Skip to main content
Log in

Sub-MeV spectroscopy with AstroSat-CZT imager for gamma ray bursts

  • Science Results
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Cadmium–Zinc–Telluride Imager (CZTI) onboard AstroSat has been a prolific Gamma-Ray Burst (GRB) monitor. While the 2-pixel Compton scattered events (100–300 keV) are used to extract sensitive spectroscopic information, the inclusion of the low-gain pixels (\(\sim \)20\(\%\) of the detector plane) after careful calibration extends the energy range of Compton energy spectra to 600 keV. The new feature also allows single-pixel spectroscopy of the GRBs to the sub-MeV range which is otherwise limited to 150 keV. We also introduced a new noise rejection algorithm in the analysis (‘Compton noise’). These new additions not only enhances the spectroscopic sensitivity of CZTI, but the sub-MeV spectroscopy will also allow proper characterization of the GRBs not detected by Fermi. This article describes the methodology of single, Compton event and veto spectroscopy in 100–900 keV combined for the GRBs detected in the first year of operation. CZTI in last five years has detected \(\sim \)20 bright GRBs. The new methodologies, when applied on the spectral analysis for this large sample of GRBs, has the potential to improve the results significantly and help in better understanding the prompt emission mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Notes

  1. http://astrosat.iucaa.in/czti/?q=grb.

  2. Research Systems Inc. (1995). IDL user’s guide: interactive data language version 4. Boulder, CO: Research Systems.

  3. The CZTI spectral data fit is considered to be reasonable when (a) the obtained residuals are roughly randomly distributed around zero, (b) the reduced chi-square \(\chi ^2 < 2\) and the (c) normalization of the band function is found to be consistent with what is obtained from Konus-wind and Fermi spectral analysis.

  4. https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html

  5. https://swift.gsfc.nasa.gov/analysis/threads/bat_threads.html.

  6. https://heasarc.gsfc.nasa.gov/ftools/caldb/help/grppha.txt

  7. The scatter is the standard deviation of the Gaussian fit to the distribution of the displacement of the CZTI measured flux from the Fermi flux and is found to be \(\sigma =0.21\).

References

  • Arnaud K. 1996, in Astronomical Data Analysis Software and Systems V, vol. 101, p. 17

  • Axelsson M., Bissaldi E., Desiante R., Longo F. 2016, GRB Coord. Netw., 19227

  • Band D., Matteson J., Ford L. et al. 1993, ApJ, 413, 281

    Article  ADS  Google Scholar 

  • Bhalerao V., Bhattacharya D., Vibhute A. et al. 2017, J. Astrophys. Astron., 38, 31

    Article  ADS  Google Scholar 

  • Bissaldi E. 2016, GRB Coord. Netw. 19754, 1

    Google Scholar 

  • Burgess J. M. 2014, MNRAS, 445, 2589

    Article  ADS  Google Scholar 

  • Chand V., Chattopadhyay T., Oganesyan G. et al. 2019, ApJ, 874, 70

    Article  ADS  Google Scholar 

  • Chand V., Chattopadhyay T., Iyyani S. et al. 2018, ApJ, 862, 154

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Vadawale S. V., Rao A. R. et al. 2016, in Proc. SPIE, vol. 9905, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 99054D

  • Chattopadhyay T., Vadawale S. V., Rao A. R., Sreekumar S., Bhattacharya D. 2014, Exp. Astron., 37, 555

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Vadawale S. V., Aarthy E. et al. 2019, ApJ, 884, 123

    Article  ADS  Google Scholar 

  • Cummings J. R., Barthelmy S. D., Gehrels N. et al. 2015, GRB Coord. Netw., 18410, 1

    Google Scholar 

  • Gruber D., Goldstein A., von Ahlefeld V. W. et al. 2014, Astrophys. J. Suppl. Ser., 211, 12

    Article  ADS  Google Scholar 

  • Kocevski D., Longo F. 2016, in Eighth Huntsville Gamma-Ray Burst Symposium, vol. 1962, p. 4092

  • Lien A. Y., Barthelmy S. D., Cummings J. R. et al. 2016a, GRB Coord. Netw., 19234, 1

    Google Scholar 

  • Lien A. Y., Barthelmy S. D., Cummings J. R. et al. 2016b, GRB Coord. Netw., 19506

  • Lien A. Y., Barthelmy S. D., Cenko S. B. et al. 2016c, GRB Coord. Netw., 19648

  • Lyne A., Pritchard R., Roberts M. E. 1999, https://www.jb.man.ac.uk/pulsar/crab.html

  • McEnery J., Racusin J., Longo F. 2016, GRB Coord. Netw., 19831, 1

    Google Scholar 

  • Odaka H., Asai M., Hagino K. et al. 2018, Nuclear Instrum. Methods Phys. Res. A, 891, 92

    Article  ADS  Google Scholar 

  • Ohno M., Bissaldi E., Vianello G., Kocevski D., Longo F. 2015, GRB Coord. Netw., 18406, 1

    Google Scholar 

  • Paul B. 2013, Int. J. Mod. Phys. D, 22, 41009

    Article  ADS  Google Scholar 

  • Rao A. R., Chand V., Hingar M. K. et al. 2016, ApJ, 833, 86

    Article  ADS  Google Scholar 

  • Roberts O. J. 2016, GRB Coord. Netw., 19224

  • Roberts O. J., Fitzpatrick G., Veres P. 2016, GRB Coord. Netw., 19411, 1

    Google Scholar 

  • Roberts O. J., Meegan C. 2015, GRB Coord. Netw., 18404, 1

    Google Scholar 

  • Scargle J. D. 1998, Astrophys. J., 504, 405

    Article  ADS  Google Scholar 

  • Scargle J. D., Norris J. P., Jackson B., Chiang J. 2013, ApJ, 764, 167

    Article  ADS  Google Scholar 

  • Sharma V., Iyyani S., Bhattacharya D. et al. 2019, ApJ Lett., 882, L10

    Article  ADS  Google Scholar 

  • Singh K. P., Tandon S. N., Agrawal P. C. et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9144, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series

  • Stanbro M., Meegan C. 2016, GRB Coord. Netw., 19835, 1

    Google Scholar 

  • Vadawale S. V., Chattopadhyay T., Mithun N. P. S. et al. 2018, Nat. Astron., 2, 50

    Article  ADS  Google Scholar 

  • Veres P., Meegan C. 2016, GRB Coord. Netw., 19901, 1

    Google Scholar 

Download references

Acknowledgements

This publication uses data from the AstroSat mission of the Indian Space Research Organization (ISRO), archived at the Indian Space Science Data Centre (ISSDC). CZT-Imager is built by a consortium of Institutes across India including Tata Institute of Fundamental Research, Mumbai, Vikram Sarabhai Space Centre, Thiruvananthapuram, ISRO Satellite Centre, Bengaluru, Inter University Centre for Astronomy and Astrophysics, Pune, Physical Research Laboratory, Ahmedabad, Space Application Centre, Ahmedabad: contributions from the vast technical team from all these institutes are gratefully acknowledged. We acknowledge the use of Vikram-100 HPC at the Physical Research Laboratory (PRL), Ahmedabad and Pegasus HPC at the Inter University Centre for Astronomy and Astrophysics (IUCAA), Pune. This research has also made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Chattopadhyay.

Additional information

This article is part of the Special Issue on “AstroSat: Five Years in Orbit”.

Appendix A

Appendix A

Plots for the Bayesian block analysis conducted on single event data of the GRBs are shown in Fig. A1.

Figure A1
figure 17figure 17

The Bayesian block binning of the single event CZTI light curve of the bursts are shown above in black solid lines. The time interval of the integrated emission of each burst is marked by the vertical dotted lines on the respective plots. The red dashed horizontal line marks the background level. The basic light curve is plotted in the background in pink colour. We note that here the 0 marks the start of the \(T_{90}\) region of the burst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, T., Gupta, S., Sharma, V. et al. Sub-MeV spectroscopy with AstroSat-CZT imager for gamma ray bursts. J Astrophys Astron 42, 82 (2021). https://doi.org/10.1007/s12036-021-09718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-021-09718-2

Keywords

Navigation