Skip to main content

Advertisement

Log in

Geochemical constraints of bulk rocks and in-situ zircon from the granitoids of the Hungund Schist Belt: An insight for hydrothermal activity

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Orogenic, gold hosting greenstone belts in Eastern Dharwar Craton (EDC), India, are surrounded by granitic bodies and affected by hydrothermal activities. In this paper, field, petrographic and geochemical study of granites coupled with LA-ICP-MS analyses of the trace element abundances of zircons from the granites of the Hungund Schist Belt, the northwest continuation of Kolar and Ramgiri schist belts in EDC is discussed to report the effects of hydrothermal alteration. The geochemical characteristics such as Nb/Ta ratio (~5), low Zr/Hf ratio, depleted ∑REE from the granites close to the shear zone provide clue towards magmatic–hydrothermal interactions in the source rock, while granites away from the shear zone show feeble alteration signature. Zircons from the altered granite contain higher concentration of trace elements, LREE enrichment and high ∑REE with weak positive Ce anomalies and strong negative Eu anomalies indicating hydrothermal alteration. While the zircons from unaltered granites have low to moderate trace element concentration and REE patterns similar to unaltered magmatic zircons. Contrarily, in the ternary plot, the zircons from unaltered granites show minor affinity towards metasomatised hydrothermal field instead of clustering under purely magmatic field. Hence it is considered that these zircons from unaltered granite underwent some minor alteration effect, while the zircons from altered granite are affected completely due to hydrothermal activity. Therefore, it is concluded that movement of hydrothermal solution has taken place along the shear zone in the study area, which has affected more on granites close to the shear zone and minor effects are seen in granites away from the shear zone. Hydrothermal alterations often result in concentration of specific economic minerals and hence, can be used as an indicator for mineral exploration.

Research Highlights

Petrography and geochemistry of granites and trace element analysis of zircons from these granites of Hungund schist belt are presented. The highlights are:

  • Sericitization, chloritization and epidotization are principle signatures observed in hydrothermally altered granites.

  • Nb/Ta ratio (~5), low Zr/Hf ratio, depleted ∑REE from the granites close to the shear zone suggests magmatic-hydrothermal interactions in the source rock, while the granites away from the shear zone do not reflect any significant alteration signature. Zircon geochemistry from the altered granite reveals that it contains higher concentration of trace elements, shows LREE enrichment and high ∑REE with weak positive Ce anomalies and strong negative Eu anomalies indicating hydrothermal alteration, whereas the zircons from unaltered granites have low to moderate trace element concentration and also REE patterns similar to unaltered magmatic zircons.

  • The zircons from unaltered granites are not purely magmatic zircons and have undergone some minor alteration effect which is also evident from the LREE overabundances.

  • Therefore, we conclude that movement of hydrothermal solution has taken place in the study area along the shear zone, showing prominent effects on the granites close to the shear zone and minor effects to those away from the shear zone. Such hydrothermal alteration signatures can be used as an indicator for mineral exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abadalla H M, Helba H and Matsueda H 2008 Chemistry of zircon in rare metal granitoids and associated rocks, Eastern Desert, Egypt; Resour. Geol. 59(1) 51–68.

    Article  Google Scholar 

  • Alderton D H, Pearce J A and Potts P J 1980 Rare earth element mobility during granite alteration: Evidence from southwest England; Earth Planet Sci. Lett. 49 149–165.

    Article  Google Scholar 

  • Allen D E and Seyfried Jr W E 2005 REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure; Geochim. Cosmochim. Acta 69 675–683, https://doi.org/10.1016/j.gca.2004.07.016.

    Article  Google Scholar 

  • Badhe K V and Pandalai H S 2018 Evolution of Hutti–Maski greenstone belt of the Eastern Dharwar Craton: Evidence for metamorphic and hydrothermal phases from the Hira-Buddini deposit, Raichur district, Karnataka, India; J. Earth Syst. Sci. 127 1–15, https://doi.org/10.1007/s12040-018-0995-3.

    Article  Google Scholar 

  • Ballouard C P, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse J L 2016 Nb–Ta fractionation in peraluminous granites: A marker of the magmatic–hydrothermal transition; Geology 44(3) 231–234, https://doi.org/10.1130/G37475.1.

    Article  Google Scholar 

  • Ballouard C P, Malcolm M, Marlina E, Sebastian T, Fanus V and Jean-Tristan B 2020 The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb–Ta geochemical fractionation, with implications for the origins of rare-metal mineralization; Earth-Sci. Rev. 203https://doi.org/10.1016/j.earscirev.2020.103115.

  • Bau M 1991 Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium; Chem. Geol. 93 219–230, https://doi.org/10.1016/0009-2541(91)90115-8.

    Article  Google Scholar 

  • Bau M 1996 Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect; Contrib. Mineral. Petrol. 123 323–333, https://doi.org/10.1007/s004100050159.

    Article  Google Scholar 

  • Belousova E A, Griffin W L, O’Reilly S Y and Fisher N J 2002 Igneous zircon: Trace element composition as an indicator of source rock type; Contrib. Mineral. Petrol. 143 602–622, https://doi.org/10.1007/s00410-002-0364-7.

    Article  Google Scholar 

  • Bhattacharya S, Panigrahi M K, Sachan H K and Kharya A 2014 Oxygen isotope ratio of quartz veins from of the auriferous Ramagiri–Penakacherla schist belt and surrounding granitoids in the Eastern Dharwar Craton: A case for a possible link between gold mineralisation and granite magmatism; Ore Geol. Rev. 63 201–208, https://doi.org/10.1016/S0169-1368(14)00102-4.

    Article  Google Scholar 

  • Banerjee R and Shivkumar K 2010 Geochemistry and petrogenesis of radioactive Kinwat Granitoids, Maharashtra; J. Geol. Soc. India 75 596–617, https://doi.org/10.1007/s12594-010-0054-4.

    Article  Google Scholar 

  • Breiter K, Förster H J and Škoda R 2005 Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorus granites: The peraluminous Podlesí granite system, Czech Republic; Lithos 88 15–34, https://doi.org/10.1016/j.lithos.2005.08.011.

  • Breiter K, Lamarão C N, Borges R M K and Dall Agnol R 2014 Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites; Lithos 192–195 208–225, https://doi.org/10.1016/j.lithos.2014.02.004.

    Article  Google Scholar 

  • Buhl D, Grauert B and Raith M 1983 U–Pb zircon dating of Archean rocks from the South Indian Craton: Results from the amphibolite to granulite facies transition zone at Kabbal Quarry, southern Karnataka; Fortschr. Mineral. 61 43–45.

    Google Scholar 

  • Cao J, Wu Q, Yang X, Kong H, Li H, Xi X, Huang Q and Liu B 2018 Geochronology and genesis of the Xitian W-Sn polymetallic deposit in Eastern Hunan Province, South China: Evidence from zircon U–Pb and Muscovite Ar–Ar Dating, petrochemistry, and wolframite Sr–Nd–Pb isotopes; Minerals 8 111, https://doi.org/10.3390/MIN8030111.

    Article  Google Scholar 

  • Cathelineau M 1986 The hydrothermal alkali metasomatism effects on granite rocks: Quartz dissolution and related subsolidus changes; J. Petrol. 27 945–965.

    Article  Google Scholar 

  • Cerny P 1991 Rare element granitic pegmatites. Part 1: Anatomy and internal evolution of pegmatite deposits. Part 11: Regional to global environments and petrogenesis; Geosci. Canada 18(2) 49–67.

  • Černý P, Teertstra D K, Chapman R, Selway J B, Hawthorne F C, Ferreira K, Chackowsky L E, Wang X J and Meintzer R E 2012 Extreme fractionation and deformation of the leucogranite–pegmatite suite at Red Cross Lake, Manitoba, Canada: IV. Mineralogy; Can. Mineral. 50 1839–1875.

    Article  Google Scholar 

  • Chadwick B, Vasudev V and Ahmed N 1996 The Sandur schist belt and its adjacent plutonic rocks. Implications for Late Archean crustal evolution in Karnataka; J. Geol. Soc. India 47 37–57.

    Google Scholar 

  • Chadwick B, Vasudev V N and Hegde G V 2000 The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence; Precamb. Res. 99 91–111, https://doi.org/10.1016/S0301-9268(99)00055-8.

    Article  Google Scholar 

  • Chardon D, Jayananda M and Peucat J J 2011 Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geo-physical implications for orogenic plateaux; Geochem. Geophys. Geosyst. 12 Q02005, https://doi.org/10.1029/2010GC003398.

    Article  Google Scholar 

  • Chardon D, Peucat J J, Jayananda M, Choukroune P and Fanning C M 2002 Archaean granite–greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion; Tectonics 21 1–17, https://doi.org/10.1029/2001TC901032.

    Article  Google Scholar 

  • Chinnasamy S S and Mishra B 2013 Greenstone metamorphism, hydrothermal alteration, and gold mineralisation in the genetic context of the granodiorite hosted gold deposit at Jonnagiri, Eastern Dharwar Craton, India; Econ. Geol. 108 1015–1036, https://doi.org/10.2113/econgeo.108.5.1015.

    Article  Google Scholar 

  • Chudík P, Uher P, Kohút M and Bačík P 2008 Accessory columbite to tantalite, tapiolite and zircon: Products of extreme fractionation in highly peraluminous pegmatitic granite from the Považský Inovec Mountains, Western Carpathians, Slovakia; J. Geosci. 53 323–334, https://doi.org/10.3190/jgeosci.031.

    Article  Google Scholar 

  • Cuney M, Leroy J, Volivezo A, Daziano C, Gambda B, Zarco A J, Morello D, Ninci C and Molina P 1989 Metallogenesis of the uranium mineralised Achala granitic complex, Argentina: Comparison with Hercynian peraluminous leucogranites of West Europe; Proceedings of a Technical Committee Meeting, Vienna, TECDOC no. 453, I.A.E.A. Vienna, pp. 211–232.

  • Debasish Roy 2015 Gold mineralisation in Chigargunta area of the Kolar Schist Belt, South India – A part of the Archean Greenstone Belt; In: Archean Metallogeny and Crustal Evolution, Earth Sci. Spec. Issue 4 40–46, https://doi.org/10.11648/j.earth.s.2015040401.14.

  • Dey S, Halla J, Kurhila M, Nandy J, Heilimo E and Pal S 2017 Geochronology of Neoarchean granitoids of the NW Eastern Dharwar craton: Implications for crust formation; Geol. Soc. London, Spec. Publ. 449 89–121, https://doi.org/10.1144/SP449.9.

    Article  Google Scholar 

  • Dey S, Nandy J, Choudhary A K, Liu Y and Zong K 2014 Origin and evolution of granitoids associated with the Kadiri greenstone belt, Eastern Dharwar Craton: A history of orogenic to anorogenic magmatism; Precamb. Res. 246 64–90.

    Article  Google Scholar 

  • Druppel K, McCready A J and Stumpfl E F 2009 High-K granites of the Rum Jungle Complex, N. Australia: Insights into the Late Archean crustal evolution of the North Australian Craton; Lithos 111 203–219, https://doi.org/10.1016/j.lithos.2009.04.007.

  • Elatta S A, Assran H M and Ahmed A A 2013 Preliminary study on HFSE mineralisation in the peralkaline granites of Nusab El Balgum Area, South-Western Desert, Egypt; Geomaterials 3 90–101, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=34602.

  • El Bouseley A M and El Sokkary A A 1975 The relation between Rb, Ba and Sr in granitic rocks; Chem. Geol. 16 207–219, https://doi.org/10.1016/0009-2541(75)90029-7.

    Article  Google Scholar 

  • El-Bialy M Z and Ali K A 2013 Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian–Nubian Shield; Chem. Geol. 360 54–73, https://doi.org/10.1016/j.chemgeo.2013.10.009.

    Article  Google Scholar 

  • El Mezayen A, Heikal M, El-Feky M, Shahin H, Abu Zeid I and Lasheen S 2019 Petrology, geochemistry, radioactivity and M-W type rare earth elelment tetrads of El Sela altered granites, south eastern desert, Egypt; Acta Geochim. 38 95–119.

    Article  Google Scholar 

  • El-Naby H H 2009 High and low temperature alteration of uranium and thorium minerals, Um Ara granites, south Eastern Desert, Egypt; Ore Geol. Rev. 35 436–446.

    Article  Google Scholar 

  • Friend C R L and Nutman A P 1991 SHRIMP U–Pb geochronology of the Closepet granite and Peninsular gneiss, Karnataka, South India; J. Geol. Soc. India 38 357–368.

    Google Scholar 

  • Fu B, Mernagh T P, Kita N T, Kemp A I S and Valley J W 2009 Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia; Chem. Geol. 259 131–142, https://doi.org/10.1016/j.chemgeo.2008.10.035.

    Article  Google Scholar 

  • Hanchar J M and van Westrenen W 2007 Rare earth element behavior in zircon-melt systems; Elements 3 37–42.

    Article  Google Scholar 

  • Hanchar J M, Finch R J, Hoskin P W O, Watson E B, Cherniak D J and Mariano A N 2001 Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping; Am. Mineral. 86 667–680.

    Article  Google Scholar 

  • Heaman L M, Bowins R and Crocket J 1990 The chemical composition of igneous zircon suites: implications for geochemical tracer studies; Geochim. Cosmochim. Acta 54 1597–1607, https://doi.org/10.1016/0016-7037(90)90394-Z.

    Article  Google Scholar 

  • Helba H A, Khalil K I and Abou N M F 2001 Alteration Patterns Related to Hydrothermal Gold Mineralizaition in Meta-andesites at Dungash Area, Eastern Desert, Egypt; Resour. Geol. 51 19–30, https://doi.org/10.1111/j.1751-3928.2001.tb00078.x.

    Article  Google Scholar 

  • Hermann A G 1970 Yttrium and lanthanides. In Wedepohl K H (ed.) Handbook of geochemistry; Springer, New York, pp. 39–57.

    Google Scholar 

  • Hinton R W and Upton B G J 1991 The chemistry of zircon: Variations within and betweenlarge crystals from syenite and alkali basalt xenoliths; Geochim. Cosmochim. Acta 55 3287–3302.

    Article  Google Scholar 

  • Hoskin P W O 2005 Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia; Geochim. Cosmochim. Acta 69 637–648, https://doi.org/10.1016/j.gca.2004.07.006.

    Article  Google Scholar 

  • Hoskin P W O and Ireland T R 2000 Rare earth element chemistry of zircon and its use as a provenance indicator; Geology 28 627–630.

    Article  Google Scholar 

  • Hoskin P W O and Schaltegger U 2003 The composition of zircon and igneous and metamorphic petrogenesis; Rev. Mineral. Geochem. 53 27–62, https://doi.org/10.2113/0530027.

    Article  Google Scholar 

  • Hu F F, Fan H R, Yang J H, Wan Y S, Liu D Y, Zhai M G and Jin C W 2004 Mineralising age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U–Pb dating on hydrothermal zircon; Chinese Sci. Bull. 49 1629–1636.

    Article  Google Scholar 

  • Huang X L, Wang R C, Chen X M, Hu H and Liu C S 2002 Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China; Can. Mineral. 40 1047–1068.

    Article  Google Scholar 

  • Jayananda M and Mahabaleshwar B 1991 The generation and emplacement of the Closepet Granite during the late Archaean granulite metamorphism in southeastern Karnataka; J. Geol. Soc. India 38 418–426.

    Google Scholar 

  • Jayananda M, Aadhiseshan K R, Kusiak M A, Wilde S A, Sekhamo K U, Guitreau M, Santosh M and Gireesh R V 2020 Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India; Gondwana Res. 78 228–260.

    Article  Google Scholar 

  • Jayananda M, Martin H, Peucat J J and Mahabaleswar B 1995 Late Archaean crust–mantle interactions: Geochemistry of LREE enriched mantle-derived magmas. Example of the Closepet batholith, southern India; Contrib. Mineral. Petrol. 119 314–329, https://doi.org/10.1007/BF00307290.

    Article  Google Scholar 

  • Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B and Mahabaleswar B 2000 Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar Craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole-rock geochemistry; Precamb. Res. 99 225–254, https://doi.org/10.1016/S0301-9268(99)00063-7.

    Article  Google Scholar 

  • Jayananda M, Peucat J J, Chardon D, Krishna Rao B, Fanning C M and Corfu F 2013 Neoarchean greenstone volcanism and continental growth, Dharwar Craton, southern India: Constraints from SIMS U–Pb zircon geochronology and Nd isotopes; Precamb. Res. 227 55–76, https://doi.org/10.1016/j.precamres.2012.05.002.

    Article  Google Scholar 

  • Kampunzu A B, Tomale A R, Zhai M, Majaule T and Modisi M P 2003 Major and trace element geochemistry of plutonic rocks from Francis town, NE Botswana: Evidence for a Neoarchaean continental active margin in the Zimbabwe craton; Lithos 71 431–460, https://doi.org/10.1016/S0024-4937(03)00125-7.

    Article  Google Scholar 

  • Kebede T, Horie K, Hidaka H and Terada K 2007 Zircon ‘microvein’ in peralkalinegranitic gneiss, western Ethiopia: Origin, SHRIMP U–Pb geochronology and trace element investigations; Chem. Geol. 242 76–102.

    Article  Google Scholar 

  • Kempe U, Gruner T, Renno A D, Wolf D and Reno M 2004 Discussion on Wang et al. (2000), Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China; Mineral Mag. 68 669–675, https://doi.org/10.1180/0026461046840211.

    Article  Google Scholar 

  • Kumar Sahoo A, Krishnamurthi R and Sangurmath P 2018 Nature of ore forming fluids, wallrock alteration and P–T conditions of gold mineralisation at Hira–Buddini, Hutti–Maski Greenstone Belt, Dharwar Craton; India. Ore Geol. Rev., https://doi.org/10.1016/j.oregeorev.2018.06.008.

    Article  Google Scholar 

  • Lei W, Shi G, Santosh M, Ng Y, Liu Y, Wang J, Xie G and Ju Y 2016 Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment: A case study from the Myanmar jadeitite; Lithos 266 16–27, https://doi.org/10.1016/J.LITHOS.2016.09.031.

    Article  Google Scholar 

  • Leroy J 1978 The Margnac and Fanay uranium deposits of the La Crouzille district (western Massif Central, France): Geologic and fluid inclusion studies; Econ. Geol. 73 1611–1634.

    Article  Google Scholar 

  • Lopez S, Fernandez C and Castro A 2006 Evolution of the Archaean continental crust: Insights from the experimental study of Archaean granitoids; Curr. Sci. 91 607–621.

    Google Scholar 

  • Maniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; Geol. Soc. Am. Bull. 101 635–643.

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Khanna T C, Satyanarayanan M and Keshav Krishna A 2009 Enriched and depleted arc basalts, with Mg-andesites and adakites: A potential paired arc–back-arc of the 2.6 Ga Hutti greenstone terrane, India; Geochim. Cosmochim. Acta 73 1711–1736.

    Article  Google Scholar 

  • Matin A 2006 Structural anatomy of the Kushtagi schist belt, Dharwar craton, south Indian example of Archaean transpression; Precamb. Res. 147 28–40, https://doi.org/10.1016/j.precamres.2006.01.013.

    Article  Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the Earth; Chem. Geol. 120 223–253.

    Article  Google Scholar 

  • Mishra B, Chinnasamy S S, Pruseth K L and Hazarika P 2018 Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton; Geosci. Front. 9 715–726, https://doi.org/10.1016/j.gsf.2017.09.005.

    Article  Google Scholar 

  • Moyen J F, Martin H, Jayananda M and Auvray B 2003 Late Archaean granites: A typology based on the Dharwar Craton (India); Precamb. Res. 127 103–123, https://doi.org/10.1016/S0301-9268(03)00183-9.

    Article  Google Scholar 

  • Murali A V, Parthasarathy R and Mahadevan T M 1983 Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments – A case study on Indian zircon; Geochim. Cosmochim. Acta 47 2047.

    Article  Google Scholar 

  • Nagasawa H 1970 Rare earth concentrations in zircon and apatite and their host dacites and granites; Earth Planet. Sci. Lett. 119 359.

    Article  Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian geology of India; New York, NY: Oxford University Press, 223p.

  • Naqvi S M, Khan R M K, Manikyamba C, Mohan M R and Khanna T C 2006 Geochemistry of the NeoArchaean high-Mg basalts, boninites and adakites from the Kushtagi-Hungund greenstone belt of the Eastern Dharwar Craton (EDC): Implications for the tectonic setting; J. Asian Earth Sci. 27 25–44.

    Article  Google Scholar 

  • Nutman A P, Chadwick B, Krishna Rao B and Vasudev V N 1996 SHRIMP U-Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups, and granites adjacent to the Sandur schist belt, Karnataka; J. Geol. Soc. India 47 153–164.

    Google Scholar 

  • Pal N and Mishra B 2002 Alteration geochemistry and fluid inclusion characteristics of the greenstone hosted gold deposit at Hutti, Eastern Dharwar Craton, India; Miner. Deposita 37 722–736.

    Article  Google Scholar 

  • Pal D, Chinnasamy S S, Goon S, John M M and Ghosh S 2019 Alteration mineralogy, fluid inclusions and stable isotope studies from Chigargunta and Bisanatham gold deposits, South Kolar Greenstone Belt, Dharwar Craton, India: Implications on genesis of gold mineralisation; Ore Geol. Rev., https://doi.org/10.1016/j.oregeorev.2019.102946.

  • Pal D, Chinnasamy S S and Goon S 2021 Characterisation of hydrothermal alteration at Chigargunta and Bisanatham Gold Deposits, South Kolar Greenstone Belt, Dharwar Craton India; J. Geol. Soc. India, Spec. Publ. 11 40–45, https://doi.org/10.17491/cgsi/2021/165464.

    Article  Google Scholar 

  • Pelleter E, Cheilletz A, Gasquet D, Mouttaqi A, Annich M, El Hakourd A, Deloule E and Féraude G 2007 Hydrothermal zircons: A tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt–Menhouhou gold deposit – Morocco); Chem. Geol. 245 135–161, https://doi.org/10.1016/j.chemgeo.2007.07.026.

    Article  Google Scholar 

  • Pettke T H, Audetat A and Schaltegger U 2005 Magmatic to hydrothermal crystallisation in the W–Sn mineralised Mole Granite (NSW, Australia): Part II: Evolving zircon and thorite trace element chemistry; Chem. Geol. 220 191, https://doi.org/10.1016/j.chemgeo.2005.02.017.

    Article  Google Scholar 

  • Prabhakar B C and Shareef M 2015 Shear zone controlled sulfide-gold occurrences and their fluid inclusion characteristics in the northern part of Eastern Dharwar Craton, southern India; J. Geol. Soc. India 85 279–288, https://doi.org/10.1007/s12594-015-0216-5.

    Article  Google Scholar 

  • Radhakrishna B P and Vaidyanathan R 1994 Geology of Karnataka; Geological Society of India, Bangalore.

  • Rajesh H M 2008 Petrogenesis of two granites from the Nilgiri and Madurai blocks, southwestern India: Implications for charnockite–calc-alkaline granite and charnockite–alkali (A-type) granite link in high-grade terrains; Precamb. Res. 162 180–197, https://doi.org/10.1016/j.precamres.2007.07.023.

    Article  Google Scholar 

  • Raza M Q and Absar N 2021 Mineral chemistry of hydrothermal alteration assemblage in hanging wall Shahapur granite associated with vein type Gogi uranium deposit, Bhima Basin, eastern Dharwar Craton, India: Implications for physico-chemical conditions of ore formation; Ore Geol. Rev. 128 103880, https://doi.org/10.1016/j.oregeorev.2020.103880.

    Article  Google Scholar 

  • Rogers A J, Kolb J, Meyer F M and Vennemann T 2013 Two stages of gold mineralisation at Hutti mine, India; Mineral Deposita 48 99–114, https://doi.org/10.1007/s00126-012-0416-5.

    Article  Google Scholar 

  • Sarma D S, McNaughton N J, Fletcher I R, Groves D I, Ram Mohan M and Balaram V 2008 The timing of gold mineralisation of Hutti gold deposit, Dharwar Craton, South India; Econ. Geol. 103 1715–1727, https://doi.org/10.2113/gsecongeo.103.8.1715.

    Article  Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant S S, Subramanyam K S V, Krishna V, Dasaram B and Manikyamba C 2018 Rapid determination of REE, PGE and other trace elements in geological and environmental materials by HR-ICP-MS; Atomic Spectrosc. 39(1) 1–15, https://doi.org/10.46770/AS.2018.01.001.

  • Schaltegger U 2007 Hydrothermal zircon; Elements 3 51, https://doi.org/10.2113/gselements.3.1.51.

    Article  Google Scholar 

  • Shihua Zhong, Chengyou Feng, Reimar Seltmann, Daxin Li and Hongying Qu 2018 Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition; Lithos, https://doi.org/10.1016/j.lithos.2018.06.029.

  • Song S G, Su L, Li X H, Zhang G B, Niu Y L and Zhang L F 2010 Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, N-W China; Precamb. Res. 183 805–816.

    Article  Google Scholar 

  • Streckeisen A 1974 Classification and Nomenclature of Plutonic Rocks; Geologische Rundschau 63 773–786, https://doi.org/10.1007/BF01820841.

    Article  Google Scholar 

  • Sylvester P J 1989 Post-collision alkaline granites; J. Geol. 97 261–280.

    Article  Google Scholar 

  • Timms N E, Kinny P D and Reddy S M 2006 Enhanced diffusion of uranium and thorium linked to crystal plasticity in zircon; Geochem. Trans. 7 10, https://doi.org/10.1186/1467-4866-7-10.

    Article  Google Scholar 

  • Toscano M, Pascual E, Nesbitt R W, Almodóvar G R, Sáez R and Donaire T 2014 Geochemical discrimination of hydrothermal and igneous zircon in the Iberian Pyrite Belt, Spain; Ore Geol. Rev. 56 301–311, https://doi.org/10.1016/j.oregeorev.2013.06.007.

    Article  Google Scholar 

  • Wang R C, Zhao G T, Lu J J, Chen X M, Xu S J and Wang D Z 2000 Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China; Mineral. Mag. 64 867–877.

    Article  Google Scholar 

  • Wang X, Chen J and Ren M 2016 Hydrothermal zircon geochronology: Age constraint on Nanling Range tungsten mineralisation (southeast China); Ore Geol. Rev. 74 63–75, https://doi.org/10.1016/j.oregeorev.2015.10.034.

    Article  Google Scholar 

  • Wang X, Griffin W L and Chen J 2010 Hf contents and Zr/Hf ratios in granitic zircons; Geochem. J. 44 65–72.

    Article  Google Scholar 

  • Watson E B 1979 Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry; Contrib. Mineral. Petrol. 70 407.

    Article  Google Scholar 

  • Wei H, Xu J H, Zhang J R, Cheng X H, Chu H X, Bian C J and Zhang Z 2018 Hydrothermal metasomatism and gold mineralization of porphyritic granite in the Dongping deposit, north Hebei, China: Evidence from zircon dating; Minerals 8(9) 363, https://doi.org/10.3390/min8090363.

    Article  Google Scholar 

  • Wu F Y, Liu X C, Ji W Q, Wang J M and Yang L 2017 Highly fractionated granites: Recognition and research; Sci. China, Earth Sci. 60(7) 1201–1219.

    Article  Google Scholar 

  • Xia Q X, Zheng Y F and Hu Z 2010 Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: Implications for action of supercritical fluid during continental subduction-zone metamorphism; Lithos 114 385–412.

    Article  Google Scholar 

  • Yang W B, Niu H C, Shan Q, Sun W D, Zhang H, Li N B, Jiang Y H and Yu X Y 2014 Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: Implications for Zr–REE–Nb mineralization; Miner. Deposita 49 451–470.

    Article  Google Scholar 

  • Ye C, Li S R, Zhang H F, Liu X B, Li Z Z, Ao C and Meijuan Y 2011 Significance of zircon trace element geochemistry, the Shihu gold deposit, western Hebei Province, North China; J. Rare Earth 29(3) 277, https://doi.org/10.1016/S1002-0721(10)60445-0.

    Article  Google Scholar 

  • Zhang C L, Li Z X, Li X H, Yu H F and Ye H M 2007 An early Paleoproterozoic high-K intrusive complex in south western Tarim Block, NW China: Age, geochemistry, and tectonic implications; Gondwana Res. 12 101–112.

  • Zhao J and McCulloch M T 1995 Geochemical and Nd isotopic systematics of granites from the Arunta Inlier, central Australia: Implications for Proterozoic crustal evolution; Precamb. Res. 71 265–299.

    Article  Google Scholar 

  • Zhiwei B and Zhenhua Z 2003 Rare-earth element mobility during ore-forming hydrothermal alteration: A case study of Dongping gold deposit Hebei Province, China; Chinese J. Geochem. 22(1) 45–57.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Science and Technology, Govt. of India, for granting INSPIRE Fellowship to Shivani for pursuing her PhD program at SDM College of Engineering and Technology (affiliated to Visvesvaraya Technological University, Belagavi, Karnataka), and the Ministry of Mines, Government of India (Ref: No.14/75/2015-Met.VI) for the facility extended under the Project granted to VSH of SDM College of Engg and Tech., Dharwad. National Centre for Antarctic and Ocean Research, Vasco, Goa extended analytical support for the whole-rock analysis. Trace and REE analysis of zircon was carried out during a visiting fellowship extended to VSH by National Natural Science Foundation, China (Grant no. 41890831) to State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. We acknowledge the financial support and the laboratory facility extended by the State Key Laboratory, Lithospheric Institute, Chinese Academy of Science, Beijing, China. We acknowledge SDM College of Engineering and Technology, Dharwad, for providing the facility extended to carry out the work.

Author information

Authors and Affiliations

Authors

Contributions

Hulaji S and Hegde V S conceived the idea, developed the theory and performed the computations with the help of Pratihari A R and Paltekar M. Pratihari A R and Paltekar M contributed towards field investigations and sample processing. Hegde V S performed the analysis to obtain zircon trace element data from granites of the study area. All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Shivani Hulaji.

Additional information

Communicated by Rajneesh Bhutani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulaji, S., Hegde, V.S., Li, XH. et al. Geochemical constraints of bulk rocks and in-situ zircon from the granitoids of the Hungund Schist Belt: An insight for hydrothermal activity. J Earth Syst Sci 131, 182 (2022). https://doi.org/10.1007/s12040-022-01930-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01930-0

Keywords

Navigation