Skip to main content
Log in

Expression of the cassava nitrate transporter NRT2.1 enables Arabidopsis low nitrate tolerance

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The cassava grows well on low-nutrient soils because of its high-affinity to absorb nitrate. However, the molecular mechanisms by which cassava adapts itself to this environment remain elusive, although we have cloned a putative gene named MeNRT2.1 which has a crucial role in high-affinity nitrate transporter from cassava seeding. Here, the expression pattern of MeNRT2.1 was further assessed using the GUS activity driven by MeNRT2.1 promoter in Arabidopsis transformation plants. The GUS activity was monitored over time following the reduction of nitrate supply. The GUS gene expression not only peaked in roots after 12 h in 0.2 mM nitrate media, but also stained stems and leaves. Arabidopsis plants with overexpression of MeNRT2.1 increased the biomass compared to the wild type on rich nitrogen (N-full) media. However, chlorate sensitivity analysis showed that Arabidopsis plants expressing MeNRT2.1 were more susceptable to chlorate than wild type. Significantly, after growing for 15 days on media containing 0.2 mM nitrate concentration, wild-type plants became yellow or died, while the transgenic MeNRT2.1 Arabidopsis plants maintained normal growth. With significant increases in the amount of \(^{15}\hbox {NO}_{3}^{-}\) uptake in roots, the MeNRT2.1 plants also increased the contents of chlorophyll and nitrate reductase. Taken together, these results demonstrate that MeNRT2.1 has an important role in adaptation to low nitrate concentration as a nitrate transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alboresi A., Gestin C., Leydecker M. T., Bedu M., Meyer C. and Truong H. N. 2005 Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell. Environ. 28, 500–512.

    Article  CAS  Google Scholar 

  • Bagchi R., Salehin M., Adeyemo O. S., Salazar C., Shulaev V., Sherrier D. J. et al. 2012 Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter. Plant Physiol. 160, 906–916.

    Article  CAS  Google Scholar 

  • Bouguyon E., Perrine-Walker F., Pervent M., Rochette J., Cuesta C., Benkova E. et al. 2016 Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol. 172, 1237–1248.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bredeson J. V., Lyons J. B., Prochnik S. E., Wu G. A., Ha C. M., Edsinger-Gonzales E. et al. 2016 Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. 34, 562–570.

    Article  CAS  Google Scholar 

  • Cai C., Wang J. Y., Zhu Y. G., Shen Q. R., Li B., Tong Y. P. et al. 2008 Gene structure and expression of the high-affinity nitrate transport system in rice roots. J. Integr. Plant. Biol. 50, 443–451.

    Article  CAS  Google Scholar 

  • Cerezo M., Tillard P., Filleur S., Munos S., Daniel-Vedele F. and Gojon A. 2001 Major alterations of the regulation of root NO(3)(-) uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol. 127, 262–271.

    Article  CAS  Google Scholar 

  • Chen J., Zhang Y., Tan Y., Zhang M., Zhu L., Xu G. et al. 2016 Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol. J. 14, 1705–1715.

    Article  CAS  Google Scholar 

  • Chilton M. D., Currier T. C., Farrand S. K., Bendich A. J., Gordon M. P. and Nester E. W. 1974 Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci. USA 71, 3672–3676.

    Article  CAS  Google Scholar 

  • Chiu C. C., Lin C. S., Hsia A. P., Su R. C., Lin H. L. and Tsay Y. F. 2004 Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol. 45, 1139–1148.

    Article  CAS  Google Scholar 

  • Clough S. J. and Bent. A. F. 1998 Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  CAS  Google Scholar 

  • Dechorgnat J., Nguyen C. T., Armengaud P., Jossier M., Diatloff E., Filleur S. et al. 2011 From the soil to the seeds: the long journey of nitrate in plants. J. Exp. Bot. 62, 1349–1359.

    Article  CAS  Google Scholar 

  • Fan S. C., Lin C. S., Hsu P. K., Lin S. H. and Tsay Y. F. 2009 The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell 21, 2750–2761.

    Article  CAS  Google Scholar 

  • Fan X., Feng H., Tan Y., Xu Y., Miao Q. and Xu G. 2016 A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J. Integr. Plant. Biol. 58, 590–599.

    Article  CAS  Google Scholar 

  • Feng H., Yan M., Fan X., Li B., Shen Q., Miller A. J. et al. 2011 Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J. Exp. Bot. 62, 2319–2332.

    Article  CAS  Google Scholar 

  • Filleur S. and Daniel-Vedele F. 1999 Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 207, 461–469.

    Article  CAS  Google Scholar 

  • Filleur S., Dorbe M. F., Cerezo M., Orsel M., Granier F., Gojon A. et al. 2001 An arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett. 489, 220–224.

  • Forde B. G. 2000 Nitrate transporters in plants: structure, function and regulation. Biochim. Biophys. Acta 1465, 219–235.

    Article  CAS  Google Scholar 

  • Fraisier V., Gojon A., Tillard P. and Daniel-Vedele F. 2000 Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J. 23, 489–496.

    Article  CAS  Google Scholar 

  • Fregene M. A., Suarez M., Mkumbira J., Kulembeka H., Ndedya E., Kulaya A. et al. 2003 Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor. Appl. Genet. 107, 1083–1093.

    Article  CAS  Google Scholar 

  • Hsu P. K. and Tsay Y. F. 2013 Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol. 163, 844–856.

    Article  CAS  Google Scholar 

  • Hu C. J., Zou L. P. and Peng M. 2016 Cloning and expression of nitrate transporter gene in cassava (Manihot esculenta Crantz). Chin. J. Trop. Crops 37, 117–124.

    Google Scholar 

  • Johnstone I. L., McCabe P. C., Greaves P., Gurr S. J., Cole G. E., Brow M. A. et al. 1990 Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90, 181–192.

    Article  CAS  Google Scholar 

  • Jorgensen K., Bak S., Busk P. K., Sorensen C., Olsen C. E., Puonti-Kaerlas J. et al. 2005 Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139, 363–374.

    Article  Google Scholar 

  • Kiba T., Feria-Bourrellier A. B., Lafouge F., Lezhneva L., Boutet-Mercey S., Orsel M. et al. 2012 The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24, 245–258.

    Article  CAS  Google Scholar 

  • Krapp A., David L. C., Chardin C., Girin T., Marmagne A., Leprince A. S. et al. 2014 Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 65, 789–798.

    Article  CAS  Google Scholar 

  • Krouk G., Lacombe B., Bielach A., Perrine-Walker F., Malinska K., Mounier E. et al. 2010 Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18, 927–937.

    Article  CAS  Google Scholar 

  • Laugier E., Bouguyon E., Mauries A., Tillard P., Gojon A. and Lejay L. 2012 Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. Plant Physiol. 158, 1067–1078.

    Article  CAS  Google Scholar 

  • Lee S. B., Go Y. S., Bae H. J., Park J. H., Cho S. H., Cho H. J. et al. 2009 Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol. 150, 42–54.

    Article  CAS  Google Scholar 

  • Lejay L., Tillard P., Lepetit M., Olive F., Filleur S., Daniel-Vedele F. et al. 1999 Molecular and functional regulation of two NO\({}_3^{-}\) uptake systems by N- and C-status of Arabidopsis plants. Plant J. 18, 509–519.

    Article  CAS  Google Scholar 

  • Lejay L., Gansel X., Cerezo M., Tillard P., Muller C., Krapp A. et al. 2003 Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15, 2218–2232.

    Article  CAS  Google Scholar 

  • Lejay L., Wirth J., Pervent M., Cross J. M., Tillard P. and Gojon A. 2008 Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis. Plant Physiol. 146, 2036–2053.

    Article  CAS  Google Scholar 

  • Leran S., Varala K., Boyer J. C., Chiurazzi M., Crawford N., Daniel-Vedele F. et al. 2014 A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci. 19, 5–9.

    Article  CAS  Google Scholar 

  • Li W., Wang Y., Okamoto M., Crawford N. M., Siddiqi M. Y. and Glass A. D. 2007 Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol. 143, 425–433.

    Article  CAS  Google Scholar 

  • Lima J. E., Kojima S., Takahashi H. and von Wiren N. 2010 Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. Plant Cell 22, 3621–3633.

    Article  CAS  Google Scholar 

  • Lin S. H., Kuo H. F., Canivenc G., Lin C. S., Lepetit M., Hsu P. K. et al. 2008 Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20, 2514–2528.

    Article  CAS  Google Scholar 

  • Liu K. H., Huang C. Y. and Tsay Y. F. 1999 CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11, 865–874.

    Article  CAS  Google Scholar 

  • Miller A. J., Fan X., Orsel M., Smith S. J. and Wells D. M. 2007 Nitrate transport and signalling. J. Exp. Bot. 58, 2297–2306.

    Article  CAS  Google Scholar 

  • Munos S., Cazettes C., Fizames C., Gaymard F., Tillard P., Lepetit M. et al. 2004 Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16, 2433–2447.

    Article  CAS  Google Scholar 

  • Nazoa P., Vidmar J. J., Tranbarger T. J., Mouline K., Damiani I., Tillard P. et al. 2003 Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol. Biol. 52, 689–703.

    Article  CAS  Google Scholar 

  • Okamoto M., Vidmar J. J. and Glass A. D. 2003 Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol. 44, 304–317.

    Article  CAS  Google Scholar 

  • Okamoto M., Kumar A., Li W., Wang Y., Siddiqi M. Y., Crawford N. M. et al. 2006 High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol. 140, 1036–1046.

    Article  CAS  Google Scholar 

  • Orsel M., Krapp A. and Daniel-Vedele F. 2002 Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol. 129, 886–896.

    CAS  PubMed  Google Scholar 

  • Orsel M., Eulenburg K., Krapp A. and Daniel-Vedele F. 2004 Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219, 714–721.

    Article  CAS  Google Scholar 

  • Orsel M., Chopin F., Leleu O., Smith S. J., Krapp A., Daniel-Vedele F. et al. 2006 Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol. 142, 1304–1317.

    CAS  PubMed  Google Scholar 

  • Perez M. D., Gonzalez C., Avila J., Brito N. and Siverio J. M. 1997 The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase and nitrate reductase, and its disruption causes inability to grow in nitrate. Biochem. J. 321, 397–403.

    Article  CAS  Google Scholar 

  • Quesada A., Krapp A., Trueman L. J., Daniel-Vedele F., Fernandez E., Forde B. G. et al. 1997 PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Mol. Biol. 34, 265–274.

    Article  CAS  Google Scholar 

  • Remans T., Nacry P., Pervent M., Girin T., Tillard P., Lepetit M. et al. 2006 A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol. 140, 909–921.

    Article  CAS  Google Scholar 

  • Rogato A., D’Apuzzo E., Barbulova A., Omrane S., Parlati A., Carfagna S. et al. 2010 Characterization of a developmental root response caused by external ammonium supply in Lotus japonicus. Plant Physiol. 154, 784–795.

    Article  CAS  Google Scholar 

  • Siqueira M. V., Pinheiro T. T., Borges A., Valle T. L., Zatarim M. and Veasey E. A. 2010 Microsatellite polymorphisms in cassava landraces from the Cerrado biome, Mato Grosso do sul, Brazil. Biochem. Genet. 48, 879–895.

    Article  CAS  Google Scholar 

  • Tang Z., Fan X., Li Q., Feng H., Miller A. J., Shen Q. et al. 2012 Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol. 160, 2052–2063.

    Article  CAS  Google Scholar 

  • Trueman L. J., Richardson A. and Forde B. G. 1996 Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene 175, 223–231.

    Article  CAS  Google Scholar 

  • Tsay Y. F., Schroeder J. I., Feldmann K. A. and Crawford N. M. 1993 The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705–713.

    Article  CAS  Google Scholar 

  • Tsay Y. F., Chiu C. C., Tsai C. B., Ho C. H. and Hsu P. K. 2007 Nitrate transporters and peptide transporters. FEBS Lett. 581, 2290–2300.

    Article  CAS  Google Scholar 

  • Unkles S. E., Hawker K. L., Grieve C., Campbell E. I., Montague P. and Kinghorn J. R. 1991 crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 88, 204–208.

    Article  CAS  Google Scholar 

  • Vidmar J. J., Zhuo D., Siddiqi M. Y. and Glass A. D. 2000 Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of barley. Plant Physiol. 122, 783–792.

    Article  CAS  Google Scholar 

  • Walch-Liu P., Neumann G., Bangerth F. and Engels C. 2000 Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot. 51, 227–237.

    Article  CAS  Google Scholar 

  • Walch-Liu P., Filleur S., Gan Y. and Forde B. G. 2005 Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. Photosynth. Res. 83, 239–250.

    Article  CAS  Google Scholar 

  • Wang Y. Y., Hsu P. K. and Tsay Y. F. 2012 Uptake, allocation and signaling of nitrate. Trends Plant Sci. 17, 458–467.

    Article  CAS  Google Scholar 

  • Xia X., Fan X., Wei J., Feng H., Qu H., Xie D. et al. 2015 Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J. Exp. Bot. 66, 317–331.

    Article  Google Scholar 

  • Yan M., Fan X., Feng H., Miller A. J., Shen Q. and Xu G. 2011 Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ. 34, 1360–1372.

    Article  CAS  Google Scholar 

  • Zheng D., Han X., An Y. I., Guo H., Xia X. and Yin W. 2013 The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ. 36, 1328–1337.

  • Zhuo D., Okamoto M., Vidmar J. J. and Glass A. D. 1999 Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J. 17, 563–568.

Download references

Acknowledgements

This work was supported by the National Key R&D Programme of China (grant no. 2018YFD1000500), the national key technology R&D programme of China (grant no. 2015BAD15B01) and awards for excellent researcher from Chinese Academy of Tropical Agricultural Sciences (to M.P). Thank David Pincus worked in Whitehead Institute for Biomedical Research, Cambridge for revision in all my paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Zheng or Ming Peng.

Additional information

Corresponding Editor: Umesh Varshney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Qi, D., Sun, J. et al. Expression of the cassava nitrate transporter NRT2.1 enables Arabidopsis low nitrate tolerance. J Genet 98, 74 (2019). https://doi.org/10.1007/s12041-019-1127-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1127-9

Keywords

Navigation