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Abstract. Synthesis, characterization and theoretical studies of a novel coumarin-triazole-thiophene hybrid

4-(((4-ethyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)methyl)-6,7-dimethyl-2H-chromen-2-one (1), which

was fabricated from 4-ethyl-5-(thiophen-2-yl)-4H-1,2,4-triazole-3-thiol and 4-(chloromethyl)-6,7-dimethyl-

2H-chromen-2-one, are reported. The resulting compound was characterized by microanalysis, IR, 1H, and
13C APT NMR spectroscopy. The DFT calculations examined the structure and electronic properties of 1 in

gas phase. Its reactivity descriptors and molecular electrostatic potential revealed the reactivity and the

reactive centers of 1. ADMET properties of 1 were evaluated using the respective online tools. It was

established that 1 exhibit positive gastrointestinal absorption properties and negative human blood-brain

barrier penetration. The Toxicity Model Report revealed that 1 belongs to toxicity class 4. Molecular docking

was additionally applied to study the interaction of 1 with some SARS-CoV-2 proteins. It was established that

the title compound is active against all the applied proteins with the most efficient interaction with Papain-like

protease (PLpro). The interaction of 1 with the applied proteins was also studied using molecular dynamics

simulations.
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1. Introduction

Throughout its history, humankind has constantly been

faced with health problems. All this becomes even

more relevant in the emergence of previously

unknown diseases that could potentially transform into

pandemics. In this regard, designing and producing

molecules with potential biological and medicinal

properties is likely, one of the most effective ways to

counter diseases. Heterocyclic compounds are abun-

dant in nature and are necessary for survival. Suffice it

to say that the deoxyribonucleic acid (DNA), which

carries genetic instructions for the development,

functioning, growth, and reproduction of all known

organisms and many viruses, is composed of four

nucleobases, viz., cytosine, guanine, adenine, and

thymine, which are nitrogen-containing heterocycles.
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Thus, heterocyclic compounds play a fundamental and

pivotal role in nature.

Many pharmacologically active heterocyclic com-

pounds are on the market, many of which are regularly

used in clinical practice.1–7 Of a myriad of hetero-

cyclic compounds, coumarins, containing fused ben-

zene and pyrone fragments, are a large family of

particular importance. These compounds are one of the

components in many plants. It is not surprising that

coumarin was, for the first time, isolated from the

tonka bean (Dipteryx odorata Wild) in 1820 by A.

Vogel. Since then, coumarins have continuously been

the focus of scientists and have extensively been

studied for biochemical and pharmaceutical proper-

ties.8–10 On the other hand, 1,2,4-triazole and thio-

phene are five-membered nitrogen- and sulfur-

containing heterocyclic molecules, respectively. These

molecules adopt a planar structure and are aromatic

with the corresponding aromaticity index[0.8 11 Both

the 1,2,4-triazole and thiophene-based compounds are

of great importance for pharmacy and medicine due to

their pronounced biological properties.1–7,12–16 Thus, a

combination of the coumarin, 1,2,4-triazole and thio-

phene functionalities in one molecule is of interest in

terms of potential generating of novel biological

properties, which, in turn, might be of great value

against different diseases and for the design of new

therapies, as well as for the design and fabrication of

new materials of valuable properties.17

Nowadays, COVID-19 has become one of the

world’s most crucial problems affecting global eco-

nomics. Thus, drugs against SARS-CoV-2, a virus that

causes COVID-19, are of particular value. It was also

reported that the heterocyclic fragments could serve as

valuable and important resources for developing

coronavirus treatment strategies and therapy.18 Of a

variety of heterocycles, coumarin-,19–24 1,2,4-tria-

zole-25,26 and thiophene-derived compounds have also

been found to be of interest against COVID-19.27–29

Thus, a combination of the above-mentioned hetero-

cycles in a single molecule seems to be of value for the

fabrication of an active agent used in the COVID-19

therapy.

We have also been continuously interested in the

chemistry of heterocycles as well as in computational

analyses of compounds with biological activity.30–43

In the present work, we have focused on a novel

molecule constructed from the coumarin, 1,2,4-tria-

zole and thiophene frgaments, namely 4-(((4-ethyl-5-

(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)methyl)-

6,7-dimethyl-2H-chromen-2-one (1). Furthermore, to

be within the borders of the pink area of the

bioavailability radar, which enables a first glance at

the drug-likeness of a molecule in the SwissADME

online tool,44 ethyl, methyl and ethylene fragments

were also incorporated in the structure of 1. We have

also performed DFT-based computational studies to

probe the most favourable structure of the title com-

pound as well as to examine its electronic properties.

Additionally, the interaction of 1 with a series of

SARS-CoV-2 proteins was examined using molecular

docking and molecular dynamics.

2. Experimental

2.1 Materials

Starting materials 4-ethyl-5-(thiophen-2-yl)-4H-1,2,4-

triazole-3-thiol and 4-(chloromethyl)-6,7-dimethyl-

2H-chromen-2-one were provided by the Firat

University organic laboratory. The other chemicals

and solvents were purchased from Merck KGaA and

used without further purification.

2.2 Physical measurements

The 1H and 13C APT NMR spectra in DMSO-d6 were

recorded with a Bruker AC-400 NMR spectrometer.

The IR spectrum was recorded in the KBr pellet with a

PerkinElmer Spectrum One FT-IR system. The melt-

ing point was determined using the Gallenkamp

melting point apparatus. Microanalysis was performed

using a LECO 932 CHNS-O elemental analyzer.

2.3 Synthesis of 1

A mixture of 4-ethyl-5-(thiophen-2-yl)-4H-1,2,4-tria-

zole-3-thiol (0.02 mol, 4.226 g), 4-(chloromethyl)-6,7-

dimethyl-2H-chromen-2-one (0.02 mol, 4.453 g) and

K2CO3 (0.02 mol, 2.764 g) in dry acetone (30 mL) was

stirred for 6 h under ambient conditions. Then the

resulting white precipitate was filtered off and dried

under ambient conditions, followed by recrystalliza-

tion from EtOH. Yield: 5.963 g (75%). M.p.: 165–167

�C. 1H NMR, d: 1.18 (t, 3JH,H = 7.2 Hz, CH3, Et), 2.29

(s, CH3–coumarin), 2.33 (s, CH3–coumarin), 4.09 (q,
3JH,H = 7.2 Hz, CH2, Et), 4.61 (s, CH2S), 6.36 (s, H11,

coumarin), 7.22 (s, H12, coumarin), 7.63 (s, H13,

coumarin), 7.26 (t, 3JH,H = 7.8 Hz, H7, thiophene),

7.55 (t, 3JH,H = 7.8 Hz, H6, thiophene), 7.80 (t, 3JH,H =

7.8 Hz, H8, thiophene), ppm. 13C APT NMR, d: 15.29

(CH3, Et), 19.32 (CH3–coumarin), 20.07 (CH3–cou-

marin), 33.85 (CH2, Et), 40.19 (CH2S), 114.52 (C11,

coumarin), 115.69 (C18, coumarin), 117.60 (C14,
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coumarin), 125.58 (C6, thophene), 128.05 (C17, cou-

marin), 128.09 (C16, coumarin), 128.78 (C7, tho-

phene), 129.61 (C8, thophene), 133.37 (C5, thophene),

142.58 (C15, coumarin), 149.51 (C10, coumarin),

150.32 (C1, triazole), 151.56 (C13, coumarin), 152.23

(C12, coumarin), 160.28 (C2, triazole) ppm. IR, m:

1722 (C=O), 1622 (C=C), 1559 (C=C), 1418 (C=N),

1130 (C–O), 903 (C–O), 770 (C–S) cm–1. Anal. calc.

for C20H19N3O2S2 (397.51) (%): C 60.43, H 4.82 and

N 10.57; found: C 60.58, H 4.76 and N 10.62.

2.4 Computational details

The optimized geometry of 1, highest occupied and

lowest unoccupied molecular orbital (HOMO and

LUMO, respectively) surfaces, and a molecular elec-

trostatic potential (MEP) surface were calculated

without symmetry restrictions in gas phase with the

GaussView 6.0 molecular visualization program45 and

Gaussian 09, Revision D.01 program package46 using

the DFT/B3LYP hybrid functional47,48 and cc-

pVDZ47,49 basis set.

2.5 Molecular docking

Molecular docking simulations of the optimized

structure of 1 with a series of the SARS-CoV-2 pro-

teins were carried out with AutoDock Vina,50,51 using

the Lamarckian Genetic Algorithm (LGA) scoring

function with a number of GA runs = 100, population

size = 500, and a maximum number of evaluations =

25 000 000. The targeted protein structures were

subtracted from the RCSB PDB database,52 and were

pretreated before the docking, including water

removing and inserting hydrogen atoms and missing

residues and charges. Gasteiger charges were added to

the ligand molecules prior to converting to PDBQT

format. AutoDock Tools (v. 1.5.7) was utilized to

define the grid box with the dimensions of 30 9 30 9

30 Å with 0.375 Å grid spacing. Semi-flexible docking

was performed, keeping the receptor molecule rigid

and ligands flexible. During the docking procedure,

200 conformations for each ligand were left flexible,

while the protein was held rigid. The lowest binding

energy conformers and 2D interactions were filtered

from 10 top-ranked poses. Docking results were

visualized in BIOVIA Discovery Studio 2020.53

2.6 Molecular dynamics simulation

Molecular dynamics (MD) simulations of complexes

of 1 with a series of the SARS-CoV-2 proteins were

performed using the WebGRO online service.54

Parameters such as root mean square deviation

(RMSD), root mean square fluctuation (RMSF), a

radius of gyration (Rg), solvent accessible surface area

(SASA) and intermolecular hydrogen bonds were

assessed. Complexes were prepared for MD using

GROMOS96 43a1 forcefield and were equilibrated

using the canonical (NVT) and the isothermal–isobaric

(NPT) ensembles. Topology of 1 was generated with

the PRODRG tool.55 Simple point charge (SPC) was

used as a solvent model (triclinic water box with size

50 9 75 9 70 Å) for complexes.56 These systems were

neutralized by adding sodium or chlorine ions based

on the total charges. For minimization of the system

before MD, the steepest descent algorithm (5000

steps) was applied. The MD simulations were per-

formed in the presence of 0.15 M NaCl using the

constant temperature (310 K) and pressure (1.0 bar).

The approximate number of frames per simulation was

1000. The simulation time was set to 50 ns.

2.7 In silico drug-likeness analysis

The SwissADME,44 BOILED-Egg57 and ProTox-

II58,59 online tools were applied to study ADMET

properties of 1.

Scheme 1. Synthesis of 1.
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3. Results and Discussion

Coumarin-triazole-thiophene hybrid 4-(((4-ethyl-5-

(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)methyl)-

6,7-dimethyl-2H-chromen-2-one (1) was obtained

with a good yield by reacting 4-ethyl-5-(thiophen-2-

yl)-4H-1,2,4-triazole-3-thiol with an equimolar

amount of 4-(chloromethyl)-6,7-dimethyl-2H-chro-

men-2-one in the presence of K2CO3 (Scheme 1).

The IR spectrum of 1 contains bands typical for

characteristic fragments. The bands for the C=O and

C=N groups were shown at 1722 and 1418 cm–1,

respectively, while the band for the C–O groups were

found at 903 and 1130 cm–1. Two bands for the C=C

vibrations were revealed at 1559 and 1622 cm–1, and

the band for the C–S group was observed at 770 cm–1.

The 1H NMR spectrum of 1 recorded in DMSO-d6

exhibits a single set of peaks (Figure 1). Particularly,

the ethyl hydrogen atoms were shown as a triplet at

1.18 ppm and a quartet at 4.09 ppm with the charac-

teristic coupling constant of 3JH,H = 7.2 Hz. The

hydrogen atoms of the coumarin-attached methyl

groups were observed as two singlets at 2.29 and

2.33 ppm, while the CH2S hydrogen atoms were found

as a singlet at 4.61 ppm. The coumarin hydrogen

atoms were shown as three singlets at 6.36, 7.22, and

7.63 ppm. Finally, a triplet at 7.26 ppm, and two

doublets at 7.55 and 7.80 ppm were attributed to the

thiophene hydrogens. The 13C APT NMR spectrum of

1 in the same solvent exclusively exhibits signals

typical for the observed carbons (Figure 1). Particu-

larly, the ethyl fragment is shown as two signals at

15.29 and 33.85 ppm for the methyl and methylene

carbons, respectively. The coumarin methyl carbon

atoms were found in the spectrum as two signals at

19.32 and 20.07 ppm, while the CH2S carbon was

observed as a signal at 40.19 ppm. The triazole frag-

ment was shown as two signals at 150.32 and

160.28 ppm, while the thiophen fragment was found

as four signals at 125.58, 128.78, 129.61 and 133.37

ppm. Finally, the carbon atoms of the coumarin

fragment were observed at 114.52, 115.69, 117.60,

128.05, 128.09, 142.58, 149.51, 151.56 and 152.23 ppm.

The structure of 1 as well as its electronic properties

were revealed using the DFT/B3LYP/cc-pVDZ cal-

culations. The structure was first optimized in gas

phase at 298.15 K (Figure 2). The calculated energies

and thermodynamic parameters of the optimized

structure are given in Table S1 (Supplementary

Information), while the cartesian coordinates of the

Figure 1. The 1H (top) and 13C APT (bottom) NMR spectra of 1 recorded in DMSO-d6 (see Figure 2 for atoms labelling).
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atoms are listed in Table S2 (Supplementary Infor-

mation). The vibration frequencies were also calcu-

lated for the optimized structure of 1 in gas phase, and

no imaginary frequencies were obtained (Figure S1

and Table S3, Supplementary Information).

The obtained bond lengths and angles in the opti-

mized structure of 1 are typical for certain function-

alities. Particularly, the C–C, C–N, C–O and C–S

bonds within the thiophene and coumarin fragments

are 1.359–1.458, 1.317–1.388, 1.365–1.394 and

1.734–1.755 Å, respectively, indicating their bond

order of about one-and-a-half, while remaining C–C,

C–N and C–S bonds are 1.454–1.529, 1.464 and

1.768–1.841 Å, respectively, being close to single

bonds (Table 1). However, some shortening of the C–

C bond between the triazole and thiophene fragments

is clearly evidenced due to the conjugation of the p-

systems of these rings. The exocyclic carbonyl C–O

bond length is 1.207 Å, indicating its double-bond

nature. The endocyclic C–N–N and N–C–N bond

angles within the triazole ring vary from 107.01� to

111.29�, while the C–N–C bond angle is slightly

smaller and of 103.60� (Table 1). The C–C–C and C–

C–S bond angles in the thiophene fragments are

110.62–113.20�, while the C–S–C angle is close to the

right angle and 91.45� (Table 1). The thioester C–S–C

bond angle is slightly larger in comparison to the

thiophene analogue and of 96.81�. Finally, all the

endocyclic bond angles within the coumarin fragment

are similar and vary from 116.23� to 123.18�, clearly

indicating their sp2 hybridization (Table 1). The

molecule of 1 slightly deviates from planarity as

evidenced by the corresponding dihedral angles

between the triazole, thiophene and coumarin frag-

ments, while the ethyl fragment is almost orthogonal

to the triazole fragment (Figure 2, Table 1).

It was established that the energies of the HOMO

and LUMO for 1 are –5.87032 and –1.85582 eV,

respectively, with an energy gap of 4.01450 eV (Fig-

ure 3). The HOMO is mainly delocalized over the

thiophene, triazole and thioester sulfur fragments,

while the LUMO is mainly spread over the coumarin

fragment (Figure 3).

According to the ionization potential and the elec-

tron affinity value, the optimized structure of 1 exhi-

bits both good electron-donor and electron-acceptor

properties (Table 2). Further, as evidenced by the

relatively low electronegativity value, 1 is a poor

electron attractor, which is additionally supported by

the corresponding chemical potential value (Table 2).

Values of the chemical hardness and chemical softness

indicate that the optimized structure of 1 tends to

exchange its electron cloud with the surrounding

environment (Table 2). The electrophilicity index

value of 1 is about 3.72 eV, which is in the range for

strong electrophiles.60 The corresponding DNmax value

indicates that the reported compound can accept about

1.92 electrons (Table 2).

We have also examined the molecular electrostatic

potential (MEP) surface of the optimized structure of 1
to reveal the nucleophilic and electrophilic regions of a

molecule. As a result, the carbonyl oxygen atom and

the triazole dinitrogen fragment were established to be

the most distinguished nucleophilic sites (red colour),

while the methyl hydrogen atoms were highlighted as

the most pronounced electrophilic sites (blue colour)

(Figure 4).

In this work, we have also probed the optimized

structure of 1 for its potential ADMET properties.

According to ProTox-II,58,59 1 belongs to the fourth

class of toxicity with the predicted LD50 of about 1

g/kg (Figure 5). It was also predicted that 1 is an

inhibitor of the enzyme, cytochrome P450, nuclear

receptor, family A G protein-coupled receptor, phos-

phatase, hydrolase, oxidoreductase and other mem-

brane protein with the probabilities of 33.3%, 20.0%,

13.3%, 6.7%, 6.7%, 6.7%, 6.7% and 6.7%, respec-

tively (Figure 5). According to the Toxicity Model

Report, 1 was revealed to be inactive towards the

listed targets (Figure 5).

As evidenced by the SwissADME44 bioavailability

radar, the title compound is preferred in all the con-

sidered six parameters (Figure 6). Further, one of the

efficient approaches to examine molecules for the

human blood-brain barrier (BBB) penetration and

Figure 2. Top and side views of the optimized structure of
1, obtained using the DFT/B3LYP/cc-pVDZ method.
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gastrointestinal absorption (GIA) is the BOILED-Egg

method, which is derived from lipohilicity and polarity

(Figure 6).57 As such, points in the Egg’s yolk and

white correspond to molecules predicted to passively

permeate through the BBB and be passively absorbed

by the gastrointestinal tract, respectively. Furthermore,

molecules found to be effluated (PGP?) and not to be

effluated (PGP–) from the central nervous system by

the P-glycoprotein are shown as blue and red dots,

respectively. Thus, the described compound 1 was

predicted to possess negative BBB penetration and

positive GIA property with the PGP? effect

(Figure 6).

Finally, 1 was examined as a potential inhibitor

toward a series of the SARS-CoV-2 proteins (Table 3)

using in silico molecular docking. Nowadays, this

Table 1. Selected bond lengths (Å), bond and dihedral angles (�) in the optimized structure of
1 obtained using the DFT/B3LYP/cc-pVDZ method (see Figure 2 for atoms labelling).

Bond lengths
C1–C5 1.454 C16–C20 1.509
C3–C4 1.529 C17–C18 1.411
C5–C6 1.382 C1–N1 1.321
C6–C7 1.426 C1–N3 1.388
C7–C8 1.371 C2–N2 1.317
C9–C10 1.506 C2–N3 1.375
C10–C11 1.359 C3–N3 1.464
C11–C12 1.458 C12–O1 1.394
C10–C18 1.458 C12–O2 1.207
C13–C14 1.398 C13–O1 1.365
C13–C18 1.407 C2–S2 1.768
C14–C15 1.395 C5–S1 1.755
C15–C16 1.421 C8–S1 1.734
C15–C19 1508 C9–S2 1.841
C16–C17 1.393 N1–N2 1.372
Bond angles
C1–C5–C6 131.94 C5–C1–N3 126.99
C5–C6–C7 113.20 C11–C12–O1 116.23
C6–C7–C8 112.65 C11–C12–O2 125.87
C9–C10–C11 123.84 C14–C13–O1 116.71
C9–C10–C18 117.60 C18–C13–O1 122.38
C10–C11–C12 123.18 C1–C5–S1 117.42
C10–C18–C13 117.76 C6–C5–S1 110.62
C10–C18–C17 124.70 C7–C8–S1 112.07
C11–C10–C18 118.56 C10–C9–S2 113.65
C12–O1–C13 121.89 C1–N1–N2 108.24
C13–C14–C15 120.93 C1–N3–C2 103.60
C13–C18–C17 117.53 C1–N3–C3 129.95
C14–C13–C18 120.91 C2–N2–N1 107.01
C14–C15–C16 119.29 C2–N3–C3 126.37
C14–C15–C19 120.04 C5–S1–C8 91.45
C15–C16–C17 118.93 C2–S2–C9 96.81
C15–C16–C20 120.65 N1–C1–N3 109.86
C16–C15–C19 120.67 N2–C2–N3 111.29
C16–C17–C18 122.40 N2–C2–S2 126.39
C17–C16–C20 120.42 N3–C2–S2 122.32
C4–C3–N3 113.34 O1–C12–O2 117.90
C5–C1–N1 123.12
Dihedral angles
C6–C5–C1–N3 –22.67 C2–S2–C9–C10 179.21
N1–C1–C5–S1 –18.69 C11–C10–C9–S2 –1.09
C1–N3–C3–C4 95.81 C18–C10–C9–S2 179.11
C2–N3–C3–C4 –87.90 Cg(triazole)���Cg(thiophene) 20.69
N2–C2–S2–C9 5.01 Cg(triazole)���Cg(coumarin) 4.47
N3–C2–S2–C9 –174.58 Cg(thiophene)���Cg(coumarin) 18.34
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method is popular for probing the interaction of a

biomolecule with a ligand (small molecule) to design

and discover new drugs,61–64 thus being efficient in

saving time and money. The target structures of pro-

teins were primarily selected in accordance with the

structural features of the virus62,63 as well as based on

biological mechanisms and functions that can be uti-

lized to reduce, prevent or treat the virus.64

According to the obtained results, compound 1
efficiently interacts with all the applied proteins and

generally shows comparable or slightly higher abso-

lute values of binding scores compared to Remdesivir

and almost all redocked initial ligands and even much

higher values compared to Favipiravir.34 Compound 1
demonstrates the best binding affinity with Papain-like

protease (PLpro) (Table 3), which is defined by two

conventional hydrogen bonds with THR75, one

p���anion interaction with ASP76, two p���sulfur

interactions with TYR154 and HIS175, one p���p
stacked interaction with HIS72 and one T-shaped p���p
interaction with HIS175 (Figure 7, Table 4). The worst

binding affinity of 1 was found for Main protease

(Mpro) (Table 3), which is described by three con-

ventional hydrogen bonds with GLN110 and THR111,

one p���sigma interaction with ILE106, two p���p
stacked interactions with PHE294, three p���alkyl

interactions with PHE294 and VAL104 (Figure 7,

Table 4). Interestingly, compound 1 binds Nonstruc-

tural protein 3 (Nsp3_range 207–379-MES) more

efficiently than Nonstructural protein 3 (Nsp3_range

207–379-AMP) (Table 3), which is obviously

explained by a greater number of both conventional

hydrogen bonds and hydrophobic interactions (Fig-

ure 7, Table 4). Notably, it was established that

compound 1 interacts with the same efficiency with

both Nonstructural protein 16 (Nsp16_GTA site) and

Nonstructural protein 16 (Nsp16_SAM site) (Table 3).

This is explained by the formation of almost the same

intermolecular interactions in the resulting complexes

with a marked predominance of hydrogen bonds and

Figure 3. Energy levels and views on the electronic
isosurfaces of the HOMO and LUMO of the ground state of
1, obtained using the DFT/B3LYP/cc-pVDZ method.

Table 2. Descriptors for the optimized structure of 1 obtained using the DFT/B3LYP/cc-
pVDZ method.

Ionization energy, I = –EHOMO (eV) 5.87032
Electron affinity, A = –ELUMO (eV) 1.85582
Electronegativity, v = (I ? A)/2 (eV) 3.86307
Chemical potential, l = –v (eV) –3.86307
Global chemical hardness, g = (I – A)/2 (eV) 2.00725
Global chemical softness, S = 1/(2g) (eV–1) 0.24910
Global electrophilicity index, x = l2/(2g) (eV) 3.71735
Maximum additional electric charge, DNmax = –l/g 1.92456

Figure 4. View of the molecular electrostatic potential
surface of 1, obtained using the DFT/B3LYP/cc-pVDZ
method.
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electrostatic interactions (Figure 7, Table 4). However,

the interaction of compound 1 with Nonstructural

protein 16 (Nsp16_MGP site) is less efficient due to a

lower number of intermolecular interactions with a

predominance of hydrophobic interactions (Figure 7,

Table 4).

We have also performed molecular dynamics (MD)

simulations of 50 ns to evaluate interactions in

Figure 5. (top-left and bottom) Toxicity results of 1 calculated by ProTox-II. (top-right) Druggability predictions of 1
calculated by SwissADME.

Figure 6. (left) Bioavailability radar for 1 within the domain borders of ADME properties, calculated by SwissADME.
The coloured zone of the radar is the suitable physicochemical space for oral bioavailability. (right) BOILED-Egg model of
1 calculated by SwissADME.
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complexes of 1 with the applied SARS-CoV-2 pro-

teins. Particularly, complexes with Mpro, PLpro,

Nsp3_range 207–379-AMP and Nsp3_range 207–379-

MES showed an RMSD below 0.5 nm with average

values of 0.294, 0.387, 0.386 and 0.370 nm,

respectively (Figure 8). However, complexes of 1 with

Nsp16_SAM site and Nsp16_MGP site showed a

higher RMSD of about 0.5 and 0.6 nm, respectively,

with average values of 0.562 and 0.498 nm (Figure S2,

Supplementary Information). Furthermore, the

Table 3. The best poses of 1 inside the binding sites of the listed proteins.

Protein PDB code 1

Main protease (Mpro) 6LU7 –7.5(1)
Papain-like protease (PLpro) 6WUU –9.2(0)
Nonstructural protein 3 (Nsp3_range 207–379-AMP) 6W6Y –8.1(0)
Nonstructural protein 3 (Nsp3_range 207–379-MES) 6W6Y –8.7(0)
Nonstructural protein 16 (Nsp16_GTA site) 6WVN –8.1(1)
Nonstructural protein 16 (Nsp16_MGP site) 6WVN –7.7(1)
Nonstructural protein 16 (Nsp16_SAM site) 6WVN –8.2(0)

Figure 7. 2D (left) and 3D (right) views on the interaction of 1 with the applied SARS-CoV-2 proteins.
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Table 4. The best types of interactions and distances of 1 with the applied SARS-CoV-2 proteins.

Interaction Distance (Å) Bonding Bonding type

Main protease (Mpro)–1
A:GLN110:HE22 - :1:O 2.35612 Hydrogen Bond Conventional Hydrogen Bond
A:THR111:HN - :1:O 2.30087 Hydrogen Bond Conventional Hydrogen Bond
A:THR111:HG1 - :1:O 2.53446 Hydrogen Bond Conventional Hydrogen Bond
A:ILE106:CA - :1 3.85061 Hydrophobic p���Sigma
A:PHE294 - :1 4.18531 Hydrophobic p���p Stacked
A:PHE294 - :1 3.86567 Hydrophobic p���p Stacked
A:PHE294 - :1 4.87993 Hydrophobic p���Alkyl
:1 - A:VAL104 5.40029 Hydrophobic p���Alkyl
:1 - A:VAL104 5.47839 Hydrophobic p���Alkyl
Papain-like protease (PLpro)–1
C:THR75:HN - :1:O 2.00695 Hydrogen Bond Conventional Hydrogen Bond
C:THR75:HG1 - :1:O 2.72252 Hydrogen Bond Conventional Hydrogen Bond
A:ASP76:OD2 - :1 3.55763 Electrostatic p���Anion
:1:S - A:TYR154 5.45872 Other p���Sulfur
:1:S - A:HIS175 4.82447 Other p���Sulfur
C:HIS73 - :1 5.10245 Hydrophobic p���p Stacked
C:HIS175 - :1 4.57422 Hydrophobic p���p T-shaped
Nonstructural protein 3 (Nsp3_range 207–379-AMP)–1
A:ILE23:HN - :1:O 1.75554 Hydrogen Bond Conventional Hydrogen Bond
A:GLY48:HN - :1:N 2.84990 Hydrogen Bond Conventional Hydrogen Bond
A:PHE156:HN - :1 3.21453 Hydrogen Bond p���Donor Hydrogen Bond
A:VAL49:CG2 - :1 3.76633 Hydrophobic p���Sigma
:1:S - A:PHE156 5.51654 Other p���Sulfur
A:GLY51:C - :1 3.82152 Hydrophobic Amide���p Stacked
:1 - A:ALA52 5.14229 Hydrophobic p���Alkyl
:1 - A:ALA52 4.16275 Hydrophobic p���Alkyl
:1 - A:VAL155 5.12118 Hydrophobic p���Alkyl
Nonstructural protein 3 (Nsp3_range 207–379-MES)–1
B:VAL49:HN - :1:N 1.87459 Hydrogen Bond Conventional Hydrogen Bond
B:ALA50:HN - :1:N 2.65479 Hydrogen Bond Conventional Hydrogen Bond
B:LEU126:HN - :1:O 1.99615 Hydrogen Bond Conventional Hydrogen Bond
B:ALA38:CB - :1 3.80908 Hydrophobic p���Sigma
:1:C - B:PHE132 3.9992 Hydrophobic p���Sigma
:1 - B:PHE132 4.68468 Hydrophobic p���p Stacked
:1 - B:VAL49 4.86985 Hydrophobic p���Alkyl
:1 - B:ALA50 5.31368 Hydrophobic p���Alkyl
:1 - B:ILE131 5.13068 Hydrophobic p���Alkyl
:1 - B:VAL49 5.41398 Hydrophobic p���Alkyl
Nonstructural protein 16 (Nsp16_GTA site)–1
A:ASN6841:HD21 - :1:O 2.80475 Hydrogen Bond Conventional Hydrogen Bond
A:ASN6841:HD22 - : 1:O 2.39934 Hydrogen Bond Conventional Hydrogen Bond
A:TYR6930:HN - : 1:N 2.05846 Hydrogen Bond Conventional Hydrogen Bond
A:SER6872:CB - : 1:O 3.76117 Hydrogen Bond Carbon Hydrogen Bond
A:MET6929:CA - : 1:N 3.01532 Hydrogen Bond Carbon Hydrogen Bond
A:LYS6968:HZ1 - :1 3.05394 Electrostatic p���Donor Hydrogen Bond
A:ASP6897:OD2 - : 1 4.13108 Electrostatic p���Anion
A:ASP6928:OD2 - : 1 4.24108 Electrostatic p���Anion
:1:C - A:TYR6930 3.60414 Hydrophobic p���Sigma
A:MET6929:SD - : 1 3.83826 Other p���Sulfur
:1 - A:LEU6898 4.70763 Hydrophobic p���Alkyl
Nonstructural protein 16 (Nsp16_MGP site)–1
A:ASN6811:HD22 - :1:N 2.43810 Hydrogen Bond Conventional Hydrogen Bond
A:TRP6987:HE1 - :1:N 2.27963 Hydrogen Bond Conventional Hydrogen Bond
A:SER7074:CB - :1:O 3.73525 Hydrogen Bond Carbon Hydrogen Bond
A:LYS6814:NZ - :1 4.34940 Electrostatic p���Cation
:1:C - A:TRP6987 3.71179 Hydrophobic p���Sigma
A:TRP6987 - :1 4.97433 Hydrophobic p���p Stacked
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complex of 1 with Nsp16_GTA site showed a gradual

increase of an RMSD over the whole simulation time,

reaching the value of about 0.7 nm with an average

value of 0.486 nm (Figure S2, Supplementary

Information).

The RMSF value for complexes of 1 with Mpro,

PLpro, Nsp3_range 207–379-AMP and Nsp3_range

207–379-MES was below 0.789, 1.151, 0.365 and 0.431

nm, respectively (Figure 8). The same value for com-

plexes with Nsp16_GTA site, Nsp16_MGP site and

Nsp16_SAM site was below 1.841, 1.044, and 0.766

nm, respectively (Figure S2, Supplementary Informa-

tion). The strongest fluctuations of amino acid residues

for each complex are listed in Table S4 (Supplementary

Information). Rg values for all the complexes form

relatively stable profiles (Figure 8 and Figure S2, Sup-

plementary Information). Particularly, Rg values vary

in the ranges 2.186–2.313, 2.631–2.720, 2.310–2.466,

2.319–2.471, 2.258–2.357, 2.224–2.340 and

2.226–2.338 nm for complexes of 1 with Mpro, PLpro,

Nsp3_range 207–379-AMP, Nsp3_range 207–379-

MES, Nsp16_GTA site, Nsp16_MGP site and

Nsp16_SAM site, respectively. The SASA profiles were

calculated to predict the interaction between complexes

of 1 with the applied proteins and solvents. It was also

established that the binding of compound 1 to the

applied proteins did not impair the proteins’ interaction

with the solvent molecule and the stability of the pro-

teins (Figure 8 and Figure S2, Supplementary Infor-

mation). During the 50 ns simulation time, the average

SASA was calculated as 151.72, 309.74, 164.43,

158.09, 211.46, 203.20 and 207.26 nm2 for complexes

of 1 with Mpro, PLpro, Nsp3_range 207–379-AMP,

Nsp3_range 207–379-MES, Nsp16_GTA site,

Nsp16_MGP site and Nsp16_SAM site, respectively. It

was also observed that the complex of compound 1 with

Mpro mainly forms 1 intermolecular hydrogen bond

during almost the whole simulation time and 2 inter-

molecular hydrogen bonds at about 12–20 and 24–38 ns

(Figure 8). Complex of 1 with PLpro is characterized by

forming 1 intermolecular hydrogen bond at about 0–17

and 24–50 ns, and 2 intermolecular hydrogen bonds at

about 12–16 ns (Figure 8). Notably, the same complex

does not form intermolecular hydrogen bonds at about

17–23 ns (Figure 8). Complexes of 1 with both

Nsp3_range 207–379-AMP site and Nsp3_range

207–379-MES site form 1 intermolecular hydrogen

bond during the whole simulation time with a much

higher frequency in comparison to complex with Mpro

(Figure 8). Furthermore, complex of 1 with Nsp3_range

207–379-MES site forms 2 and 3 intermolecular

hydrogen bonds during almost the whole simulation

time, while complex with Nsp3_range 207–379-AMP

site forms 2 and 3 intermolecular hydrogen bonds

exclusively at about 26–50 nm (Figure 8). Finally,

complexes of compound 1 with Nsp16_GTA site,

Nsp16_MGP site and Nsp16_SAM site form 1 inter-

molecular hydrogen bond at about 12–50, 0–43 and

0–47 ns, respectively, with a relatively rare frequency

(Figure S2, Supplementary Information). The formation

of 2 intermolecular hydrogen bonds is observed for

the same complexes mainly at about 13–22, 1–42 and

Table 4. (contd.)

Interaction Distance (Å) Bonding Bonding type

A:TRP6987 - :1 3.93928 Hydrophobic p���p Stacked
A:TRP6987 - :1 4.81716 Hydrophobic p���p Stacked
A:TRP6987 - :1 4.42903 Hydrophobic p���p Stacked
:1 - A:ALA6986 5.16298 Hydrophobic p���Alkyl
Nonstructural protein 16 (Nsp16_SAM site)–1
A:ASN6841:HD21 - :1:O 2.81052 Hydrogen Bond Conventional Hydrogen Bond
A:ASN6841:HD22 - :1:O 2.42178 Hydrogen Bond Conventional Hydrogen Bond
A:TYR6930:HN - :1:N 2.07806 Hydrogen Bond Conventional Hydrogen Bond
A:MET6929:CA - :1:N 3.02780 Hydrogen Bond Carbon Hydrogen Bond
:1:C - A:ASP6897:OD1 3.66236 Hydrogen Bond Carbon Hydrogen Bond
A:LYS6968:NZ - :1 3.84530 Electrostatic p���Cation
A:ASP6897:OD2 - :1 4.13838 Electrostatic p���Anion
A:ASP6928:OD2 - :1 4.28209 Electrostatic p���Anion
:1:C - A:TYR6930 3.55181 Hydrophobic p���Sigma
A:MET6929:SD - :1 3.84137 Other p���Sulfur
:1 - A:LEU6898 4.54328 Hydrophobic p���Alkyl

J. Chem. Sci.           (2023) 135:6 Page 11 of 15     6 



0–8 ns, respectively (Figure S2, Supplementary

Information).

4. Conclusions

In summary, we report the synthesis, characterization,

and theoretical studies of the coumarin-triazole-thio-

phene hybrid 4-(((4-ethyl-5-(thiophen-2-yl)-4H-1,2,4-

triazol-3-yl)thio)methyl)-6,7-dimethyl-2H-chromen-2-

one (1), which was readily obtained with a good yield

by reacting 4-ethyl-5-(thiophen-2-yl)-4H-1,2,4-tria-

zole-3-thiol with an equimolar amount of 4-(chlor-

omethyl)-6,7-dimethyl-2H-chromen-2-one in the

presence of K2CO3.

The structure of 1 was optimized by the DFT/

B3LYP/cc-pVDZ calculations to reveal its geometri-

cal parameters and electronic properties. The obtained

bond lengths and angles in the optimized structure of 1
are typical for certain functionalities. The HOMO is

mainly delocalized over the thiophene, triazole, and

thioester sulfur fragments, while the LUMO is mainly

spread over the coumarin fragment of 1. Molecular

electrostatic potential surface of the optimized struc-

ture of 1 revealed the carbonyl oxygen atom and the

triazole dinitrogen fragment as the most distinguished

nucleophilic sites, while the methyl hydrogen atoms

were found as the most pronounced electrophilic sites.

The global chemical reactivity descriptors of the

optimized structure of 1 were also calculated, which

allowed the revealing its electron-accepting and

donating abilities. The optimized structure of 1 exhi-

bits both good electron-donor and electron-acceptor

properties and tends to exchange its electron cloud

with the surrounding environment. 1 was also found to

be a strong electrophile.

Figure 8. RMSD, RMSF, Rg, SASA and intermolecular hydrogen bonds analysis profiles of complexes of 1 with Main
protease (Mpro), Papain-like protease (PLpro), Nonstructural protein 3 (Nsp_range 207–379-AMP) and Nonstructural
protein 3 (Nsp_range 207–379-MES).
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Some biological properties of the title compound

were evaluated using a set of online tools, which

revealed that 1 exhibits negative human blood-brain

barrier penetration and positive gastrointestinal

absorption property. Furthermore, molecule 1 was

predicted to be effluated from the central nervous

system by the P-glycoprotein. According to the

molecular docking results, compound 1 is active

against all the applied SARS-CoV-2 proteins and, in

general, shows comparable or slightly higher absolute

values of binding scores compared to Remdesivir and

almost all the redocked initial ligands and even much

higher values compared to Favipiravir. The best

binding affinity of 1 was revealed with Papain-like

protease (PLpro). According to the molecular

dynamics simulation data, compound 1 forms

stable complexes with Main protease (Mpro), Papain-

like protease (PLpro), Nonstructural protein 3

(Nsp_range 207–379-AMP) and Nonstructural protein

3 (Nsp_range 207–379-MES), while less stable com-

plexes are formed with Nonstructural protein 16

(Nsp16_GTA site), Nonstructural protein 16

(Nsp16_MGP site) and Nonstructural protein 16

(Nsp16_SAM site).

Supplementary Information (SI)

Tables S1–S4, and Figures S1 and S2 are available at www.

ias.ac.in/chemsci.
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