Skip to main content
Log in

Comparative self-assembly studies and self-sorting of two structurally isomeric naphthalene-diimide (NDI)-gelators

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We have reported here a comparative self-assembly and gelation studies of two isomeric bis-amide functionalized NDI-derivatives. In one case (NDI-1) the two amide groups were placed symmetrically on either side of the chromophore while for the other system (NDI-2) they were located on same side. In non-polar solvent both isomers formed self-assembled structures by synergistic effect of π-stacking and hydrogen-bonding. The propensity for self-assembly of NDI-1 was greater due to symmetrical placement of two amide groups on either arms of this chromophore which allowed π-stacking in tandem with hydrogen-bonding, while NDI-2 formed thermally more stable self-assembled fibres possibly due to location of two amide groups in close proximity along single arm of this chromophore. The structural difference in these two isomers lead to distinctly different morphology of their respective self-assembled structures which was further reflected on their gelation properties. Morphology of the self-assembled array of NDI-1 showed organized and regular entangled bundles of nanorods which imparted better gelation ability to this chromophore while the self-assembled fibres of NDI-2 showed less ordered and irregular fibres. We also probed self- assembly of these two chromophores in their mixture which revealed orthogonal assembly of the individual chromophores and no molecular mixing was noticed.

Hydrogen bonding mediated self-assembly and gelation of two isomeric naphthalene-diimide (NDI) gelators is reported. NDI-1 showed precisely defined self-assembly resulting in stronger gelation due to symmetric placement of the two amide groups. Contrastingly, weak gelation was noticed for unsymmetrical NDI-2 due to irregular morphology even though thermal stability of self-assembled state in solution was found to be higher in this case due to close proximity of the two amide groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Lehn J-M 1995 Supramolecular chemistry-concepts and perspectives (Weinheim, Germany: Wiley-VCH); (b) 2005 Supramolecular dye chemistry, topics in current chemistry F Würthner (ed.) (Berlin, Germany: Springer) 258; (c) Palmer L C and Stupp S I 2008 Acc. Chem. Res. 41 1674; (d) Souza F and Ito O 2009 Chem. Commun. 4913; (e) Malinovskii V L, Wenger D and Häner R 2010 Chem. Soc. Rev. 39 410; (f) Hoeben F J M, Jonkheijm P, Meijer E W and Schenning A P H J 2005 Chem. Rev. 105 1491

  2. (a) Melendez R E, Carr A J, Linton B R and Hamilton A D 2000 Struct. Bonding (Berlin) 96 31; (b) Laurent H B and Desvergne J P 2006 Molecular gels: Materials with self-assembled fibrillar networks R G Weiss, P Terech (eds.) (Dordrecht, The Netherlands: Springer) Chapter 12; (c) 2005 Low molecular mass gelators, topics in current chemistry F Fages (ed.) (Berlin, Germany: Springer) 256; (d) Beginn U 2003 Prog. Polym. Sci. 28 1049; (e) Banerjee S, Das R K and Maitra U 2009 J. Mater. Chem. 19 6649; (f) Suzuki M and Hanabusa K 2010 Chem. Soc. Rev. 39 455; (f) Bhattacharya S and Samanta S K 2009 Langmuir 25 8378

  3. (a) Hains A W, Liang Z, Woodhouse M A and Gregg B A 2010 Chem. Rev. 110 6689 and references therein; (b) Ajayaghosh A, Praveen V K and Vijayakumar C 2008 Chem. Soc. Rev. 37 109

    Google Scholar 

  4. (a) Tamaru S I, Nakamura M, Takeuchi M and Shinkai S 2001 Org. Lett. 3 3631; (b) Shirakawa M, Kawano S I, Fujita N, Sada K and Shinkai S 2003 J. Org. Chem. 68 5037

  5. (a) Mishra A, Ma C-Q and Bauerle P 2009 Chem. Rev. 109 1141; (b) Prasanthkumar S, Saeki A, Seki S and Ajayaghosh A 2010 J. Am. Chem. Soc. 132 8866; (c) Prasanthkumar S, Gopal A and Ajayaghosh A 2010 J. Am. Chem. Soc. 132 13206; (d) Schoonbeek F S, Van Esch J H, Wegewijs B, Rep D B A, De Haas M P, Klapwijk T M, Kellogg R M and Feringa B L 1999 Angew. Chem. Int. Ed. 38 1393; (e) Kawano S, Fujita N and Shinkai S 2005 Chem. Eur. J. 11 4735; (f) Stone D A, Tayi A S, Goldberger J E, Palmer L C and Stupp S I 2011 Chem. Commun. 5702; (g) Pratihar P, Ghosh S, Stepanenko V, Patwardhan S, Grozema F C, Siebbeles L D A and Würthner F 2010 Beilstein J. Org. Chem. 6 1070

  6. Engelkamp H, Middelbeek S and Nolte R J M 1999 Science 284 785

    Article  CAS  Google Scholar 

  7. (a) Ajayaghosh A and Praveen V K 2007 Acc. Chem. Res. 40 644 and references therein; (b) Babu S S, Kartha K K and Ajayaghosh A 2010 J. Phys. Chem. Lett. 1 3413; (c) Srinivasan S, Babu P A, Mahesh S and Ajayaghosh A 2009 J. Am. Chem. Soc. 131 15122; (d) Vijayakumar C, Praveen V K, Kartha K K and Ajayaghosh A 2011 Phys. Chem. Chem. Phys. 13 4942; (e) Samanta S K, Pal A and Bhattacharya S 2009 Langmuir 25 8567; (f) Goel M and Jayakannan M 2010 J. Phys. Chem. 114 12508

    Google Scholar 

  8. (a) Puigmartì-Luis J, Pino À P, Laukhin V, Feldborg L N, Rovira C, Laukhina E and Amabilino D B 2010 J. Mater. Chem. 20 466; (b) Puigmartì-Luis J, Laukhin V, Pino À P, V-Gancedo J, Rovira C, Laukhina E and Amabilino D B 2007 Angew. Chem. Int. Ed. 46 238; (c) Akutagawa T, Kakiuchi K, Hasegawa T, Noro S-i, Nakamura T Hasegawa H, Mashiko S, Becher J 2005 Angew. Chem. Int. Ed. 44 7283

  9. (a) Würthner F 2004 Chem. Commun. 1564; (b) Sugiyasu K, Fujita N and Shinkai S 2004 Angew. Chem. Int. Ed. 43 1229; (c) Li X-Q, Stepanenko V, Chen Z, Prins P, Siebbeles L D A and Würthner F 2006 Chem. Commun. 3871; (d) Würthner F, Bauer C, Stepanenko V and Yagai S 2008 Adv. Mater. 20 1695; (e) Wicklein A, Ghosh S, Sommer M, Würthner F and Thelakkat M 2009 ACS Nano 3 1107; (f) Sugiyasu K, Kawano S-i, Fujita N and Shinkai S 2008 Chem. Mater. 20 2863

  10. Mukhopadhyay P, Iwashita Y, Shirakawa M, Kawano S-i, Fujita N and Shinkai S 2006 Angew. Chem. Int. Ed. 45 1592

    Article  CAS  Google Scholar 

  11. (a) Würthner F, Yao S and Beginn U 2003 Angew. Chem. Int. Ed. 42 3247; (b) Yagai S, Ishii M, Karatsu T and Kitamura A 2007 Angew. Chem. Int. Ed. 46 8005

  12. Molla M R and Ghosh S 2011 Chem. Mater. 23 95

    Article  CAS  Google Scholar 

  13. (a) Miller L L, Mann K R 1996 Acc. Chem. Res. 29 417; (b) Katz H E, Lovinger A J, Johnson J, Kloc C, Siegrist T, Li W, Lin Y Y and Dodabalapur A 2000 Nature 404 478; (c) Warman J M, de Haas M P, Dicker G, Grozema F C, Piris J and Debije M G 2004 Chem. Mater. 16 4600; (d) Jones B A, Facchetti A, Wasielewski M R and Marks T J 2007 J. Am. Chem. Soc. 129 15259; (e) Oh B J H, Suraru S L, Lee W Y, Könemann M, Höffken H W, Röger C, Schmidt R, Chung Y, Chen W C, Würthner F and Bao Z 2010 Adv. Funct. Mater. 20 2148

  14. (a) Lokey R S and Iverson 1995 B L Nature 375 303; (b) Nguyen J Q and Iverson B L 1999 J. Am. Chem. Soc. 121 2639; (c) Zych A J and Iverson B L 2000 J. Am. Chem. Soc. 122 8898; (d) Gabriel G J and Iverson B L 2002 J. Am. Chem. Soc. 124 15174; (e) Cubberley M S and Iverson B L 2001 J. Am. Chem. Soc. 123 7560; (f) De S and Ramakrishnan S 2011 Chem. Asian J. 6 149

  15. (a) Vignon S A, Jarrosson T, Iijima T, Tseng H-R, Sanders J K M and Stoddart J F 2004 J. Am. Chem. Soc. 126 9884; (b) Iijima T, Vignon S A, Tseng H R, Jarrosson T, Sanders J K M, Marchioni F, Venturi M, Apostoli E, Balzani E and Stoddart J F 2004 Chem. Eur. J. 10 6375; (c) Mullen K M, Davis J J and Beer P D 2009 New. J. Chem. 33 769

    Google Scholar 

  16. (a) Au-Yeung H Y, Pantos G D and Sanders J K M 2010 Angew. Chem. Int. Ed. 49 5331; (b) Au-Yeung H Y, Pantos G D and Sanders J K M 2009 Proc. Natl. Acad. Sci. U.S.A. 106 10466; (c) Au-Yeung H Y, Pantos G D and Sanders J K M 2009 J. Am. Chem. Soc. 131 16030; (d) Coskun A, Saha S, Aprahamian I and Stoddart J F 2008 Org. Lett. 10 3187

  17. (a) Talukdar P, Bollot G, Marenda J, Sakai N and Matile S J 2005 Am. Chem. Soc. 127 6528; (b) Hagihara S, Gremaud L, Bollot G, Mareda J and Matile S 2008 J. Am. Chem. Soc. 130 4347

  18. Kumar M and George S J 2011 Nanoscale 3 2130

    Article  CAS  Google Scholar 

  19. (a) Bhosale R, Míšek J, Sakai N and Matile S 2010 Chem. Soc. Rev. 39 138; (b) Röger C, Mueller M G, Lysetska M, Miloslavina Y, Holzwarth A R and Würthner F 2006 J. Am. Chem. Soc. 128 6542; (c) Röger C, Miloslavina Y, Brunner D, Holzwarth A R and Würthner F 2008 J. Am. Chem. Soc. 130 5929; (d) Sakai N, Sisson A L, Bürgi T and Matile S 2007 J. Am. Chem. Soc. 129 15758; (e) Sakai N, Bhosale R, Emery D, Mareda J and Matile S 2010 J. Am. Chem. Soc. 132 6923; (f) Bhosale S, Sisson A L, Talukdar P, Fürstenberg A, Banerji N, Vauthey E, Bollot G, Mareda J, Röger C, Würthner F, Sakai N and Matile S 2006 Science 313 84

  20. Molla M R, Das A and Ghosh S 2010 Chem. Eur. J. 16 10084

    Article  CAS  Google Scholar 

  21. Das A and Ghosh S 2011 Chem. Commun. 8922

  22. (a) Note that in this case no separate absorption peak for aggregates are observed, rather the whole spectrum undergoes hypochromic shift along with concomitant red-shift which results in tailing of the lowest energy absorption band till ~410 nm. It is noteworthy that beyond 80% MCH/CHCl3 although the absorption intensity at 382 nm continues to decrease (at slower rate) with increasing MCH content, the intensity of the tail at 390 nm does not change any further. This is probably because at this stage the increase in absorption at 390 nm due to red shift is coincidently cancelled out by the hypochromic effect of the whole spectrum. (b) Shao H, Nguyen T, Romano N C, Modarelli D A and Parquette J R 2009 J. Am. Chem. Soc. 131 16374

  23. Ghosh S, Li X-Q, Stepanenko V and Würthner F 2008 Chem. Eur. J. 14 11343

    Article  CAS  Google Scholar 

  24. (a) Shao H and Parquette J R 2010 Chem. Commun. 4285; (b) Tsai W W, Li L S, Cui H G, Jiang H Z and Stupp S I 2008 Tetrahedron 64 8504; (c) Kawano S, Fujita N and Shinkai S 2005 Chem. Eur. J. 11 4735; (d) Schenning A P H J, Kilbinger A F M, Biscarini F, Cavallini M, Cooper H J, Derrick P J, Feast W J, Lazzaroni R, Leclere N, Meijer E W and Meskers S C J 2002 J. Am. Chem. Soc. 124 1269

  25. Okazaki T, Iizumi Y, Okubo S, Kataura H, Liu Z, Suenaga K, Tahara Y, Yudasaka M, Okada S and Iijima S 2011 Angew. Chem. Int. Ed. 50 4853

    Article  CAS  Google Scholar 

  26. (a) Würthner F, Hanke B, Lysetska M, Lambright G, and Harms G S 2005 Org. Lett. 7 967; (b) Rohr U, Schlichting P, Böhm A, Groû M, Meerholz K, Bräuchle C and Müllen K 1998 Angew. Chem. Int. Ed. 37 1434; (c) Dotcheva D, Klapper M and Müllen K 1994 Macromol. Chem. Phys. 195 1905; (d) Schneider M and Müllen K 2000 Chem. Mater. 12 352; (e) Gvishi R, Reisfeld R and Burshtein Z 1993 Chem. Phys. Lett. 213 338

    Google Scholar 

  27. Raghavan S R and Cipriano B H 2006 Molecular gels: Materials with self-assembled fibrillar networks R G Weiss, P Terech (eds.) (Dordrecht, The Netherlands: Springer) Chapter 8

    Google Scholar 

  28. Das A and Ghosh S 2010 Chem. Eur. J. 16 13622

    Article  CAS  Google Scholar 

  29. For general references on self-sorting see: (a) Northrop H, Zheng Y-R, Chi Ki-Whan and Stang P J 2009 Acc. Chem. Res. 42 1554; (b) Pal A, Karthikeyan S and Sijbesma R P 2010 J. Am. Chem. Soc. 132 7842; (c) Mukhopadhyay P, Zavalij P Y and Isaacs L 2006 J. Am. Chem. Soc. 128 14093; (d) Heeres A, Pol C v d, Stuart M, Friggeri A, Feringa B L and Esch J v 2003 J. Am. Chem. Soc. 125 14252; (e) Moffat J R and Smith D K 2009 Chem. Commun. 316; (f) Rudzevich Y, Rudzevich V, Klautzsch F, Schalley C A and Bçhmer V 2009 Angew. Chem. Int. Ed. 48 3867; (g) Herrikhuyzen J van, Syamakumari A, Schenning A P H J and Meijer E W 2004 J. Am. Chem. Soc. 126 10021

    Google Scholar 

  30. For self-sorting of Naphthalenediimide system see (a) ref 20; (b) ref 21; (c) Das A, Molla M R, Banerjee A, Paul A and Ghosh S 2011 Chem. Eur. J. 17 6061

    Google Scholar 

  31. Molla M, Das A and Ghosh S 2011 Chem. Commun. 8934

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUHRIT GHOSH.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 494 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DAS, A., MOLLA, M.R. & GHOSH, S. Comparative self-assembly studies and self-sorting of two structurally isomeric naphthalene-diimide (NDI)-gelators. J Chem Sci 123, 963–973 (2011). https://doi.org/10.1007/s12039-011-0168-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0168-2

Keywords

Navigation