Skip to main content
Log in

Synthesis of four diastereomers of notoryne and their 13C NMR chemical shifts analysis

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this manuscript we document the details of the synthesis of four diastereomers of notoryne. The synthesis of one of the diastereomer having a similar relative stereochemistry of substituents on the both THF rings like notoryne, however, being the relative stereochemistry between the bridging carbon of these two THF units is changed from anti to syn has been executed mainly to learn how the ring carbon chemical shifts vary with this change. Interestingly, the deviations are found mainly for the carbons of THF ring that bears the Br-group. In addition to this isomer, three more diastereomers having the relative stereochemistry of substituents on either of the THF rings varied have been also synthesized. All four diastereomers have been subjected for extensive NMR studies and their 13 C NMR chemical shifts have been compared with notoryne and laurendecumenyne B. In addition, chemical shifts for the four diastereomers along with these natural products were calculated with the help of DFT calculations and compared to the experimentally obtained chemical shift values.

Graphical abstract

The notoryne diastereomer 1 having similar relative stereochemistry of substituents on both THF rings and being the relative stereochemistry between the bridging carbon of these two THF units is changed from anti to syn, has been executed to learn how the ring carbon chemical shifts vary with this change. Also, the three other diastereomers 24 have been synthesized and a detailed NMR analysis has been carried out/compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Figure 2
Scheme 3
Scheme 4
Figure 3

Similar content being viewed by others

References

  1. Neske A, Ruiz Hidalgo J, Cabedo N and Cortes D 2020 Acetogenins from Annonaceae family. Their potential biological applications Phytochem. 174 112332

    Article  CAS  Google Scholar 

  2. Bermejo A, Figadere B, Zafra-Polo MC, Barrachina I, Estornell E and Cortes D 2005 Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action Nat. Prod. Rep. 22 269

    Article  CAS  Google Scholar 

  3. Alali FQ, Liu XX and McLaughlin JL 1999 Annonaceous acetogenins: recent progress J. Nat. Prod. 62 504

    Article  CAS  Google Scholar 

  4. Zeng L, Ye Q, Oberlies NH, Shi G, Gu ZM, He K and McLaughlin JL 1996 Recent advances in annonaceous acetogenins Nat. Prod. Rep. 13 275

    Article  CAS  Google Scholar 

  5. Rupprecht JK, Hui YH and McLaughlin JL 1990 Annonaceous acetogenins: a review J. Nat. Prod. 53 237

    Article  CAS  Google Scholar 

  6. Hall JG and Reiss JA 1986 Elatenyne-a Pyrano [3, 2-b]pyranyl Vinyl Acetylene from the Red Alga Laurencia elata Aust. J. Chem. 39 1401

    Article  CAS  Google Scholar 

  7. Ji NY, Li XM, Li K and Wang BG 2007 Laurendecumallenes A-B and Laurendecumenynes A-B, Halogenated nonterpenoid C15-Acetogenins from the Marine Red Alga Laurencia decumbens J. Nat. Prod. 70 1499

    Article  CAS  Google Scholar 

  8. Dias DA and Urban S 2011 Phytochemical studies of the southern Australian marine alga, Laurencia elata Phytochem. 72 2081

    Article  CAS  Google Scholar 

  9. Kim KI, Bernnan MR and Erickson KL 1989 Lauroxolanes from the marine alga Laurencia majuscula Tetrahedron Lett. 30 1757

    Article  CAS  Google Scholar 

  10. Abdel-Mageed WM, Ebel R, Valeriote FA and Jaspars M 2010 Laurefurenynes A-F, new cyclic ether acetogenins from a Marine Red Alga, Laurencia sp Tetrahedron 66 2855

    Article  CAS  Google Scholar 

  11. Wright AD, Konig GM, Nys RD and Sticher O 1993 Seven new metabolites from the marine red alga Laurencia majuscula J. Nat. Prod. 56 394

    Article  CAS  Google Scholar 

  12. Fukuzawa A, Aye M, Nakamura M, Tamura M and Murai A 1990 Structure elucidation of Laureoxanyne, a new nonisopreniod C15 enyne, using Lactoperoxidase Tetrahedron Lett. 31 4895

    Article  CAS  Google Scholar 

  13. Kikuchi H, Suzuki T, Kurosawa E and Suzuki M 1991 A halogenated C15 nonterpenoid with a novel carbon skeleton from the red alga Laurencia Nipponica Yamada Bull. Chem. Soc. Jpn. 64 1763

    Article  CAS  Google Scholar 

  14. Shepherd DJ, Broadwith PA, Dyson BS, Paton RS and Burton JW 2013 Structure reassignment of laurefurenynes A and B by computation and total synthesis Chem. Eur. J. 19 12644

    Article  CAS  Google Scholar 

  15. Holmes MT and Britton R 2013 Total synthesis and structural revision of laurefurenynes A and B Chem. Eur. J. 19 12649

    Article  CAS  Google Scholar 

  16. Sheldrake HM, Jamieson C and Burton JW 2006 The changing faces of halogenated marine natural products: total synthesis of the reported structures of elatenyne and an enyne from Laurencia Majuscula Angew. Chem. 45 7199

    Article  CAS  Google Scholar 

  17. Dyson BS, Burton JW, Sohn T-I, Kim B and Bae H 2012 Total synthesis and structure confirmation of elatenyne: success of computational methods for NMR prediction with highly flexible diastereomers J. Am. Chem. Soc. 134 11781

    Article  CAS  Google Scholar 

  18. Shephard ED, Dyson BS, Hak WE, Nguyen QNN, Lee M, Kim MJ, et al. 2019 Structure determination of a chloroenyne from Laurencia Majuscula using computational methods and total synthesis J. Org. Chem. 84 4971

    Article  Google Scholar 

  19. Senapati S, Das S and Ramana CV 2018 Total synthesis of notoryne J. Org. Chem. 83 12863

    Article  CAS  Google Scholar 

  20. Chan HSS, Nguyen QNN, Paton RS and Burton JW 2019 Synthesis, characterization, and reactivity of complex tricyclic oxonium ions, proposed intermediates in natural product biosynthesis J. Am. Soc. 141 15951

    Article  Google Scholar 

  21. Braddock DC and Rzepa HS 2008 Structural reassignment of obtusallenes V, VI, and VII by GIAO-based density functional prediction J. Nat. Prod. 71 728

    Article  CAS  Google Scholar 

  22. Wang J and Tong R 2017 A NMR method for relative stereochemical assignments of the tricyclic core of cephalosporolides, penisporolides and related synthetic analogues Org. Chem. Front. 4 140

    Article  CAS  Google Scholar 

  23. Chhetri BK, Lavoie S, Sweeny-Jones AM and Kubanek J 2018 Recent trends in the structural revision of natural products Nat. Prod. Rep. 35 514

    Article  CAS  Google Scholar 

  24. Matsuo Y, Yoshida A, Saito Y and Tanaka T 2017 Structural revision and biomimetic synthesis goupiolone B Angew. Chem. Int. Ed. 56 11855

    Article  CAS  Google Scholar 

  25. Li F, Zhang Z, Zhang G, Che Q, Zhu T, Gu Q and Li G 2018 Determination of taichunamide H and structural revision of taichunamide A Org. Lett. 20 1138

    Article  CAS  Google Scholar 

  26. Mullapudi V, Ahmad I, Senapati S and Ramana CV 2020 Total synthesis of (+)-petromyroxol, (–)-iso-petromyroxol, and possible diastereomers ACS Omega 5 25334

    Article  CAS  Google Scholar 

  27. Knight DW 2002 Chapter 2 Electrophile induced 5-endo cyclizations Prog. Heterocycl. Chem. 14 19

    Article  CAS  Google Scholar 

  28. Bedford SB, Bell KE, Bennett F, Hayes CJ, Knight DW and Shaw DE 1999 Model studies of the overall 5-endo-trig iodocyclization of homoallylic alcohols J. Chem. Soc. Perkin Trans. 1 2143

    Article  Google Scholar 

  29. Barks JM, Weingarten GG and Knight DW 2000 A study of the stereochemical features of 5-endo-trig iodocyclisations of 2-alkenylcycloalkan-1-ols J. Chem. Soc. Perkin Trans. 1 3469

    Article  Google Scholar 

  30. Brown RS 1997 Investigation of the early steps in electrophilic bromination through the study of the reaction with sterically encumbered Olefins Acc. Chem. Res. 30 131

    Article  CAS  Google Scholar 

  31. Ishihara J, Shimada Y, Kanoh N, Takasugi Y, Fukuzawa A and Murai A 1997 Conversion of prelaureatin into laurallene, a bromo-allene compound, by enzymatic and chemical bromo-etherification reactions Tetrahedron 53 8371

    Article  CAS  Google Scholar 

  32. Ko C, Hsung RP, Al-Rashid ZF, Feltenberger JB, Lu T, Yang JH, et al. 2007 A stereoselective intramolecular halo-etherification of chiral enamides in the synthesis of halogenated cyclic ethers Org. Lett. 9 4459

    Article  CAS  Google Scholar 

  33. Huang D, Wang H, Xue F, Guan H, Li L, Peng X and Shi Y 2011 Enantioselective bromocyclization of olefins catalyzed by chiral phosphoric acid Org. Lett. 13 6350

    Article  CAS  Google Scholar 

  34. Denmark SE and Burk MT 2012 Enantioselective bromocycloetherification by lewis base/chiral Brønsted acid cooperative catalysis Org. Lett. 14 256

    Article  CAS  Google Scholar 

  35. Kaupp M, Malkina OL and Malkin VG 1997 Interpretation of 13C NMR Chemical Shifts in halomethyl cations. On the importance of spin-orbit coupling and electron correlation Chem. Phys. Lett. 265 55

    Article  CAS  Google Scholar 

  36. Malkina OL, Schimmelpfennig B, Kaupp M, Hess BA, Chandra P, Wahlgren U and Malkin VG 1998 Spin-orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? Chem. Phys. Lett. 296 93

    Article  CAS  Google Scholar 

  37. Bagno A, Rastrelli F and Saielli G 2003 Predicting 13C NMR spectra by DFT calculations J. Phys. Chem. A 107 9964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CSIR (India) for funding this project and for a research fellowship to S. S. and R. D, and UGC for a research fellowship to S. D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chepuri V Ramana.

Additional information

Special Issue on Beyond Classical Chemistry

This article is part of the Topical Collection: Beyond Classical Chemistry.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, S., Das, S., Dixit, R. et al. Synthesis of four diastereomers of notoryne and their 13C NMR chemical shifts analysis. J Chem Sci 133, 76 (2021). https://doi.org/10.1007/s12039-021-01929-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01929-y

Navigation