Skip to main content
Log in

Off-shell T-matrix for the Manning–Rosen potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

New analytical expressions for the off-shell wave functions and T-matrix with the Manning–Rosen potential are constructed in terms of generalised hypergeometric functions. The off-shell T-matrices are computed for the neutron–proton and neutron–deuteron systems. The limiting behaviours of our expression for the off-shell T-matrix are verified and found correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L D Faddeev, Mathematical aspects of the three-body problem (Daniel Davey and Co. Inc., New York, 1965)

    MATH  Google Scholar 

  2. A N Mitra, Advances in nuclear physics edited by M Baranger and E Vogt (Plenum Press, New York, 1969) Vol. 3

    Google Scholar 

  3. L Hostler, J. Math. Phys. 5, 1235 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. J Schwinger, J. Math. Phys. 5, 1606 (1964)

    Article  ADS  Google Scholar 

  5. H van Haeringen, Nucl. Phys. A 327, 77 (1979)

    Article  ADS  Google Scholar 

  6. H van Haeringen, Phys. Lett. A 86, 359 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. H van Haeringen, J. Math. Phys. 24, 1267 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. H van Haeringen, J. Math. Phys. 24, 1157 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. H van Haeringen, J. Math. Phys. 24, 2467 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  10. H van Haeringen, J. Math. Phys. 25, 3001 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. H van Haeringen and R van Wageningen, J. Math. Phys. 16, 1441 (1975)

    Article  ADS  Google Scholar 

  12. U Laha and J Bhoi, Few-Body Syst. 54, 1973 (2013)

    Article  ADS  Google Scholar 

  13. U Laha and J Bhoi, J. Math. Phys. 54, 013514 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. U Laha and J Bhoi, Phys. Rev. C 88, 064001 (2013)

    Article  ADS  Google Scholar 

  15. B Talukdar, M N Sinha Roy, N Mullick and D K Nayek, Phys. Rev. C 12, 370 (1975)

    Article  ADS  Google Scholar 

  16. O P Baheti and M G Fuda, J. Math. Phys. 12, 2076 (1971)

    Article  ADS  Google Scholar 

  17. U Laha, Few-Body Syst. 61, 3 (2020)

    Article  ADS  Google Scholar 

  18. M F Manning and N Rosen, Phys. Rev. 44, 953 (1933)

    Google Scholar 

  19. A Diaf, A Chouchaoni and R L Lombard, Ann. Phys. (Paris) 317, 354 (2005)

  20. S H Dong and J Garcia-Ravelo, Phys. Scr. 75, 307 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. W C Qiang, K Li and W L Chen, J. Phys. A: Math. Theor. 42, 205306 (2009)

  22. B Khirali, A K Behera, J Bhoi and U Laha, J. Phys. G: Nucl. Part. Phys. 46, 115104 (2019)

  23. B Khirali, A K Behera, J Bhoi and U Laha, Ann. Phys. 412, 168044 (2020)

  24. B Khirali, A K Behera, J Bhoi and U Laha, Phys. Scr. 95, 075308 (2020)

  25. A K Behera, J Bhoi, U Laha and B Khirali, Commun. Theor. Phys. 72, 075301 (2020)

  26. M G Fuda and J S Whiting, Phys. Rev. C 8, 1255 (1973)

    Article  ADS  Google Scholar 

  27. U Laha, Pramana – J. Phys. 67, 357 (2006)

    Article  ADS  Google Scholar 

  28. U Laha and J Bhoi, Pramana – J. Phys. 86, 947 (2016)

    Article  ADS  Google Scholar 

  29. A Erdeyli, Higher transcendental functions (McGraw Hill, New York, 1953) Vol. 1

  30. L J Slater, Generalized hypergeometric functions (Cambridge University Press, London, 1966)

    MATH  Google Scholar 

  31. W Magnus and F Oberhettinger, Formulae and theorems for the special functions of mathematical physics (Chelsea, New York, 1949)

    MATH  Google Scholar 

  32. I.S Gradshteyn and I M Ryzhik, Tables of integrals, series and products (Academic Press, London, 2000)

    MATH  Google Scholar 

  33. A W Babister, Transcendental functions satisfying non-homogeneous linear differential equations (MacMillan, New York, 1967)

    MATH  Google Scholar 

  34. U Laha, Phys. Rev. A 74, 012710 (2006)

  35. U Laha, Pramana – J. Phys. 72, 457 (2009)

    Article  ADS  Google Scholar 

  36. J Haidenbauer and W Plessas, Phys. Rev. C 27, 63 (1983)

    Article  ADS  Google Scholar 

  37. R A Arndt, L D Roper, R A Bryan, R B Clark, B Ver West and P Signell, Phys. Rev. D 28, 97 (1983)

    Article  ADS  Google Scholar 

  38. D Hüber, J Golak, H Witala, W Glöckle and H Kamada, Few-Body Syst. 19, 175 (1995)

    Article  ADS  Google Scholar 

  39. G E Brown, Rev. Mod. Phys. 43, 1 (1971)

    Article  ADS  Google Scholar 

  40. J M Eisenberg and W Greiner, Microscopic theory of the nucleus (North- Holland Publishing Company, Amsterdam, 1972)

    Google Scholar 

  41. C R Chen, G L Payne, J L Friar and B F Gibson, Phys. Rev. C 33, 1740 (1986)

    Article  ADS  Google Scholar 

  42. S Ishikawa, T Sasakawa, T Sawada and T Udea, Phys. Rev. Lett. 53, 1877 (1984)

    Article  ADS  Google Scholar 

  43. T Sasakawa and S Ishikawa, Few-Body Syst. 1, 3 (1986)

    Article  ADS  Google Scholar 

  44. W N Bailey, Generalized hypergeometric series (Cambridge University Press, London, 1935)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Laha.

Appendix A

Appendix A

The Manning–Rosen potential

$$\begin{aligned} V_{\mathrm{MR}} (r)=\frac{1}{b^{2}}\left\{ {\frac{\alpha \left( {\alpha -1} \right) \text{ e}^{-2r/b}}{\left( {1-\text{ e}^{-r/b}} \right) ^{2}}-\frac{A\text{ e}^{-r/b}}{\left( {1-\text{ e}^{-r/b}} \right) }} \right\} \nonumber \\ \end{aligned}$$
(A1)

converts into the Hulthén potential when \(\alpha =0\) and reads as

$$\begin{aligned} V_{\mathrm{H}} (r)=V_{0} \frac{\text{ e}^{-r/b}}{\left( {1-\text{ e}^{-r/b}} \right) }\,;\,\,\,\,\,\,\,V_{0} =-A/b^{2}. \end{aligned}$$
(A2)

Under the limit eq. (27) leads to

$$\begin{aligned}&T_{1} (q,p,k^{2})=b^{3}\sum \limits _{n=0}^\infty \frac{\Gamma (n+1-i\,(k-p)b)\Gamma (-i\,(k+q)b)\Gamma (n+2)}{\Gamma (1-i\,(k-p)b)\Gamma (n+2-i\,(k+q)b)\Gamma (n+1)\,} \nonumber \\&\quad \qquad \qquad \qquad \times { }_{3}F_{2} \left( {1,1+n+X,1+n+Y;\,2+n,\,3+n-ib\left( {k+p} \right) ;1} \right) \nonumber \\&\quad \qquad \qquad \qquad -\frac{b^{2}\Gamma (-i\,(k+q)b)\Gamma (i\,(k-q)b)}{f_{\mathrm{H}} (k)i(k+p)\Gamma (1+i\,(k-q)b+X)\Gamma (1+i\,(k-q)b+Y)} \nonumber \\&\quad \qquad \qquad \qquad \times {}_{3}F_{2} \left( {X,\,Y,\,-i\,(k+p)b;\,1-2ikb,\,1-i\,(k+p)b;\,1} \right) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \end{aligned}$$
(A3)

with

$$\begin{aligned} X= & {} 1-ikb+ib\left( {k^{2}+V_{0} } \right) ^{1/2}\nonumber \\ \hbox { and }\, \nonumber \\ Y= & {} 1-ikb-ib\left( {k^{2}+V_{0}} \right) ^{1/2}. \end{aligned}$$
(A4)

Using the following relations of \(f_{n} \left( {a\,,\,b\,;\,c\,;z} \right) \) and \({ }_{3}F { }_{2}\)(*) functions [33, 44]

$$\begin{aligned}&f_{n} \left( {a\,,\,b\,;\,c\,;z} \right) \,=\frac{z^{n}}{n(n\,+\,c\,-1)}\,\nonumber \\&\quad \times _{3}F_{2}\left( {1,\,n\,+\,a,\,n\,+\,b;n\,+\,1,\,n\,+c\,;\,z\,} \right) , \end{aligned}$$
(A5)
$$\begin{aligned}&f_{m} \left( {a,\,b;\,c;\,z} \right) =\frac{\Gamma (m)\Gamma (m+c-1)\Gamma (a)\Gamma (b)}{\Gamma (m+a)\Gamma (m+b)\Gamma (c)}\nonumber \\&\quad \times \sum \limits _{i=0}^\infty \frac{\Gamma (m+i+a)\Gamma (m+a+b)\Gamma (c)\,z^{m+i}}{\Gamma (a)\Gamma (b)\Gamma (m+i+c)\Gamma (m+i+1)}; \nonumber \\&\quad m\,\rightarrow \text{ positive } \text{ integer }\,\text{, } \end{aligned}$$
(A6)
$$\begin{aligned}&{ }_{3}F{ }_{2}\left( {\alpha ,\,\beta ,\,\,\gamma ;\, \delta ,\,\varepsilon ;\,\,1} \right) \nonumber \\&\quad =\frac{\Gamma (\varepsilon ) \Gamma (\delta +\varepsilon -\alpha -\beta -\gamma )}{\Gamma (\varepsilon -\gamma )\Gamma (\delta +\varepsilon -\alpha -\beta )}\nonumber \\&\qquad \times _{3}F{ }_{2}\left( {\delta {-}\alpha ,\,-\beta ,\,\gamma ;\,\delta ,\,\varepsilon {+}\delta {-}\alpha {-}\beta ;\,\,1} \right) , \end{aligned}$$
(A7)
$$\begin{aligned}&{ }_{3}F{ }_{2}\left( {a,\,b,\,c;\,e,\,f;\,\,1} \right) \nonumber \\&\quad =\frac{\Gamma (s)\Gamma (f)}{\Gamma (f-a)\Gamma (s+a)}\nonumber \\&\qquad \times {}_{3}F{ }_{2} \left( {a,\,e-b,\,e-c;\,e,\,s+a;\,\,1} \right) ; \nonumber \\&s=e+f-a-b-c \end{aligned}$$
(A8)

and

$$\begin{aligned}&\sum \limits _{L=0}^n \frac{(a)_{L} \,(b)_{L} }{(c)_{L} \,\Gamma (L+1)} =\frac{\Gamma (a+n+1)\Gamma (b+n+1)}{\Gamma (a+b+n+1)\Gamma (n+1)}\nonumber \\&\quad \times {}_{3}F{ }_{2}\left( a,\,b,\,\,c+n;\,c,\,a +b+n+1;\,\,1 \right) \end{aligned}$$
(A9)

in eq. (A3) one gets

$$\begin{aligned}&T_{1} (q,p,k^{2})= -b^{3}\sum \limits _{n=0}^\infty {\frac{\Gamma (Y+1)\Gamma (-i\,(k+q)b)}{(X+1)\Gamma (1-i\,(k-p)b)\Gamma (2-i\,(k+q)b)\,}} \nonumber \\&\times \sum \limits _{n=0}^\infty {\frac{(n+1)\Gamma (n+1-\,i\,(k-p)b)}{\Gamma (n+Y+2)}} { }_{3} F_{2} \left( -n,\,X+1,\,\,1-i\,(k+q)b-Y;\,X+2,\,2-i\,(k+q)b;\,1 \right) .\nonumber \\ \end{aligned}$$
(A10)

Expanding the sum, rearranging the terms along with eq. (32) we finally obtain

$$\begin{aligned}&T_{1} (q,p,k^{2})=-b^{3} \nonumber \\&\times \frac{Y\,\Gamma (Y+i(k-p)b-1)\Gamma (-i\,(k+q)b)}{(X+1)\Gamma (Y+1+i\,(k-p)b)\Gamma (2-i\,(k+q)b)\,} \nonumber \\&\times { }_{4}F_{3} \left( 2,\,X+1,\,\,1-i\,(k-p)b,\,1-i\,(k+q)b-Y;\right. \nonumber \\&\quad \left. \,X+2,\,2-i\, (k+q)b,\,2-Y\right. \nonumber \\&\quad \left. -i\,(k-p)b;\,1\right) . \end{aligned}$$
(A11)

Therefore, eq. (24) together with eq. (A11) produce the Hulthén off-shell T-matrix [17].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khirali, B., Laha, U., Behera, A.K. et al. Off-shell T-matrix for the Manning–Rosen potential. Pramana - J Phys 95, 179 (2021). https://doi.org/10.1007/s12043-021-02206-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02206-w

Keywords

PACS Nos

Navigation