
Pramana – J. Phys.          (2022) 96:128 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-022-02359-2

A study on the dynamics of alkali–silica chemical reaction
by using Caputo fractional derivative

PUSHPENDRA KUMAR1 ,∗, V GOVINDARAJ1, VEDAT SUAT ERTURK2

and MAGDA H ABDELLATTIF3

1Department of Mathematics, National Institute of Technology Puducherry, Karaikal 609 609, India
2Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, Atakum 55200,
Samsun, Turkey
3Department of Chemistry, College of Science, Taif University, Al-Haweiah, P.O. Box 11099, Taif 21944,
Saudi Arabia

*Corresponding author. kumarsaraswatpk@gmail.com

MS received 13 November 2021; revised 28 January 2022; accepted 1 February 2022

Abstract. In this paper, we propose a mathematical study to simulate the dynamics of alkali–silica reaction (ASR)
by using the Caputo fractional derivative. We solve a non-linear fractional-order system containing six differential
equations to understand the ASR. For proving the existence of a unique solution, we use some recent novel properties
of Mittag–Leffler function along with the fixed point theory. The stability of the proposed system is also proved by
using Ulam–Hyers technique. For deriving the fractional-order numerical solution, we use the well-known Adams–
Bashforth–Moulton scheme along with its stability. Graphs are plotted to understand the given chemical reaction
practically. The main reason to use the Caputo-type fractional model for solving the ASR system is to propose a
novel mathematical formulation through which the ASR mechanism can be efficiently explored. This paper clearly
shows the importance of fractional derivatives in the study of chemical reactions.
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1. Introduction

Concrete cancer, named as alkali–silica reaction (ASR),
is an injurious protuberance reaction that comes over
time in concrete between the paste of highly alkaline
cement and the reactive amorphous silica presented
in numerous usual aggregates, giving adequate mois-
ture. This harmful chemical reaction is the reason for
the elaboration of the exchanged aggregate by the
fabrication of a viscous and soluble sodium silicate
gel (Na2SiO3·nH2O, also indicated Na2H2SiO4·nH2O).
When this hygroscopic gel absorbs water, it swells and
expands in volume: it applies a smashing stress inside
the siliceous aggregate, and becomes the reason of death
or loss of stability of the concrete, at the end leading to its
failure. This chemical reaction induces grave cracking
in concrete, causing structural losses and destruction of

a specific structure (patterns can be seen from figure 1).
For the first time, Thomas E Stanton in California with
his research in 1940 [1], recognised the spreading of
concrete via reaction between aggregates and cement.

ASR is a multistaged [2] complex [3] chemical reac-
tion and virtually an acid–base reaction. In the pore
solution, silica in solid form acts as an acid reactant,
whereas sodium and/or potassium hydroxide, as well as
may be calcium, are key reactants. Water is the medium
of the reaction and calcium sodium silicate hydrate, or
calcium potassium silicate hydrate [4] are the product
of the reaction, based on the relative conjuncture of
the cement paste and the age of the ASR gel that is
produced [5]. Alkali aluminate, alkali sulphates and
solid solution of belite are forms in which the alkalis
are mixed in the Portland cement. Among these, alkali
sulphates are the cardinal and water-soluble phase, that
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Figure 1. Patterns of alkali–silica reaction (ASR).

means in the pore solution, sulphate is the counter ion
of the alkalis at the starting phase of cement hydration.
In that manner, when ettringite’s subsequent precipita-
tion is finished then the alkalis’ counter ion becomes
hydroxide. It will play a role in the growth of the pH of
the pore solution when both alkali ions (K+ and Na+)
and hydroxide ions (OH−) condense at a substantially
high level to attack the reactive silica in the aggregate
to build alkali–silica gel [6].

At the first phase, the reaction starts from the periph-
ery of the aggregate without producing expansion. Then
the expansion begins inboard the aggregate where alkali-
rich ASR gel is enclosed within the microstructure of the
reacted aggregate. In the next phase, concrete deteriora-
tion becomes much observable when the cement paste
begins cracking, and diminution extends by enhanc-
ing the density and width of the cracks. In the end,
severe damage occurs after active expansion of concrete,
including structural failures. Larger aggregate leads to
retaining larger concentrations of alkali ions and OH
within the aggregate. So manufacturing of expansive
alkali-type ASR gel starts inside the crude cluster, rather
than on the layer where calcium from the paste of cement
is administrated. It defines the grievous cracking tenta-
tive in the unrefined cluster and the earlier expiry of the
reaction in the immaculate aggregate. When ASR gel
transmigrates from the effective aggregate and accesses
the paste of cement, it contends calcium and leaves
alkali, thus its conformation influences one of the CSH
gel and then squanders the power for diffusion, succes-
sively forwarding to termination of the ASR [7]. This
compositional variation of ASR gel (the proportion of
substitution of alkalis by calcium), that stows rifts from
the reactive aggregate into the paste of cement, has also
a ‘sigmoidal curve’ indicative of a diffusion mechanism
[8]. For more studies on the given reaction, one can refer
to the papers mentioned in the cited references.

In this paper, we are intended to study a mathematical
model for understanding the mechanism of alkali–silica
reaction by using one of the most famous Caputo

fractional derivative. Nowadays, a number of real-
world problems have been discussed by using fractional
derivatives [9–13]. In the mathematical epidemiology,
various types of fractional-order models have been pro-
posed to simulate different types of diseases [14–17].
Particularly, the current deadly epidemic called Covid-
19 was studied by using fractional-order models [18,19].
In [20], authors have studied the dynamics of cancer
therapy by using the Caputo-type time-delay system.
Kumar et al [21] have discussed a complex fractional-
order model for describing the love story of a couple.
Kumar et al [22] have explored the outbreaks of Covid-
19 in Argentina by using the daily reported cases. Study
given in [23] is dedicated to the Covid-19 forecast-
ing in Cameroon by using Caputo fractional derivative.
Kumar and Erturk [24] have proposed a new generalised
Caputo-type mathematical model for studying an infec-
tion in the population of butterflies. In [25], a study on
tuberculosis is proposed. In [26], dynamics of 2019-
nCoV was defined in Spain along with optimal control
problem. In [27], Covid-19 cases in Bangladesh and
India were studied by using a novel fractional-order
mathematical model. Abboubakar et al [28] have solved
a model of malaria epidemic by using Euler and Adams–
Bashforth methods. Kumar and Erturk [29] have solved
a Covid-19 model by using a modified form of the
well-known predictor–corrector method. Kumar et al
[30] have proposed a new model of Covid-19 by tak-
ing the idea of vaccine rate. A mathematical model
for lassa hemorrhagic fever is given in [31]. In [32],
a study on CDV and rabies epidemics is proposed in the
sense of fractional derivatives. A mathematical model
for describing the dynamics of huanglongbing transmis-
sion in the population of citrus trees is given in ref. [33].
Study given in [34] discusses the mathematical structure
of mosaic epidemic. A new, efficient and easy algorithm
to solve the generalised Caputo-type fractional-order
initial value problems is given in ref. [35]. Odibat
et al [36] have proposed a modified form of the redictor–
corrector (P–C) algorithm to simulate the time-delay
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type initial value problems in the sense of gener-
alised Caputo fractional derivative. In [37], one more
generalised version of P–C algorithm is given. Angst-
mann et al [38] have proved the occurrence of intrinsic
discontinuities in the solutions of Caputo–Fabrizio and
Atangana–Baleanu-type evolution equations.

The current paper is arranged as follows: In §2, we
recall some definitions and results. In §3, the fractional-
order model dynamics is given in the sense of Caputo
derivative. Analysis related to the existence of solu-
tion along with the derivation of numerical solution by
using Adams–Bashforth–Moulton scheme is given in
§4. Many experimental simulations are given in §5. At
the end, we finish the paper with a conclusion.

2. Preliminaries

Firstly, we recall the following preliminaries:

DEFINITION 1

The Riemann–Liouville (RL) fractional-order integral
of a function G (t) ∈ Cη (η ≥ −1) is given by [39]

J γG(t) = 1

�(γ )

∫ t

0
(t − s)γ−1G(s)ds,

J 0G (t) = G(t).

DEFINITION 2

The Caputo fractional derivative of order γ > 0 of the
function G : (0, ∞) → R is given by [39]

Dγ
t G (t) = 1

�(k − γ )

∫ t

0
(t − ξ)k−γ−1Gk(ξ)dξ, (1)

where k = [γ ] + 1 and [γ ] is the integer part of γ.

DEFINITION 3

The series expansion of the two-parametrised form of
the Mittag–Leffler function for a, b > 0 is given by
[40]

Ea, b (t) =
∞∑
t=0

t i

� (ai + b)
. (2)

Lemma 1. Let d, e, l, h, r, γ > 0. Then there exists a
real number α > 0 such that for t ∈ [0, l],
th Ed,e+γ (αtd) < r Ed,e(αt

d). (3)

Proof. Refer to Lemma 2.1 in [40]. ��
Theorem 1. Let d, r, l, γ > 0. If e < min{γ, 1}, then
there exists a real number α > 0 such that

1

�(γ )

∫ t

0
(t − s)γ−1 Ed,1−e(αsd)

se
ds < r Ed, 1−e(αt

d),

t ∈ [0, l]. (4)

Proof. Refer to Theorem 2.1 in [40]. ��

3. Model dynamics

In this section, we model the chemical reactions which
are given in ref. [6] [eqs (1)–(3)] by using Caputo
fractional derivative operator. OH− ions perform the
hydrolysis of the reactive silica (siloxane) to prepare
an alkali–silica gel. In that hydrolysis reaction, the high
pH pore fluid reacts with Si–O–Si bonds to make silicic
acid (silanol bond) and alkali silicate gel, as follows:

�1︷ ︸︸ ︷
Si − O − Si︸ ︷︷ ︸

Siloxane

+
�2︷ ︸︸ ︷

R+ + OH
−︸ ︷︷ ︸

Hydroxyl ions

−→
β1

�3︷ ︸︸ ︷
Si − O − R︸ ︷︷ ︸

Alkali−silicate (gel)

+
�4︷ ︸︸ ︷

H − O − Si︸ ︷︷ ︸
Silicic acid

, (5)

where R+ denotes an alkali ion such as Na+ or K+.
The silicic acid which is formed here is weak, so that

it instantly reacts with further hydroxyl releasing water
and negative charged Si–O−, thus readily copious and
dapper potassium, calcium and sodium ions will pro-
trude in the gel to equilibrate the species having negative
charge.

�4︷ ︸︸ ︷
H − O − Si︸ ︷︷ ︸

Silicic acid

+
�2︷ ︸︸ ︷

R+ + OH−︸ ︷︷ ︸
Hydroxyl ions

−→
β2

�3︷ ︸︸ ︷
Si − O − R︸ ︷︷ ︸

Alkali silicate (gel)

+
�5︷︸︸︷

H2O︸︷︷︸
Water

.

(6)

The resultant alkali silicate (alkali silicate gel) is hygro-
scopic (expands in the presence of water).

�3︷ ︸︸ ︷
Si − O − R︸ ︷︷ ︸

Alkali−silicate (gel)

+
�5︷ ︸︸ ︷

nH2O︸ ︷︷ ︸
Water

−→
β3

�6︷ ︸︸ ︷
Si − O− + (H2O)n + Na+︸ ︷︷ ︸

Expanded alkali silicate (gel)

. (7)

In eqs (5)–(7), β1, β2, β3 are the reaction rates. So,
the rate of change of concentration for all the six given
constituents �1, �2, �3, �4, �5, �6 in the sense of
Caputo fractional derivative can be expressed as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ DC
t �1(t) = − β

γ
1 �1(t)�2(t),

γ DC
t �2(t) = − β

γ
1 �1(t)�2(t) − β

γ
2 �4(t)�2(t),

γ DC
t �3(t) = β

γ
1 �1(t)�2(t) + β

γ
2 �4(t)�2(t)

− β
γ
3 �3(t)�5(t),

γ DC
t �4(t) = β

γ
1 �1(t)�2(t) − β

γ
2 �4(t)�2(t),

γ DC
t �5(t) = β

γ
2 �4(t)�2(t) − β

γ
3 �3(t)�5(t),

γ DC
t �6(t) = β

γ
3 �3(t)�5(t),

(8)

where γ DC
t is the Caputo-type fractional operator of

order γ. We use fractional order power γ on both
sides in the above model for taking the equal dimen-
sion time−γ . The advantage to use this Caputo operator
is that the given operator can be easily generalised as
an integer-order derivative if fractional-order γ tends
to one. Also, efficiency of capturing memory effects
increases the impact of fractional derivatives which is
the main motivation of this new fractional-order model.
To our knowledge, the given chemical reaction is not
yet studied by any kind of fractional derivatives which
increases the impact of this model.

Now for further analysing the existence of solution
and numerical approximations of fractional-order sys-
tem (8), we re-write it to a compact equivalent form with
the help of singular kernels, which is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γ DC
t �1(t) = K1(t, �1),

γ DC
t �2(t) = K2(t, �2),

γ DC
t �3(t) = K3(t, �3),

γ DC
t �4(t) = K4(t, �4),

γ DC
t �5(t) = K5(t, �5),

γ DC
t �6(t) = K6(t, �6),

(9)

with initial conditions �1(0) = �10, �2(0) =
�20, �3(0) = �30, �4(0) = �40, �5(0) =
�50, �6(0) = �60 . Here K1, K2, K3, K4, K5 and
K6 are the proposed singular kernels with respect to the
given classes.

4. Fractional-order analysis of the proposed model

In this section, we analyse the existence of a unique
global solution using the properties of Schauder fixed-
point theorem and Mittag–Leffler function using impor-
tant lemmas and theorems. After that, we shall derive
the numerical solution of the model with the help of a
numerical scheme.

4.1 Analysis of the existence and uniqueness

In this section, we adopt the first equation of the com-
pact form (9) and perform the necessary analysis (for
other equations, the analysis will be the same). It is well
known that the first equation of the initial value problem
(9) of Caputo-type is equivalent to the Volterra integral
equation

�1(t) = �1(0) + 1

�(γ )

∫ t

0
(t − s)γ−1K1(s, �1)ds,

(10)

with the assumption of continuity of �1. In a most famil-
iar way, we convert the given integral eq. (10) with the
fixed-point problem by using O written by

O�1(t) = �1(0) + 1

�(γ )

∫ t

0
(t − s)γ−1K1(s, �1)ds.

(11)

Let L > 0 and Y be a Banach space consisting of func-
tion �1 ∈ C[0, L] associated with the Chebyshev-type
norm ‖ · ‖ .

Lemma 2. Assume that B is a bounded, closed and con-
vex subset of Banach space Y and O(B) ⊂ B, then O
exists at least one fixed point inside B.

Proof. With the application of Schauder’s fixed-point
theorem, this result can be easily proved. For complete
justification of the proof, refer to Theorem 6.1 in ref.
[41]. ��
Now, by using Lemma 2, initial value problem (IVP) (9)
is converted to the problem for simulating a bounded,
closed and convex subset of space Y with the condition
O(B) ⊂ B.

For defining the upcoming result, we fix the assump-
tions given below:

(A1) K1 : [0, T ] × R → R is continuous.
(A2) Constants T1 ∈ (0, T ], a ∈ [0, min{γ, 1}), p1,

p2 ∈ (0, 1], b0, b1, b2, b3 > 0 exist, such that

|K1(t, x)|≤
⎧⎨
⎩
b0+ b1

ta
|x |p1 for t ∈ (0, T1] and x ∈ R

b2 + b3|x |p2 for t ∈ [T1, T ] and x ∈ R.

(12)

Theorem 2. Assume that (A1) and (A2) exist. Then
IVP (9) has at least one solution in C[0, T ].
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Proof. Adopt a real number 0 ≤ r with 2rb1 < 1. From
Theorem 1, a real number λ1 > 0 exists such that

1

�(γ )

∫ t

0
(t − s)γ−1 E2,1−γ (λ1s2)

sγ
ds

< r E2,1−γ (λ1t
2). (13)

Take a real number λ2 > 0 with 2b3 < λ2. Derive a
subset B of space Y in the form:

B = {�1 ∈ Y : |S(t)|
≤

{
2M1E2,1−a(λ1t2) for t ∈ [0, T1]
2M2Eγ,1(λ2tγ ) for t ∈ [T1, T ]

}
,

where

M1 = max {�(1 − a), �(1 − a)

×
[
�1(0) + b0T

γ
1

�(γ + 1)

]}

and

M2 = max

{
1, �1(0) + 2M1E2,1−γ

(
λ1T

2
1

)

+ b2T γ

�(γ + 1)

}
.

It is convenient to show that B is bounded, closed and
convex. By (A2) and (13), we can see that for each
�1 ∈ B and t ∈ [0, T1],

|O�1(t)| ≤ �1(0) + 1

�(γ )

∫ t

0
(t − s)γ−1

×|K1(s, �1(s))|ds
≤ �1(0) + 1

�(γ )

∫ t

0
(t − s)γ−1

×
(
b0 + b1

sγ
|�1(s)|p1

)
ds

≤ �1(0) + b0tγ

�(γ + 1)
+ 1

�(γ )

∫ t

0
(t − s)γ−1

×b1

sγ
|�1(s)|p1ds ≤ �1(0) + b0tγ

�(γ + 1)

+ b1

�(γ )

∫ t

0
(t − s)γ−1

×2M1E2,1−γ (λ1sβ)

sγ
ds

< M1E2,1−γ (λ1t
2) + 2rb1M1E2,1−γ (λ1t

2)

< 2M1E2,1−γ (λ1t
2).

From Theorem 10.1 in [42], we can say that for each
�1 ∈ B and t ∈ [T1, T ],

|O�1(t)| ≤ �1(0) + 1

�(γ )

∫ T1

0
(t − s)γ−1

×|K1(s, �1(s))|ds
+ 1

�(γ )

∫ t

T1

(t − s)γ−1|K1(s, u(s))|ds
≤ �1(0) + 2M1E2,1−γ

(
λ1T

2
1

)

+ 1

�(γ )

∫ t

0
(t − s)γ−1(b2+b3|�1(s)|p2) ds

≤ �1(0) + 2M1E2,1−γ

(
λ1T

2
1

) + b2tγ

�(γ + 1)

+ 1

�(γ )

∫ t

0
(t − s)γ−12b3M2Eγ,1(λ2s

γ )ds

< M2+ 2b3

λ2
M2Eγ,1(λ2t

γ )<2M2Eγ,1(λ2t
γ )

which gives T : B → B. Using Lemma 2, IVP (9) has
at least one solution in B. ��
Now, for proving the uniqueness of the solution, we take
the following assumption:

(A3) There exist constants a ∈ [0, min{γ, 1}), b1,

b2 > 0, T1 ∈ (0, T ] such that

|K1(t, �
∗
1) − K1(t, �

∗∗
1 )|

≤
⎧⎨
⎩

b1

ta
|�∗

1−�∗∗
1 | for t ∈(0, T1] and �∗

1, �
∗∗
1 ∈ R

b2|�∗
1−�∗∗

1 | for t ∈[T1, T ] and �∗
1, �

∗∗
1 ∈ R.

(14)

Theorem 3. Assume that (A1)and (A3)hold. Then IVP
(9) has a unique solution in the space C[0, T ].

Proof. By (A3), it is convenient to show that (A2)

exists. From Theorem 2, model (9) has at least one solu-
tion. Assume that system (9) has two different solutions.
Then it is obvious to say that the integral equation (10)
will also have two solutions such as �1 and �∗

1 where
‖�1 −�∗

1‖ > 0. Take a real number r > 0 with rb < 1.
So, from Theorem 1, a real number λ > 0 exists such

that

1

�(γ )

∫ t

0
(t − s)γ−1 E2,1−γ (λ1s2)

sγ
ds

< r E2,1−γ (λ1t
2), t ∈ [0, T1]. (15)

Derive U and V as follows:

U = inf{m : |�1(t) − �∗
1(t)|

≤ mE2,1−γ (λt2), t ∈ [0, T1]},
V = inf{t ∈ [0, T1] : |�1(t) − �∗

1(t)|
= UE2,1−γ (λt2)}.
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If U �= 0, then it is clear that V �= 0. Using (A3) and
(15), we get

UE2,1−γ (λV 2) = |�1(V ) − �∗
1(V )|

≤ 1

�(γ )

∫ V

0
(V − s)γ−1|K1(s, �1(s))

−K1(s, �
∗
1(s))|ds

≤ 1

�(γ )

∫ V

0
(V − s)γ−1 b

sγ
|�1(s)

−�∗
1(s)|ds

≤ 1

�(γ )

∫ V

0
(V − s)γ−1

bME2,1−γ (λs2)

sγ
ds

< rbME2,1−γ (λV 2)

< ME2,1−γ (λV 2).

That is not possible.
When U = 0, it is apparent that �1(t) = �∗

1(t), t ∈
[0, T1]. Take a real number λ1 > 0 with b2 < λ1. Define
U1 and V1 as follows:

U1 = inf{m : |�1(t) − �∗
1(t)|

≤ mEγ,1(λ1t
γ ), t ∈ [T1, T ]},

V1 = inf{t ∈ [T1, T ] : |�1(t) − �∗
1(t)|

= UEγ,1(γ1t
γ )}.

We can see that U1 �= 0 and V1 �= 0. By (A3) and
Theorem 10.1 in [42], we have

U1Eγ,1(λ1V
γ
1 )

= |�1(V1) − �∗
1(V1)|

≤ 1

�(γ )

∫ V1

0
(V1 − s)γ−1|K1(s, �1(s))

−K1(s, �
∗
1(s))|ds

≤ 1

�(γ )

∫ V1

T
(V1 − s)γ−1b2|�1(s) − �∗

1(s)|ds

≤ 1

�(γ )

∫ V1

0
(V1 − s)γ−1b2U1Eγ,1(λ1s

γ )ds

= b2

λ1
U1Eγ,1(λ1V

γ
1 ) < U1Eγ,1(λ1V

γ
1 ).

This is impossible. Thus, model (9) has a unique solu-
tion. ��
4.2 Stability of the model

Theorem 4. [43]Consider ametric space (F, R)which
is completely generalised. Assume A : F → F is a
strictly contractive operator. If there exists an integer
v ≥ 0 with R(Av+1d, Avd) < ∞ for some d ∈ F,

(a) liml→+∞ Ald = d∗ is the unique fixed point of
A in

F∗ := {
d1 ∈ F : R(Avd, d1) < ∞}

. (16)

(b) If d1 ∈ F∗, then R(d1, d∗) ≤ (1/(1−K ))R(Ad1,

d1).
Here we are taking the space X := C(I,R),
where I := [0, T ].

Theorem 5. Let K1 : I × R → R is a continuous
function and satisfies

|K1(t, �
∗
1) − K1(t, �

∗∗
1 )| ≤ L p|�∗

1 − �∗∗
1 | (17)

for all t ∈ I, �∗
1, �∗∗

1 ∈ R, and for some L p > 0. If the
absolutely continuous function �1 : I → R satisfies∣∣∣C Dγ

0,t�1(t) − K1(t, �1(t))
∣∣∣ ≤ ε(t), (18)

∀ t ∈ I , where ε > 0 and ρ(t) is a positive, non-
decreasing and continuous function, then there is a
solution �∗

1 of first equation of model (9) such that

∣∣�1(t) − �∗
1(t)

∣∣ ≤
(
L p + δ

δ

)

×MEγ

(
(L p + δ)T γ

)
�(γ + 1)

, ερ(t),

(19)

where

M = sup
s∈[0,T ]

(
(s)γ

Eγ

(
(L p + δ)(s)γ

)
)

(20)

and δ is any positive constant.

Proof. Firstly, we derive the metric d on space X as
follows:

d(�∗
1, �

∗∗
1 ) = inf

{
D ∈ [0, ∞] : |�∗

1(t) − �∗∗
1 (t)|

Eγ

(
(L p + δ)(t)γ

)

≤ Dρ(t), ∀ t ∈ I

}
. (21)

Now, specify an operator A : X → X such that

(A�1)(t) := �1(0) + 1

�(γ )

∫ t

0
(t − s)γ−1

×K1(s, �1(s))ds. (22)

It is simple to write that d(A�10, �10) < ∞, and {�1 ∈
X : d(�10, �1) < ∞} = X, ∀ �10 ∈ X .

First we show that the operator A is a strictly contrac-
tive operator by

|(A�∗
1)(t) − (A�∗∗

1 )(t)|
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≤
∣∣∣∣
∫ t

0

(t − ξ)γ−1

�(γ )
{K1(ξ, �∗

1(ξ))

−K1(ξ, �∗∗
1 (ξ))}dξ

∣∣∣∣
≤ 1

�(γ )

∫ t

0
(t − ξ)γ−1|K1(ξ, �∗

1(ξ))

−K1(ξ, �∗∗
1 (ξ))|dξ

≤ L p

∫ t

0
(t − ξ)γ−1 |�∗

1(ξ) − �∗∗
1 (ξ)|

�(γ )
dξ

≤ L p

�(γ )

∫ t

0
(t − ξ)γ−1 |�∗

1(ξ) − �∗∗
1 (ξ)|

Eγ

(
(L p + δ)(ξ)γ

)Eγ

× (
(L p + δ)(ξ)γ

)
dξ

≤ L pd(�∗
1, �

∗∗
1 )

�(γ )

∫ t

0
(t − ξ)γ−1ρ(ξ)Eγ

× (
(L p + δ)(ξ)γ

)
dξ, for all t ∈ I. (23)

As ρ is non-decreasing,

|(A�∗
1)(t) − (A�∗∗

1 )(t)|
≤ L pd(�∗

1, �
∗∗
1 )

�(γ )
ρ(t)

×
∫ t

0
(t − ξ)γ−1

Eγ

(
(L p + δ)(ξ)γ

)
dξ

≤ L pd(�∗
1, �

∗∗
1 )

L p + δ

(
Eγ

(
(L p + δ)(ξ)γ

) − 1
)
ρ(t)

≤ L pd(�∗
1, �

∗∗
1 )

L p + δ

(
Eγ

(
(L p + δ)(ξ)γ

))
ρ(t),

for all t ∈ I (24)

so that

d(A�∗
1,A�∗∗

1 ) ≤ L p

L p + δ
d(�∗

1, �
∗∗
1 )

which shows that the operator A is a strictly contractive
operator. Now, since we have∣∣∣C Dγ

0,t�1(t) − K1(t, �1(t))
∣∣∣ ≤ ερ(t) (25)

then

|�1(t) − A�1(t), �1(t))|
≤ ε

�(γ )
ρ(t)

∫ t

0
(t − ξ)γ−1ρ(ξ)dξ (26)

which implies that

|�1(t) − A�1(t), �1(t))|
Eγ

(
(L p + δ)(ξ)γ

)

≤ ε

�(γ + 1)
ρ(t)

(t − ξ)γ

Eγ

(
(L p + δ)(ξ)γ

)

≤ εM

�(γ + 1)
ρ(t). (27)

Therefore,

d(�1,A�1) ≤ ε
M

�(γ + 1)
.

By using Theorem 4, there is a solution �∗
1 of the first

equation of (9) such that

d(�1, �
∗
1) ≤ ε

(
L p + δ

δ

)
M

�(γ + 1)

so that,

|�1(t) − �∗
1(t)| ≤

(
L p + δ

δ

)
MEγ

(
(L p + δ)T γ

)
�(γ + 1)

,

ερ(t) for all t ∈ [0, T ]. ��

4.3 Numerical solution of the given model by using
Adams–Bashforth–Moulton (ABM) method

We know that generally in the case of fractional-order
mathematical models, deriving the exact solution is not
possible. In these cases, probably we use numerical
methods to find the approximate solutions. For the last
few years, there is a very high demand of various types of
approximation methods to simulate different fractional-
order systems. Some very recent numerical schemes can
be seen in refs [35–37]. In that way, for solving the
proposed Caputo-type fractional model (9), we use the
very well-known Adams–Bashforth–Moulton scheme.
To write the numerical solution by using this scheme, we
just consider the first differential equation of the model
(9):

{
γ DC

t �1(t) = K1(t, �1), 0 ≤ t ≤ T,

�1(0)=�10, k=0, 1, 2, . . . ,m−1, where m=[γ ].
(28)

This related Volterra integral equation is given by

�1(t) = �1(0) + 1

�(γ )

∫ t

0
(t − s)γ−1K1(s, �1)ds.

(29)

Then, by following the method used in ref. [23], and tak-
ing γ ∈ [0, 1], 0 ≤ t ≤ T , h = T/N and tn = nh, for
n = 0, 1, 2, . . . , N ∈ Z+, the solution of the given
model (9) or the numerical solution of the proposed
model (8) is written as

�1n+1 = �10 + hγ

�(γ + 2)

( − β
γ
1 �P

1n+1
(t)�P

2n+1
(t)

)
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+ hγ

�(γ + 2)

n∑
j=0

a j,n+1
( − β

γ
1 �1 j (t)�2 j (t)

)
,

�2n+1 = �20 + hγ

�(γ + 2)

( − β
γ
1 �P

1n+1
(t)�P

2n+1
(t)

−β
γ
2 �P

4n+1
(t)�P

2n+1
(t)

)

+ hγ

�(γ + 2)

n∑
j=0

a j,n+1
( − β

γ
1 �1 j (t)�2 j (t)

−β
γ
2 �4 j (t)�2 j (t)

)
,

�3n+1 = �30 + hγ

�(γ + 2)

(
β

γ
1 �P

1n+1
(t)�P

2n+1
(t)

+β
γ
2 �P

4n+1
(t)�P

2n+1
(t)

−β
γ
3 �P

3n+1
(t)�P

5n+1
(t)

)

+ hγ

�(γ + 2)

n∑
j=0

a j,n+1
(
β

γ
1 �1 j (t)�2 j (t)

+β
γ
2 �4 j (t)�2 j (t)

−β
γ
3 �3 j (t)�5 j (t)

)
,

�4n+1 = �40 + hγ

�(γ + 2)

(
β

γ
1 �P

1n+1
(t)�P

2n+1
(t)

−β
γ
2 �P

4n+1
(t)�P

2n+1
(t)

)

+ hγ

�(γ + 2)

n∑
j=0

a j,n+1
(
β

γ
1 �1 j (t)�2 j (t)

−β
γ
2 �4 j (t)�2 j (t)

)
,

�5n+1 = �50 + hγ

�(γ + 2)

(
β

γ
2 �P

4n+1
(t)�P

2n+1
(t)

−β
γ
3 �P

3n+1
(t)�P

5n+1
(t)

)

+ hγ

�(γ + 2)

n∑
j=0

a j,n+1
(
β

γ
2 �4 j (t)�2 j (t)

−β
γ
3 �3 j (t)�5 j (t)

)
,

�6n+1 = �60 + hγ

�(γ + 2)

(
β

γ
3 �P

3n+1
(t)�P

5n+1
(t)

)

+ hγ

�(γ + 2)

n∑
j=0

a j,n+1
(
β

γ
3 �3 j (t)�5 j (t)

)
,

(30)

where

�P
1n+1

= �10 + 1

�(γ )

n∑
j=0

b j,n+1
( − β

γ
1 �1 j (t)�2 j (t)

)
,

�P
2n+1

= �20 + 1

�(γ )

n∑
j=0

b j,n+1
( − β

γ
1 �1 j (t)�2 j (t)

− β
γ
2 �4 j (t)�2 j (t)

)
,

�P
3n+1

= �30 + 1

�(γ )

n∑
j=0

b j,n+1
(
β

γ
1 �1 j (t)�2 j (t)

+β
γ
2 �4 j (t)�2 j (t) − β

γ
3 �3 j (t)�5 j (t)

)
,

�P
4n+1

= �40 + 1

�(γ )

n∑
j=0

b j,n+1
(
β

γ
1 �1 j (t)�2 j (t)

− β
γ
2 �4 j (t)�2 j (t)

)
,

�P
5n+1

= �50 + 1

�(γ )

n∑
j=0

b j,n+1
(
β

γ
2 �4 j (t)�2 j (t)

− β
γ
3 �3 j (t)�5 j (t)

)
,

�P
6n+1

= �60 + 1

�(γ )

n∑
j=0

b j,n+1
(
β

γ
3 �3 j (t)�5 j (t)

)

(31)

and

a j,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

nγ+1 − (n − γ )(1 + n), j = 0,

(n + 2 − j)γ+1 − 2(n + 1 − j)γ+1

+(n − j)γ+1, 1 ≤ j ≤ n,

1, j = n + 1,

b j,n+1 = hγ

γ

(
(n + 1 − j)γ − (n − j)γ

)
, 0 ≤ j ≤ n.

4.3.1 Stability analysis.

Lemma 3. [44] If 0 < γ < 1 and r is a non-negative
integer, then there exists the positive constantsCγ,1 and
Cγ,2 which depend on γ, such that

(1 + r)γ − rγ ≤ Cγ,1(1 + r)γ−1

and

(r + 2)γ+1 − 2(r + 1)γ+1 + rγ+1 ≤ Cγ,2(r + 1)γ−1.

Lemma 4. [44] Let dp,n = (n − p)γ−1(p = 1, 2, . . . ,

n−1) and dp,n = 0 for p ≥ n, γ, h, M, T > 0, rh ≤ T
and r is a posi tive integer. Let

∑p=n
p=r dp,n|ep| = 0 for

k > n ≥ 1. If

|en| ≤ Mhγ

n−1∑
p=1

dp,n|ep| + |η0|, n = 1, 2, . . . , r.

Then

|er | ≤ C |η0|, r = 1, 2, . . . ,

where C is a posi tive constant free from r and h.

Theorem 6. The given ABM scheme (30)–(31) is con-
ditionally stable.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. System dynamics for Set 1 at various fractional orders γ . (a) Variations in the constituent �1 vs. time t , (b)
variations in the constituent �2 vs. time t , (c) variations in the constituent �3 vs. time t , (d) variations in the constituent �4
vs. time t , (e) variations in the constituent �5 vs. time t and (f) variations in the constituent �6 vs. time t .
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(a) (b)

Figure 3. Constituents dynamics for Set 1 at some specific fractional orders. (a) Variations in the proposed constituents at
fractional-order γ = 0.85 vs. time t and (b) variations in the proposed constituents at fractional-order γ = 0.95 vs. time t .

Proof. Let �̃10, �̃1 j ( j = 0, . . . , n+1) and �̃
Pn+1
1 (n =

0, . . . , N − 1) be perturbations of �10, �1 j and �P
1n+1

,

respectively. Then, the following perturbations are
derived by using eqs (30) and (31)

�̃
Pn+1
1 = �̃10 + 1

�(γ )

×
n∑
j=0

b j,n+1
(K1(t j , �1 j + �̃1 j )

− K1(t j , �1 j )
)
, (32)

�̃1n+1 = �̃10 + hγ

�(γ + 2)

(K1
(
tn+1, �

P
1n+1

+ �̃P
1n+1

)

− K1
(
tn+1, �

P
1n+1

))

+ hγ

�(γ + 2)

n∑
j=0

a j,n+1
(K1

(
t j , �1 j + �̃1 j

)

− K1
(
t j , �1 j

))
. (33)

Using the Lipschitz condition, we obtain

|�̃1n+1 | ≤ ζ0 + hγ M

�(γ + 2)

×
(

|�̃Pn+1
1 | +

n∑
j=1

a j,n+1|�̃1 j |
)

, (34)

where

ζ0 = max
0≤n≤N

{
|�̃10 | + hγ Man,0

�(γ + 2)
|�̃10 |

}
.

Also, from eq. (3.18) in [44] we get

|�̃Pn+1
1 | ≤ η0 + M

�(γ )

n∑
j=1

b j,n+1|�̃1 j |, (35)

where

η0 = max
0≤n≤N

{
|�̃10 | + Mbn,0

�(γ )
|�̃10 |

}
.

Substituting |�̃Pn+1
1 | from eq. (35) into eq. (34) results

|�̃1n+1 | ≤ γ0 + hγ M

�(γ + 2)

(
M

�(γ )

n∑
j=1

b j,n+1|�̃1 j |

+
n∑
j=1

a j,n+1|�̃1 j |
)

≤ γ0 + hγ M

�(γ + 2)

×
n∑
j=1

(
M

�(γ )
b j,n+1 + a j,n+1

)
|�̃1 j |

≤ γ0 + hγ MCγ,2

�(γ + 2)

n∑
j=1

(n + 1 − j)γ−1|�̃1 j |,

(36)

where

γ0 = max

{
ζ0 + hγ Man+1,n+1

�(γ + 2)
η0

}
.

Cγ,2 is a positive constant only dependent on γ

(Lemma 3) and h is taken to be small enough. Util-
ising Lemma 4, we get |�̃1n+1 | ≤ Cγ0. This completes
the proof.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. System dynamics for Set 2 at various fractional orders γ . (a) Variations in the constituent �1 vs. time t , (b)
variations in the constituent �2 vs. time t , (c) variations in the constituent �3 vs. time t , (d) variations in the constituent �4
vs. time t , (e) variations in the constituent �5 vs. time t and (f) variations in the constituent �6 vs. time t .
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(a) (b)

Figure 5. Constituent dynamics for Set 2 at some specific fractional orders. (a) Variations in the proposed constituents at
fractional-order γ = 0.85 vs. time t and (b) variations in the proposed constituents at fractional-order γ = 0.95 vs. time t .

Table 1. Numerical outputs for Set 1 when fractional-order γ = 0.85.

t �1 �2 �3 �4 �5 �6

0 1 2.5 0 0 2 0
1 0.279911 1.065475 0.004692 0.005654 1.284603 1.429832
2 0.176723 0.857011 0.002591 0.003565 1.179313 1.640399
3 0.130919 0.764477 0.001780 0.002639 1.132699 1.733743
4 0.104555 0.711216 0.001354 0.002106 1.105909 1.787430
5 0.087297 0.676352 0.001091 0.001757 1.088388 1.822557
6 0.075081 0.651672 0.000914 0.001511 1.075995 1.847414
7 0.065962 0.633251 0.000787 0.001327 1.066749 1.865962
8 0.058888 0.618959 0.000691 0.001184 1.059579 1.880350
9 0.053236 0.607541 0.000616 0.001070 1.053852 1.891842

10 0.048614 0.598205 0.000557 0.000977 1.049170 1.901239

Table 2. Numerical outputs for Set 1 at fractional-order γ = 0.95.

t �1 �2 �3 �4 �5 �6

0 1 2.5 0 0 2 0
1 0.250393 1.005877 0.004084 0.005091 1.254477 1.490039
2 0.130307 0.763260 0.001782 0.002646 1.132089 1.734958
3 0.082087 0.665839 0.001021 0.001664 1.083109 1.833140
4 0.057080 0.615316 0.000671 0.001156 1.057751 1.884013
5 0.042331 0.585519 0.000480 0.000856 1.042811 1.914001
6 0.032908 0.566481 0.000364 0.000665 1.033272 1.933155
7 0.026537 0.553610 0.000288 0.000536 1.026826 1.946101
8 0.022038 0.544520 0.000236 0.000444 1.022274 1.955243
9 0.018745 0.537867 0.000199 0.000378 1.018944 1.961934

10 0.016260 0.532848 0.000171 0.000327 1.016432 1.966981
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Table 3. Numerical outputs for Set 2 at fractional-order γ = 0.85.

t �1 �2 �3 �4 �5 �6

0 1 2.5 0 0 0 0
1 0.279911 1.065475 0.724331 0.005654 0.004242 0.710194
2 0.176723 0.857011 0.825149 0.003565 0.001871 0.817841
3 0.130919 0.764477 0.870249 0.002639 0.001168 0.865274
4 0.104555 0.711216 0.896285 0.002106 0.000840 0.892499
5 0.087297 0.676352 0.913357 0.001757 0.000654 0.910292
6 0.075081 0.651672 0.925453 0.001511 0.000534 0.922875
7 0.065962 0.633251 0.934489 0.001327 0.000451 0.932260
8 0.058888 0.618959 0.941503 0.001184 0.000390 0.939538
9 0.053236 0.607541 0.947108 0.001070 0.000344 0.945350

10 0.048614 0.598205 0.951694 0.000977 0.000308 0.950102

Table 4. Numerical outputs for Set 2 at fractional-order γ = 0.95.

t �1 �2 �3 �4 �5 �6

0 1 2.5 0 0 0 0
1 0.250393 1.005877 0.753086 0.005091 0.003480 0.741037
2 0.130307 0.763260 0.870866 0.002646 0.001173 0.865874
3 0.082087 0.665899 0.918521 0.001664 0.000608 0.915640
4 0.057080 0.615316 0.943299 0.001156 0.000379 0.941384
5 0.042331 0.585519 0.957932 0.000856 0.000263 0.956549
6 0.032908 0.566481 0.967287 0.000665 0.000196 0.966231
7 0.026537 0.553610 0.973616 0.000536 0.000153 0.972774
8 0.022038 0.544520 0.978086 0.000444 0.000124 0.977393
9 0.018745 0.537867 0.981359 0.000378 0.000104 0.980774

10 0.016260 0.532848 0.983829 0.000327 0.000089 0.983323

5. Experimental observations

In this section, we explore the model dynamics with the
help of some graphical representations by using Mathe-
matica software. We use the values of the reaction rates
β1 = 1, β2 = 50, β3 = 100 as given in ref. [6] with
brief explanation.

As we know that the molar concentration must be non-
negative, constituents �1, �2, �3, �4, �5 and �6
are taken non-negative. Also, �1(0) and �2(0) must be
non-zero for an alkali–silica reaction to exist. It should
be remembered that �5(0) will have both the generated
water (eq. (6)) and the primary level of water �5(0) ≥ 0.
For simplicity, we fixed �3(0), �4(0), �6(0) = 0.

Also it is generally taken that the ASR is defined by the
finite silica (i.e. �2(0) ≥ �1(0)), the condition when
�2(0) ≤ �1(0) will also be taken.

When �2(0) ≥ 2�1(0), figures 2 and 3 are plotted for
�1 = 1, �2 = 2.5, �3 = 0, �4 = 0, �5 = 2, �6 =
0 (Set 1). In figure 2, all the given constituents at var-
ious fractional-order values γ = 1, 0.94, 0.90, 0.84
vs. time t are plotted, separately. Here we notice, when
the time range increases then the amount of siloxane
�1 swiftly decreases and tends to zero, hydroxyl ions

�2 decreases and after some time tends to approxi-
mately around 0.6, alkali-silicate gel amount �3 goes
down very swiftly and tends to zero, silicic acid �4 also
goes down very sharply and tends to zero, water quan-
tity �5 decreases, and expanded alkali silicate (gel) �6
increases sharply. In figure 3, all the classes are plotted
together for fractional-orders γ = 0.85 (figure 3a) and
γ = 0.95 (figure 3b) vs. time t for understanding the
variations in the given quantities with respect to each
other.

For the same case �2(0) ≥ 2�1(0), figures 4 are 5
are plotted for �1 = 1, �2 = 2.5, �3 = 0, �4 =
0, �5 = 0, �6 = 0 (Set 2). In figure 4, all the
given constituents at various fractional-order valuesγ =
1, 0.94, 0.90, 0.84 vs. time t are plotted, separately.
Here we can observe that the variations in the water
quantity �5 are much sharper than Set 1 because of the
changes in the initial value of �5. In figure 5, all classes
are plotted together for fractional orders γ = 0.85 (fig-
ure 5a) and γ = 0.95 (figure 5b) vs. time t . Numerical
outputs for Sets 1 and 2 when γ = 0.85 and γ = 0.95
are given in tables 1–4, respectively.

Now, when �2(0) < 2�1(0), figures 6 and 7 are
given for �1 = 1, �2 = 1.5, �3 = 0, �4 =
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(a) (b)

(c) (d)

(e) (f)

Figure 6. System dynamics for Set 3 at various fractional orders γ . (a) variations in the constituent �1 vs. time t , (b) variations
in the constituent �2 vs. time t , (c) variations in the constituent �3 vs. time t , (d) variations in the constituent �4 vs. time t ,
(e) variations in the constituent �5 vs. time t and (f) variations in the constituent �6 vs. time t .
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(a) (b)

Figure 7. Constituent dynamic for Set 3 at some specific fractional orders. (a) Variations in the proposed constituents at
fractional-order γ = 0.85 vs. time t and (b) variations in the proposed constituents at fractional-order γ = 0.95 vs. time t .

0, �5 = 2, �6 = 0 (Set 3). In figure 6, all the
given constituents at various fractional-order values
γ = 1, 0.94, 0.90, 0.84 vs. time t are plotted, sep-
arately. Here, when the time range increases then the
amount of siloxane �1 decreases but does not tend
to zero, hydroxyl ions �2 decreases and after some
time tends to approximately zero, alkali-silicate gel �3
decreases very sharply and tends to zero, silicic acid �4
also decreases but does not tend to zero, water quan-
tity �5 decreases, and expanded alkali silicate (gel) �6
increases sharply. In the collection of figure 7, all classes
are plotted together for fractional-order values γ = 0.85
(figure 7a) and γ = 0.95 (figure 7b) vs. time t .

For the same case �2(0) ≥ 2�1(0), figures 8 and 9
are plotted for �1 = 1, �2 = 1.5, �3 = 0, �4 =
0, �5 = 0, �6 = 0 (Set 4). In figure 8, all the
given constituents at various fractional-order values
γ = 1, 0.94, 0.90, 0.84 vs. time t are plotted, sep-
arately. In figure 9, all classes are plotted together for
fractional orders γ = 0.85 (figure 9a) and γ = 0.95
(figure 9b) vs. time t . Numerical outputs for Sets 3 and
4 at γ = 0.85 and γ = 0.95 are given in tables 5–8,
respectively.

From the above observations, we notice that �6 is
abundant when the amount of water is more in the model
and the starting alkali concentration is abundant. That
means �6 is big when �5(0) and �2(0) are expanded.
That is exactly what we know about ASR, that a least
proportional moisture of around 80% is demanded for
the reaction to be quantifiable. In the above simulations,
we used two different values of �5 to show the role of the
initial values of water concentration in the production of
gel. It is estimated that the proportional initial values of
the concentrations of silica, alkali and water in the model

headship to four distinct possibilities of the estimations
of ultimate alkali silicate gel concentration. When the
amount of alkali is less than silica, a smaller amount
of the propagated gel is yielded. This study specifies
that the outputs are comparatively robust in terms of
the preference of opted rates of reaction for each value
of fractional-order γ . The given numerical method in
the form of Caputo fractional derivative works well to
understand the given chemical reaction dynamics.

6. Conclusion

In this research, a non-linear fractional-order mathe-
matical model to study the dynamics of alkali–silica
chemical reaction by using Caputo derivative has been
analysed. We have proved the existence of a unique
solution by using some novel properties of Mittag–
Leffler function along with fixed point theory. Stability
of the proposed system was also proved by using Ulam–
Hyers methodology. For deriving the fractional-order
numerical solution, we have used a reliable numeri-
cal method called Adams–Bashforth–Moulton scheme.
The stability of the given method has also been proven.
Many graphs are plotted to understand the role of con-
centrations of the given constituents in the ASR. The
main motivation to use Caputo fractional derivative
in the given model was to solve the ASR dynamics
much more effectively with the novel features of frac-
tional derivatives because in terms of memory effects,
these derivative operators are much better than the
integer-order derivatives. This study strongly justifies
the role of fractional derivatives in chemical reactions.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. System dynamics for Set 4 at various fractional orders γ . (a) Variations in the constituent �1 vs. time t , (b)
variations in the constituent �2 vs. time t , (c) variations in the constituent �3 vs. time t , (d) variations in the constituent �4
vs. time t , (e) variations in the constituent �5 vs. time t and (f) variations in the constituent �6 vs. time t .
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(a) (b)

Figure 9. Constituent dynamics for Set 4 at some specific fractional orders. (a) Variations in the proposed constituents at
fractional-order γ = 0.85 vs. time t and (b) variations in the proposed constituents at fractional-order γ = 0.95 vs. time t .

Table 5. Numerical outputs for Set 3 at fractional-order γ = 0.85.

t �1 �2 �3 �4 �5 �6

0 1 1.5 0 0 2 0
1 0.485125 0.480015 0.003155 0.009765 1.488280 1.016830
2 0.397331 0.302652 0.001730 0.007990 1.399061 1.195618
3 0.357556 0.222295 0.001176 0.007182 1.358732 1.276529
4 0.334587 0.175888 0.000885 0.006715 1.335472 1.323227
5 0.319588 0.145585 0.000707 0.006409 1.320296 1.353707
6 0.309024 0.124240 0.000588 0.006193 1.309612 1.375172
7 0.301185 0.108402 0.000503 0.006032 1.301688 1.391095
8 0.295142 0.096191 0.000439 0.005908 1.295581 1.403369
9 0.290344 0.086497 0.000390 0.005809 1.290734 1.413113

10 0.286444 0.078617 0.000351 0.005729 1.286795 1.421032

Table 6. Numerical outputs for Set 3 at fractional-order γ = 0.95.

t �1 �2 �3 �4 �5 �6

0 1 1.5 0 0 2 0
1 0.465639 0.440734 0.002837 0.009456 1.468476 1.056430
2 0.362150 0.231646 0.001246 0.007345 1.363396 1.267108
3 0.319170 0.144804 0.000708 0.006464 1.319878 1.354489
4 0.296674 0.099348 0.000459 0.006000 1.297132 1.400194
5 0.283416 0.072557 0.000323 0.005724 1.283739 1.427120
6 0.274999 0.055544 0.000241 0.005546 1.275240 1.444215
7 0.269362 0.044149 0.000188 0.005426 1.269550 1.455662
8 0.265426 0.036193 0.000153 0.005340 1.265579 1.463655
9 0.262581 0.030440 0.000127 0.005277 1.262709 1.469433

10 0.260463 0.026155 0.000108 0.005230 1.260571 1.473736
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Table 7. Numerical outputs for Set 4 at fractional-order γ = 0.85.

t �1 �2 �3 �4 �5 �6

0 1 1.5 0 0 0 0
1 0.485125 0.480015 0.519508 0.009765 0.004633 0.500477
2 0.397331 0.302652 0.604697 0.007990 0.002029 0.592651
3 0.357556 0.222295 0.643697 0.007182 0.001253 0.634009
4 0.334587 0.175888 0.666307 0.006715 0.000893 0.657805
5 0.319588 0.145585 0.681101 0.006409 0.000690 0.673313
6 0.309024 0.124240 0.691536 0.006193 0.000559 0.694224
7 0.301185 0.108402 0.699285 0.006032 0.000470 0.692313
8 0.295142 0.096191 0.705263 0.005908 0.000405 0.698546
9 0.290344 0.086497 0.710012 0.005809 0.000355 0.703492

10 0.286444 0.078617 0.713873 0.005729 0.000317 0.707510

Table 8. Numerical outputs for Set 4 at fractional-order γ = 0.95.

t �1 �2 �3 �4 �5 �6

0 1 1.5 0 0 0 0
1 0.465639 0.440734 0.538355 0.009456 0.003994 0.520911
2 0.362150 0.231646 0.639202 0.007345 0.001352 0.629152
3 0.319170 0.144804 0.681525 0.006464 0.000694 0.673672
4 0.296674 0.099348 0.703753 0.006000 0.000427 0.696899
5 0.283416 0.072557 0.716875 0.005724 0.000292 0.710568
6 0.274999 0.055544 0.725215 0.005546 0.000214 0.719241
7 0.269362 0.044149 0.730803 0.005426 0.000165 0.725048
8 0.265426 0.036193 0.734706 0.005340 0.000132 0.729101
9 0.262581 0.030440 0.737528 0.005277 0.000109 0.732032

10 0.260463 0.026155 0.739630 0.005230 0.000093 0.734215

In future, such reactions can be modelled by other frac-
tional derivatives like Caputo–Fabrizio, Katugampola,
Atangana–Baleanu etc.
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