 0, 1, 2, . . ., we need to use eq. (56). To facili-
tate and accelerate the calculations we compute the value
of the term (D j

x D
(i−1)α
x g)(0, t), j = 0, 1, i = 1, 2, . . ..

Hence

g(0, t) = −t + 1,

(Dxg) (0, t) = 0,(
Dα
x g

)
(0, t) = −	(α + 1),

(
Dx D

α
x g

)
(0, t) = 0,

(D j
x D

(i−1)α
x g)(0, t) = 0, j = 0, 1, i = 3, 4, 5, . . . .

(75)

Returning to eq. (56), after simple calculations we
find the forms of fi j (t), j = 0, 1, i = 0, 1, 2, . . .,
respectively as

f00(t) = t,

f10(t) = 2,

fi0(t) = 2 − 	(α + 1), i = 2, 3, 4, . . .

fi1(t) = 0, i = 0, 1, 2, 3, 4, . . . (76)

Hence, by using eq. (58) we obtained the AS for IVP
(73) and (74) as follows:

uk(x, t) = t + 2xα

	(α + 1)

+
k∑

i=2

2 − 	(α + 1)

	(iα + 1)
xiα, k = 2, 3, . . . (77)

When α = 2 as k → ∞, we have u(x, t) = t + x2,
which is the ES of the IVP (73) and (74).

Application 4. Consider the following T-FV equation
of large membranes:
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∂αu(x, t)

∂tα
= w2

(
∂2u(x, t)

∂x2 + 1

x

∂u(x, t)

∂x

)
,

x, t ≥ 0, 1 < α ≤ 2, (78)

with the non-homogeneous initial conditions

u(x, 0) = ξ(x), ut (x, 0) = wψ(x), (79)

where u(x, t) represents the probability density function
of finding a particle at position x at time t and w is the
wave velocity of free vibration.

By referring to the T-FV equation as in the IVP (1) and
(2) and comparing it with the general form as in the IVP
(78) and (79), we obtainm = 2, φ0(x) = ξ(x), φ1(t) =
wψ(x), a1(x) = −w2/x, a2(x) = −w2, ac(x) =
0, c = 0, 3, 4, 5, . . . , z and g(x, t) = 0.

To determine the form of the coefficients fi j (t), j =
0, 1, i = 0, 1, 2, . . .., we need to use eq. (56), which
after easy calculations, leads to

f00(x) = ξ(x),

f01(x) = wψ(x),

f10(x) = w2
(
D2
xξ(x) + 1

x
Dxξ(x)

)
,

f11(x) = w3
(
D2
xψ(x) + 1

x
Dxψ(x)

)
,

f20(x) = w4
(
D4
xξ(x) + 2

x
D3
xξ(x) − 1

x2 D
2
xξ(x)

+ 1

x3 Dxξ(x)

)
,

f21(x) = w5
(
D4
xψ(x) + 2

x
D3
xψ(x) − 1

x2 D
2
xψ(x)

+ 1

x3 Dxψ(x)

)
,

f30(x) = w6
(
D6
xξ(x) + 3

x
D5
xξ(x) − 3

x2 D
4
xξ(x)

+ 6

x3 D
3
xξ(x) − 9

x4 D
2
xξ(x) + 9

x5
Dxξ(x)

)
,

f31(x) = w6
(
D6
xψ(x) + 3

x
D5
xψ(x) − 3

x2 D
4
xψ(x)

+ 6

x3 D
3
xψ(x) − 9

x4 D
2
xψ(x) + 9

x5
Dxψ(x)

)
.

(80)

Hence, by using eq. (58) we have obtained the infinite
series solution for IVP (78) and (79) as follows:

u(x, t)

= ξ(x) + wψ(x)t + w2
(
D2
xξ(x) + 1

x
Dxξ(x)

)

× tα

	(α+1)
+w3

(
D2
xψ(x)+ 1

x
Dxψ(x)

)
tα+1

	(α+2)

+w4
(
D4
xξ(x) + 2

x
D3
xξ(x) − 1

x2 D
2
xξ(x)

+ 1

x3 Dxξ(x)

)
t2α

	(2α + 1)
+ w5

(
D4
xψ(x)

+2

x
D3
xψ(x) − 1

x2 D
2
xψ(x) + 1

x3 Dxψ(x)

)

× t2α+1

	(2α + 2)
+ · · · . (81)

Case 1: If ξ(x) = x2 and ψ(x) = x , then eq. (81) can
be reduced to

u(x, t) = x2 + 4w2tα

	(1 + α)
+ wt x Eα,2

(
w2

x2 Mtα
)

. (82)

Case 2: If ξ(x) = x and ψ(x) = x , then eq. (81) can be
reduced to

u(x, t) = xEα

(
w2

x2 Mtα
)

+ wt x Eα,2

(
w2

x2 Mtα
)

, (83)

where

Eα(t) =
∞∑

n=0

tn

	(nα + 1)
,

Eα,β(t) =
∞∑

n=0

tn

	(nα + β)

are Mittag–Leffler function and generalised Mittag–
Leffler function respectively, and Mn = [1.3.5 . . . (2n−
1)]2.

Case 3: If ξ(x) = x2 and ψ(x) = x2, then eq. (81) gives

u(x, t) = x2 + wt x2 + 4w2tα

	(α + 1)
+ 4w3tα+1

	(α + 2)
. (84)

The results in eqs (82)–(84) are the same results which
are obtained by [43,44].

Figures 2–4 show the values of u(x, t) for different
values of radii of the membrane and time in three dif-
ferent cases. It seen from figures 2(a), 3(a) and 4(a) that
the values of u(x, t) increase with the increase of t for
w = 5. It is also seen from figures 2(b), 3(b) and 4(b)
that the values of u(x, t) increase with the increase of t
for wave velocity w = 5 and x = 6, but decrease with
the increase of values of α which confirms the expo-
nential decay of the regular Brownian motion. It is also
observed that the rate of change of u(x, t) in Case 3 is
more than the rate of change in Cases 1 and 2, which
means that the rate of change of the values of u(x, t)
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Figure 2. (a) u(x, t) when w = 5 and α = 3/2 for Case 1 and (b) u(x, t) for various values of α when w = 5 and x = 6 for
Case 1.

Figure 3. (a) u(x, t) a when w = 5 and α = 3/2 for Case 2 and (b) u(x, t) for various values of α when w = 5 and x = 6
for Case 2.

Table 5. The numerical result of the AS and ES for Application 5.

x t α = 0.80 α = 0.90 α = 1 ES Abs. Err.

−2 0.1 0.11451352 0.11883739 0.12245643 0.12245643 3.8858 × 10−16

0.3 0.09147088 0.09582747 0.10025884 0.10025884 7.1263 × 10−12

0.5 0.07610181 0.07884817 0.08208500 0.08208500 6.9358 × 10−10

0.7 0.06477257 0.06570414 0.06720553 0.06720551 1.4060 × 10−08

0.9 0.05603574 0.05529838 0.05502335 0.05502322 1.3247 × 10−07

0 0.1 0.84614679 0.87809612 0.90483742 0.90483742 2.7796 × 10−15

0.3 0.67588349 0.70807456 0.74081822 0.74081822 5.2657 × 10−11

0.5 0.56232056 0.58261353 0.60653066 0.60653066 5.1249 × 10−09

0.7 0.47860815 0.48549155 0.49658541 0.49658530 1.0389 × 10−07

0.9 0.41405119 0.40860281 0.40657064 0.40656966 9.7885 × 10−07

2 0.1 6.25222608 6.48830151 6.68589444 6.68589444 2.2204 × 10−14

0.3 4.99414099 5.23200266 5.47394739 5.47394739 3.8909 × 10−10

0.5 4.15501819 4.30496409 4.48168910 4.48168907 3.7868 × 10−08

0.7 3.53646244 3.58732430 3.66929743 3.66929666 7.6763 × 10−07

0.9 3.05944744 3.01918905 3.00417325 3.00416602 7.2328 × 10−06



Pramana – J. Phys.          (2022) 96:207 Page 15 of 17   207 

Figure 4. (a) u(x, t) when w = 5 and α = 3/2 for Case 3 and (b) u(x, t) for various values of α when w = 5 and x = 6 for
Case 3.

when ξ(x) and ψ(x) are nonlinear in nature is more
than when ξ(x) and ψ(x) are linear in nature.

Application 5. Consider the following T-FSH equa-
tion:

∂αu(x, t)

∂tα
+ (1 − r)u(x, t) + 2

∂2u(x, t)

∂x2

+∂3u(x, t)

∂x3 = 0, 0 < α ≤ 1, (85)

with the initial conditions

u(x, 0) = ex , (86)

where r is the real bifurcation parameter, u(x, t) is the
scalar valued function defined on the line or the plane.
In this application α ∈ (0, 1]; that is m = 1. Therefore,
the solution of the Laplace form of the IVP (85) and (86)
have the following expansion:

U (x, s) =
∞∑

i=0

fi (x)

siα+1 . (87)

Depending on the general form of the IVP (1) and
(2) and comparing it with the T-FSH equation as in the
IVP (85) and (86), we can obtain values of elements to
the solution of IVP (85) and (86), which are φ0(x) =
ex , a0(x) = (1 − r), a2(x) = 2, a3(x) = 1, ac(x) =
0, c = 1, 4, 5, . . . , z and g(x, t) = 0. According to
eq. (56), we find fi (x) = (r − 4)iex , i = 0, 1, 2, . . ..
Therefore, the solution of the Laplace form of the IVP
(85) and (86) will be

U (x, s) =
∞∑

i=0

(r − 4)iex

siα+1 . (88)

Employ inverse LT for eq. (88) to get the AS of the
IVP (85) and (86) as

u(x, t) =
∞∑

i=0

(r − 4)iex

	(iα + 1)
t iα, (89)

which is the same results as that obtained by RPSM [45].
The AS of the IVP (85) and (86) has general pattern form
which is coinciding well with the ES for α = 1 as:

u(x, t)

=ex
(

1+(r − 4)t+ (r − 4)2

2
t2+ (r − 4)3

3! t3+· · ·
)

= ex+(r−4)t . (90)

Table 5 shows numerical result and absolute error of
AS, u8(x, t) of T-FSH equation as in (85) and (86) for
various values of α when r = 3. Figure 5 shows the
surface graph of the eighth-AS by L-RPSM for T-FSH
equation as in (85) and (86) for various values of α and
r = 3 when x ∈ [−2, 2] and t ∈ [0, 1].

Application 6. Consider the non-homogeneous T-FNS
equation:

∂αu(x, t)

∂tα
= λ + ∂2u(x, t)

∂x2 + 1

x

∂u(x, t)

∂x
,

λ ∈ R, x > 0, t ≥ 0, 0 < α ≤ 1, (91)

with the following non-homogeneous initial condition

u(x, 0) = 1 − x2. (92)

Since m = 1 as the previous application, we let the
solution of the Laplace form of the T-FNS equation (91)
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Figure 5. The surface graphs of the AS of Application 5: (a) u8(x, t) when α = 0.25, (b) u8(x, t) when α = 0.5, (c) u8(x, t)
when α = 0.75, (d) u8(x, t) when α = 1.

and (92) as

U (x, s) =
∞∑

i=0

fi (x)

siα+1 . (93)

Depending on eqs (1) and (2), we can conclude that:
φ0(x) = 1−x2, a1(x) = −1/x, a2(x) = −1, ac(x) =
0, c = 0, 3, 4, 5, . . . , z and g(x, t) = λ. According to
eq. (56), we find f0(x) = 1 − x2, f1(x) = λ − 4 and
fi (x) = 0, i = 2, 3, 4, . . .. Therefore, the solution of
the Laplace form of the T-FNS (91) and (92) will be as
follows:

U (x, s) = 1 − x2

s
+ λ − 4

sα+1 . (94)

Therefore, by taking inverse LT on eq. (94), we get
the ES of the T-FNS (91) and (92) as follows:

u(x, t) = 1 − x2 + (λ − 4)
tα

	(α + 1)
, (95)

which is the same solution that is obtained by the ADM
[46] and RPSM [40]. When α = 1, the solutions of
the T-FNS (91) and (92) has the general pattern form

which is coinciding with the ES in terms of the following
polynomial: u(x, t) = 1 − x2 + (λ − 4)t .

5. Conclusion

In this paper, we developed a new analytical method, the
so-called L-RPSM, to solve high-order linear FPDEs in
Caputo sense. The merit of our method is that we can
convert the FDE to algebraic equation using LT opera-
tor which reduces the size of the computational work
needed to find the solution in a successive algebraic
steps. The main advantage of the proposed method is
the simplicity in computing the coefficients of terms of
series solution by using the concept of limit at infin-
ity only. Other well-known analytical method such as
RPSM need to obtain the FD each time to determine
the unknown coefficients in series solutions, and VIM,
ADM or HPM need the integration operators which is
difficult in fractional case. Our proposed method has
been tested in six important applications to reveal accu-
racy, speed, simplicity and applicability in finding the ES
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and accurate ASs to linear FPDEs. These applications
dealt with five types of linear FPDEs, namely the T-FW,
S-FT, T-FV, T-FSH and T-FSH equations. The results
obtained indicated their conformity with easy calcula-
tion steps and less complexity compared to the results
obtained in other methods. It is worth noting that the
proposed method can be applied for obtaining ES and
ASs for other important types of linear and non-linear
FPDEs.
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