Skip to main content

Advertisement

Log in

Integrated Proteomics and Protein Co-expression Network Analysis Identifies Novel Epileptogenic Mechanism in Mesial Temporal Lobe Epilepsy

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Over 50 million people worldwide are affected by epilepsy, a common neurological disorder that has a high rate of drug resistance and diverse comorbidities such as progressive cognitive and behavioural disorders, and increased mortality from direct or indirect effects of seizures and therapies. Despite extensive research with animal models and human studies, limited insights have been gained into the mechanisms underlying seizures and epileptogenesis, which has not translated into significant reductions in drug resistance, morbidities, or mortality. To better understand the molecular signaling networks associated with seizures in MTLE patients, we analyzed the proteome of brain samples from MTLE and control cases using an integrated approach that combines mass spectrometry-based quantitative proteomics, differential expression analysis, and co-expression network analysis. Our analyses of 20 human brain tissues from MTLE patients and 20 controls showed the organization of the brain proteome into a network of 9 biologically meaningful modules of co-expressed proteins. Of these, 6 modules are positively or negatively correlated to MTLE phenotypes with hub proteins that are altered in MTLE patients. Our study is the first to employ an integrated approach of proteomics and protein co-expression network analysis to study patients with MTLE. Our findings reveal a molecular blueprint of altered protein networks in MTLE brain and highlight dysregulated pathways and processes including altered cargo transport, neurotransmitter release from synaptic vesicles, synaptic plasticity, proteostasis, RNA homeostasis, ion transport and transmembrane transport, cytoskeleton disorganization, metabolic and mitochondrial dysfunction, blood micro-particle function, extracellular matrix organization, immune response, neuroinflammation, and cell signaling. These insights into MTLE pathogenesis suggest potential new candidates for future diagnostic and therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD047201.

References

  1. World Federation of Neurology and World Health Organization (2017) Atlas: country resources for neurological disorders, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  2. Lévesque M, Shiri Z, Chen LY, Avoli M (2018) High-frequency oscillations and mesial temporal lobe epilepsy. Neurosci Lett 667:66–74

    Article  PubMed  Google Scholar 

  3. Cendes F (2005) Mesial temporal lobe epilepsy syndrome: an updated overview. J Epilepsy Clin Neurophysiol 11:141–144

    Article  Google Scholar 

  4. do Canto AM, Donatti A, Geraldis JC, Godoi AB, da Rosa DC, Lopes-Cendes I (2021) Neuroproteomics in epilepsy: what do we know so far? Front Mol Neurosci 13:604158

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haneef Z, Chen DK (2014) Functional neuro-imaging as a pre-surgical tool in epilepsy. Ann Indian Acad Neurol 17(1):S56-64

    Article  PubMed  PubMed Central  Google Scholar 

  6. Memarian N et al (2015) Ictal depth EEG and MRI structural evidence for two different epileptogenic networks in mesial temporal lobe epilepsy. PLoS One 10:e0123588. https://doi.org/10.1371/journal.pone.0123588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Banerjee J, BanerjeeDixit A, Srivastava A, Ramanujam B, Kakkar A, Sarkar C, Tripathi M, Chandra PS (2017) Altered glutamatergic tone reveals two distinct resting state networks at the cellular level in hippocampal sclerosis. Sci Rep 7(1):319

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dubey V, Dey S, Dixit AB, Tripathi M, Chandra PS, Banerjee J (2022) Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy. Exp Neurol 347:113916

    Article  CAS  PubMed  Google Scholar 

  9. Persike D, Lima M, Amorim R, Cavalheiro E, Yacubian E, Centeno R (2012) Hippocampal proteomic profile in temporal lobe epilepsy. J Epilepsy Clin Neurophysiol 18:53–56

    Article  Google Scholar 

  10. Yang JW, Czech T, Felizardo M, Baumgartner C, Lubec G (2006) Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 30(4):47749

    Article  Google Scholar 

  11. Keren-Aviram G, Dachet F, Bagla S, Balan K, Loeb JA, Dratz EA (2018) Proteomic analysis of human epileptic neocortex predicts vascular and glial changes in epileptic regions. PLoS One 13(4):e0195639

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pires G, Leitner D, Drummond E, Kanshin E, Nayak S, Askenazi M, Faustin A, Friedman D et al (2021) Proteomic differences in the hippocampus and cortex of epilepsy brain tissue. Brain Commun 3(2):021. https://doi.org/10.1093/braincomms/fcab021

    Article  Google Scholar 

  13. Leitner DF, Mills JD, Pires G, Faustin A, Drummond E, Kanshin E et al (2021) Proteomics and transcriptomics of the hippocampus and cortex in SUDEP and high-risk SUDEP patients. Neurology 96(21):e2639–e2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadeghi L, Rizvanov AA, Dabirmanesh B, Salafutdinov II, Sayyah M, Shojaei A et al (2021) Proteomic profiling of the rat hippocampus from the kindling and pilocarpine models of epilepsy: potential targets in calcium regulatory network. Sci Rep 11(1):8252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang P, Yang L, Yang R, Chen Z, Ren X, Wang F, Jiao Y, Ding Y et al (2022) Predicted molecules and signaling pathways for regulating seizures in the hippocampus in lithium-pilocarpine induced acute epileptic rats: a proteomics study. Front Cell Neurosci 16:947732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qian X, Ding JQ, Zhao X, Sheng XW, Wang ZR, Yang QX et al (2022) Proteomic analysis reveals the vital role of synaptic plasticity in the pathogenesis of temporal lobe epilepsy. Neural Plast 2022:8511066

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kunz WS, Kudin AP, Vielhaber S, Blümcke I, Zuschratter W, Schramm J et al (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773

    Article  CAS  PubMed  Google Scholar 

  18. Fukata Y, Fukata M (2017) Epilepsy and synaptic proteins. Curr Opin Neurobiol 45:1–8

    Article  CAS  PubMed  Google Scholar 

  19. Dixit AB, Banerjee J, Srivastava A, Tripathi M, Sarkar C, Kakkar A, Jain M, Chandra PS (2016) RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS. Genomics 107(5):178–188

    Article  CAS  PubMed  Google Scholar 

  20. Mahoney JM, Mills JD, Muhlebner A et al (2019) 2017 WONOEP appraisal: studying epilepsy as a network disease using systems biology approaches. Epilepsia 60(6):1045–1053

    Article  PubMed  Google Scholar 

  21. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 2014;13(9):893–903.

  22. Miller-Delaney SF, Bryan K, Das S et al (2015) Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 138(Pt 3):616–631

    Article  PubMed  Google Scholar 

  23. Dixit AB, Srivastava A, Sharma D, Tripathi M, Paul D, Lalwani S, Doddamani R, Sharma MC et al (2020) Integrated genome-wide DNA methylation and RNAseq analysis of hippocampal specimens identifies potential candidate genes and aberrant signalling pathways in patients with hippocampal sclerosis. Neurol India 68(2):307–313

    Article  PubMed  Google Scholar 

  24. Seyfried NT, Dammer EB, Swarup V et al (2017) A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst 4(1):60-72.e4

    Article  CAS  PubMed  Google Scholar 

  25. Rao A, Sahay P, Chakraborty M, Prusty BK, Srinivasan S, Jhingan GD, Mishra P, Modak R et al (2021) Switch to autophagy the key mechanism for trabecular meshwork death in severe glaucoma. Clin Ophthalmol 15:3027–3039

    Article  PubMed  PubMed Central  Google Scholar 

  26. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  CAS  PubMed  Google Scholar 

  27. Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36(8):2628–2629

    Article  CAS  PubMed  Google Scholar 

  28. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17

    Article  PubMed  Google Scholar 

  30. Yip AM, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  31. Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4:e1000117

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y (2019) The Ras superfamily of small GTPases in non-neoplastic cerebral diseases. Front Mol Neurosci 12:121. https://doi.org/10.3389/fnmol.2019.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23:8692–8700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gan Y, Wei Z, Liu C, Li G, Feng Y, Deng Y (2022) Solute carrier transporter disease and developmental and epileptic encephalopathy. Front Neurol 7(13):1013903

    Article  Google Scholar 

  36. Köhling R, Wolfart J (2016) Potassium Channels in Epilepsy. Cold Spring Harb Perspect Med 6(5):a022871

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L et al (2022) The contribution of HCN channelopathies in different epileptic syndromes, mechanisms, modulators, and potential treatment targets: a systematic review. Front Mol Neurosci 19(15):807202

    Article  Google Scholar 

  38. Zhang H, Huang T, Hong Y, Yang W, Zhang X, Luo H, Xu H, Wang X (2018) The retromer complex and sorting nexins in neurodegenerative diseases. Front Aging Neurosci 26(10):79. https://doi.org/10.3389/fnagi.2018.00079

    Article  CAS  Google Scholar 

  39. Sun C, Sun J, Erisir A, Kapur J (2014) Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiol Dis 62:44–55. https://doi.org/10.1016/j.nbd.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  40. Lee SY, Soltesz I (2011) Cholecystokinin: a multi-functional molecular switch of neuronal circuits. Dev Neurobiol 71(1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kang HC, Lee YM, Kim HD (2013) Mitochondrial disease and epilepsy. Brain Dev 35(8):757–761

    Article  PubMed  Google Scholar 

  42. DiMauro S, Hirano M, Kaufmann P et al (2002) Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 89:217–229

    PubMed  Google Scholar 

  43. Rahman S (2012) Mitochondrial disease and epilepsy. Dev Med Child Neurol 54(5):397–406

    Article  PubMed  Google Scholar 

  44. Kudin AP, Zsurka G, Elger CE, Kunz WS (2009) Mitochondrial involvement in temporal lobe epilepsy. Exp Neurol 218(2):326–332

    Article  CAS  PubMed  Google Scholar 

  45. Volmering E, Niehusmann P, Peeva V et al (2016) Neuropathological signs of inflammation correlate with mitochondrial DNA deletions in mesial temporal lobe epilepsy. Acta Neuropathol 132(2):277–288

    Article  CAS  PubMed  Google Scholar 

  46. Spaulding EL (2017) Burgess RW (2017) Accumulating evidence for axonal translation in neuronal homeostasis. Front Neurosci 11:312

    Article  PubMed  PubMed Central  Google Scholar 

  47. Staley K (2015) Molecular mechanisms of epilepsy. Nat Neurosci 18:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holmes GL, Noebels JL (2016) Epilepsy: the biology of a spectrum disorder. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory

  49. Gavrilovici C, Jiang Y, Kiroski I, Teskey GC, Rho JM, Nguyen MD (2020) Postnatal role of the cytoskeleton in adult epileptogenesis. Cereb Cortex Commun 1(1):tgaa024

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brockschnieder D, Sabanay H, Riethmacher D, Peles E (2006) Ermin, a myelinating oligodendrocyte-specific protein that regulates cell morphology. J Neurosci 26(3):757-762.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gibson EM, Geraghty AC, Monje M (2018) Bad wrap: myelin and myelin plasticity in health and disease. Dev Neurobiol 78(2):123–135

    Article  PubMed  Google Scholar 

  52. Kopeikina E, Dukhinova M, Yung AWY, Veremeyko T, Kuznetsova IS, Lau TYB, Levchuk K, Ponomarev ED (2020) Platelets promote epileptic seizures by modulating brain serotonin level, enhancing neuronal electric activity, and contributing to neuroinflammation and oxidative stress. Prog Neurobiol 188:101783

    Article  CAS  PubMed  Google Scholar 

  53. Kopeikina E, Ponomarev ED (2021) The role of platelets in the stimulation of neuronal synaptic plasticity, electric activity, and oxidative phosphorylation: possibilities for new therapy of neurodegenerative diseases. Front Cell Neurosci 15:680126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang P, Yang L, Yang R, Chen Z, Ren X, Wang F, Jiao Y, Ding Y et al (2022) Predicted molecules and signaling pathways for regulating seizures in the hippocampus in lithium-pilocarpine induced acute epileptic rats: a proteomics study. Front Cell Neurosci 1(16):947732

    Article  Google Scholar 

  55. Zhang Y, Zhang M, Zhu W, Pan X, Wang Q, Gao X, Wang C, Zhang X et al (2020) Role of elevated thrombospondin-1 in kainic acid-induced status epilepticus. Neurosci Bull 36(3):263–276

    Article  CAS  PubMed  Google Scholar 

  56. Alizada O, Akgun MY, Ozdemir AF, Toklu S, Kemerdere R, Orhan B, Inal BB, Yeni SN et al (2021) Circulating levels of thrombospondin-1 and thrombospondin-2 in patients with temporal lobe epilepsy before and after surgery. Turk Neurosurg 31(2):228–232

    PubMed  Google Scholar 

  57. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  58. Librizzi L, Noè F, Vezzani A, de Curtis M, Ravizza T (2012) Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol 72:82–90

    Article  PubMed  Google Scholar 

  59. Lawson C, Wolf S (2009) ICAM-1 signaling in endothelial cells. Pharmacol Rep 61:22–32

    Article  CAS  PubMed  Google Scholar 

  60. Shi X, Ohta Y, Liu X, Shang J, Morihara R, Nakano Y, Feng T, Huang Y et al (2019) Acute Anti-inflammatory markers ITIH4 and AHSG in mice brain of a novel Alzheimer’s disease model. J Alzheimers Dis 68(4):1667–1675

    Article  CAS  PubMed  Google Scholar 

  61. Galic MA, Riazi K, Pittman QJ (2012) Cytokines and brain excitability. Front Neuroendocrinol 33(1):116–125

    Article  CAS  PubMed  Google Scholar 

  62. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roseti C, Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, Bertollini C, Limatola C et al (2015) GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 82:311–320

    Article  CAS  PubMed  Google Scholar 

  64. Puts NAJ, Edden RAE (2012) In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog Nucl Magn Reson Spectrosc 60(29–41):37

    Google Scholar 

  65. Kuzniecky R, Ho S, Pan J, Martin R, Gilliam F, Faught E et al (2002) Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology 58:368–372

    Article  CAS  PubMed  Google Scholar 

  66. Doelken MT, Hammen T, Bogner W, Mennecke A, Stadlbauer A, Boettcher U et al (2010) Alterations of intracerebral γ-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia 51:1477–1482

    Article  CAS  PubMed  Google Scholar 

  67. Fukushima K, Hatanaka K, Sagane K, Ido K (2020) Inhibitory effect of anti-seizure medications on ionotropic glutamate receptors: special focus on AMPA receptor subunits. Epilepsy Res 167:106452

    Article  CAS  PubMed  Google Scholar 

  68. Liu M, Concha L, Lebel C, Beaulieu C, Gross DW (2012) Mesial temporal sclerosis is linked with more widespread white matter changes in temporal lobe epilepsy. Neuroimage Clin 1(1):99–105

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pimentel-Silva LR, Casseb RF, Cordeiro MM, Campos BAG, Alvim MKM, Rogerio F, Yasuda CL, Cendes F (2020) Interactions between in vivo neuronal-glial markers, side of hippocampal sclerosis, and pharmacoresponse in temporal lobe epilepsy. Epilepsia 61(5):1008–1018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to all the patients and their family for participating in this study.

Funding

This work is funded by the MEG resource facility, funded by the Department of Biotechnology, Ministry of Science & Technology, Govt. of India (BT/MED/122/SP24580/2018), Faculty research program grant from the Institute of Eminence, University of Delhi, and MG grant from ACBR.

Author information

Authors and Affiliations

Authors

Contributions

AS: conception and design; research, collection, and/or assembly of data; data analysis and interpretation; manuscript writing; and final approval of the manuscript. PR: conception and design; research, collection and/or assembly of data; and data analysis and interpretation. MT: conception and design; financial support; administrative support; manuscript writing; and final approval of the manuscript. PSC: conception and design; financial support; administrative support; provision of study material; and final approval of the manuscript. RD: data analysis and interpretation; manuscript writing; and final approval of the manuscript. MCS: histopathology of samples; data analysis and interpretation; and final approval of the manuscript. SL: conception and design; provision of study material (autopsy samples); and final approval of the manuscript. JB: conception and design; data analysis and interpretation; manuscript writing; and final approval of the manuscript. ABD: conception and design; financial support; administrative support; collection and/or assembly of data; data analysis and interpretation; manuscript writing; and final approval of the manuscript.

Corresponding authors

Correspondence to Jyotirmoy Banerjee or Aparna Banerjee Dixit.

Ethics declarations

Ethics Approval

All studies were conducted in accordance with the Declaration of Helsinki and were approved by the Institute Ethics Committee, AIIMS, New Delhi & ACBR, University of Delhi (Ref. No. IEC-198/01.04.2016; ACBR/IHEC/AD-01/09–18).

Consent to Participate and Publish

Informed and written consent was obtained from all patients, their parents, or legal representatives if patients were underage.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Rajput, P., Tripathi, M. et al. Integrated Proteomics and Protein Co-expression Network Analysis Identifies Novel Epileptogenic Mechanism in Mesial Temporal Lobe Epilepsy. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04186-5

Keywords

Navigation