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Abstract
Major depressive disorder (MDD) is a prevalent psychiatric condition often accompanied by severe impairments in cognitive 
and functional capacities. This research was conducted to identify RNA modification-related gene signatures and associated 
functional pathways in MDD. Differentially expressed RNA modification-related genes in MDD were first identified. And a 
random forest model was developed and distinct RNA modification patterns were discerned based on signature genes. Then, 
comprehensive analyses of RNA modification-associated genes in MDD were performed, including functional analyses and 
immune cell infiltration. The study identified 29 differentially expressed RNA modification-related genes in MDD and two 
distinct RNA modification patterns. TRMT112, MBD3, NUDT21, and IGF2BP1 of the risk signature were detected. Func-
tional analyses confirmed the involvement of RNA modification in pathways like phosphatidylinositol 3-kinase signaling 
and nucleotide oligomerization domain (NOD)-like receptor signaling in MDD. NUDT21 displayed a strong positive cor-
relation with type 2 T helper cells, while IGF2BP1 negatively correlated with activated CD8 T cells, central memory CD4 
T cells, and natural killer T cells. In summary, further research into the roles of NUDT21 and IGF2BP1 would be valuable 
for understanding MDD prognosis. The identified RNA modification-related gene signatures and pathways provide insights 
into MDD molecular etiology and potential diagnostic biomarkers.

Keywords  RNA modification · Diagnostic · Major depressive disorder · Immune · Gene cluster analysis · NUDT21 · 
IGF2BP1

Introduction

Major depressive disorder (MDD) is widely encountered 
in psychiatric practice, exhibiting a formidable global 
12-month incidence rate of 4.4% [1]. This multifaceted 
syndrome is characterized by diverse symptoms, including 
a pervasive sense of melancholy, a pronounced reduction 
in pleasure-seeking tendencies, fluctuations in weight and 
sleep patterns, heightened fatigue, self-deprecatory cogni-
tion, and notable cognitive challenges, particularly in areas 
of focus and decision-making. Additionally, it is associated 
with an increased predisposition toward morbid ideation or 
suicidal thoughts [2]. Despite its prevalence, effective treat-
ment and prevention strategies for MDD remain elusive. 
Contemporary diagnostic approaches largely rely on sub-
jective symptomatology reported by patients and clinician 
assessments, lacking concrete biological markers [3]. Such 
an approach not only complicates differential diagnosis but 
also increases the risk of oversight. Given these challenges, 
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there is a compelling need to elucidate the molecular under-
pinnings of MDD and identify groundbreaking biomarkers 
to enhance diagnostic precision and therapeutic outcomes.

Recent research emphasizes the pivotal role of epigenetic 
mechanisms, influenced by environmental and developmen-
tal cues, in modulating gene activity. Numerous epigenetic 
aberrations have been identified in MDD, notably including 
DNA methylation, RNA modifications, chromatin restruc-
turing, the involvement of noncoding RNAs, and histone 
adjustments [4]. These alterations often target genes crucial 
for the formation, operation, and adaptability of neuronal 
networks within the central nervous system (CNS) [5, 6]. 
Despite their significance, RNA modifications in the epi-
genetic landscape of MDD have received relatively little 
attention. These modifications, which play a critical role 
in influencing RNA–protein interactions, underlie essential 
post-transcriptional gene expression regulation processes 
[7]. Notably, the most frequently observed RNA modifica-
tions include N6-adenylate methylation (m6A), N1-ade-
nylate methylation (m1A), and cytosine hydroxylation 
(m5C) [8]. Particularly, m6A levels have been observed to 
increase in the murine cerebral cortex following stress, cor-
relating with transcriptional variations in neuronal genes. 
These stress-induced m6A alterations significantly overlap 
with genomic regions associated with neuropsychiatric dis-
orders [9]. In MDD patients, the regulatory dynamics of 
m6A are found to be compromised after exposure to gluco-
corticoids. The orchestration of the m6A epitranscriptome 
is principally mediated by the methyltransferase methyl-
transferase-like protein 3 (METTL3) and the demethylase 
fat mass and obesity-associated protein (FTO), both playing 
a central role in modulating fear-associated transcriptional 
responses [10]. Unlike m6A, m1A methylates adenylate at 
the N1 position. Previous studies have revealed that dysregu-
lation of m1A is closely associated with psychiatric disor-
ders [11]. The m5C RNA modification plays an instrumental 
role in modulating mRNA stability, expression, and transla-
tional mechanisms. Specifically, m5C’s influence on tRNAs, 
particularly tRNAGly, adds another layer of epitranscriptomic 
regulation significant for the mature brain’s neurobiological 
functions and behavioral tendencies [12]. It is worth noting 
that there is a gap in the bioinformatics domain concern-
ing m6A/m5C/m1A in the context of MDD. Therefore, a 
comprehensive study of genes related to m6A/m5C/m1A in 
MDD is crucial for developing a refined prognostic frame-
work and identifying potential diagnostic markers.

In our investigation, RNA sequencing data specific to 
MDD patients were obtained from GEO repositories, with 
the aim of exploring the implications of genes linked to 
m6A/m5C/m1A in MDD. Following the development of 
both forest and nomogram models, validation was per-
formed using additional Gene Expression Omnibus (GEO) 
datasets and clinical specimens from individuals diagnosed 

with MDD. Utilizing the Uniform Manifold Approximation 
and Projection (UMAP) algorithm, distinct RNA modifica-
tion profiles anchored on m6A/m5C/m1A-definitive genes 
were discerned. Furthermore, through functional enrichment 
analysis, dichotomous patterns of RNA modification-asso-
ciated genes within MDD were revealed. Simultaneously, a 
patient and public involvement (PPI) framework was estab-
lished, and the associative dynamics between transcription 
factors (TFs) and central genes were delineated, leveraging 
both the Search Tool for the Retrieval of Interacting Genes 
(STRING) and miRNet databases. In conclusion, we con-
ducted a comprehensive analysis, emphasizing the interplay 
between RNA modification-associated genetic signatures 
and immune cell integration.

Given the urgent need to unravel the intricate etiology 
and molecular underpinnings of MDD, our findings provide 
insights into the molecular pathways and prognostic indica-
tors associated with RNA modifications in MDD.

Materials and Methods

Data Download

As the analysis flow diagram (Fig. 1), we embarked on a 
comprehensive evaluation. With the aim of identifying 
genes expressed in MDD and matched controls, the GEO 
repository—one of the world’s most extensive collections 
of gene chips—was utilized to acquire and integrate four 
gene expression profiles (GSE32280 [13], GSE98793 [14], 
GSE19738 [15], and GSE190518 [16]). Homo sapiens were 
selected as the subject, and the platforms used were GPL570 
and GPL6848. Specifically, GSE32280 contained 16 depres-
sion samples and 8 control samples; GSE98793 contained 
128 depression samples and 64 control samples; GSE19738 
comprised 38 depression samples and 37 control samples; 
GSE190518 included 38 depression samples and 37 control 
samples. Subsequently, GSE32280 and GSE98793 data-
sets were combined as the training set for the diagnostic 
model, and GSE19738 and GSE190518 were combined as 
the validation set for the diagnostic model. Batch effects 
were normalized and removed using the R sva package 
[17]. Simultaneously, RNA modification-related genes 
were extracted from the literature [18], encompassing m1A-, 
m5C-, and m6A-related genes (Supplementary Table 1). Box 
plots (Table 1) were employed to visualize the expression 
distribution.

Identification of RNA Modification‑related 
Differentially Expressed Genes

To examine the impact of RNA modification-associated 
gene expression magnitudes on MDD, the R package 
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“limma” (version 3.58.1) was utilized for conducting a 
comparative gene analysis between MDD specimens and 
their standard counterparts within the combined data-
set [19]. Criteria for identifying differentially expressed 
genes (DEGs) included an absolute fold change (FC) 
value exceeding 1.2 and a significance level (P) below 
0.05. DEGs with FC greater than 1.2 and P less than 0.05 

were categorized as upregulated, while those with FC less 
than − 1.2 and P below 0.05 were classified as downregu-
lated. The identified set of DEGs was subsequently com-
pared with RNA modification-associated genes to derive 
a set of differentially expressed RNA-modified genes 
(DERMG). Visual representation of DERMG outcomes 
was achieved through a volcanic plot.

Fig. 1   Flowchart of the study design. DEGs, differentially expressed 
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; PPI, protein–protein interaction; GSEA, Gene Set 

Enrichment Analysis; GSEA, gene set enrichment analysis; ssGSEA, 
single-sample gene set enrichment analysis

Table 1   Summary of the GEO dataset information

Data set classification GSE GPL Species Organization source Sample num-
ber of MDD

Sample num-
ber of control

Reference

Training set GSE32280 GPL570 Homo sapiens Peripheral blood 16 8 PMID: 22,348,066
GSE98793 GPL570 Homo sapiens Whole blood 128 64 PMID: 28,688,579

Test set GSE19738 GPL6848 Homo sapiens Whole blood 38 37 PMID: 20,471,630
GSE190518 GPL20301 Homo sapiens Cubital vein Periph-

eral whole blood
4 4 PMID: 35,431,783
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Development of the Forest and Nomogram 
Frameworks

The forest model was employed to select candidate signature 
genes from the DERMGs and predict the onset of MDD. The 
signature genes were incorporated into the model, and the 
risk score formula was formulated as follows:

A nomogram framework was constructed using the 
selected signature genes to predict the occurrence of MDD. 
Subsequently, an independent validation set was utilized to 
verify the accuracy of the model.

Functional Enrichment Analysis (FEA) of DERMGs 
in MDD

The Gene Ontology (GO) framework continues to be a cru-
cial tool in FEA for conducting comprehensive investiga-
tions, covering dimensions such as biological processes (BP), 
cellular components (CC), and molecular functions (MF) 
[20]. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
is widely recognized as a repository that provides detailed 
information on biological pathways, genomic data, therapeu-
tic agents, and associated disorders [21]. To enable GO anno-
tations and KEGG enrichment assessments of DERMGs, the 
Cluster Profiler toolkit in R (version 4.10.0) was employed 
[22, 23]. A false discovery rate (FDR) value below 0.05 was 
considered indicative of statistical significance.

Appraisal and Association Study of Immune Cell 
Penetration in MDD

The immune milieu, a complex assembly, is predomi-
nantly constituted by immune cells, inflammatory agents, 
fibroblasts, a spectrum of chemokines and cytokines, and 
the extracellular matrix. A profound understanding of the 
extent to which tissues are infiltrated by immune cells is of 
paramount importance in both disease research and prognos-
tic prediction. Single-sample gene set enrichment analysis 
(ssGSEA), an advanced adaptation of the GSEA methodol-
ogy, provides insights into this aspect. Additionally, Cell-type 
Identification by Estimating Relative Subsets of RNA Tran-
scripts (CIBERSORT), employing the linear support vector 
regression paradigm, deciphers the transcriptional signatures 
of various immune cell subtypes. This algorithm facilitates 
the quantification of immune cell prevalence within tissues 
through RNA-Seq data analysis [24]. Using the CIBERSORT 
algorithm in the R environment, the relative abundance of 22 
distinct immune cells was determined in both high-risk and 
low-risk sample sets. Subsequently, boxplot representations 

Risk score =
∑

Coeff icient (genei) ∗ mRNA Expression (genei)

were used to visualize these immune cell distributions in both 
pathological and control specimens [25]. The Wilcoxon rank-
sum test was employed to detect disparities in immune cell 
distribution between the diseased and healthy cohorts, with 
a significance threshold of P < 0.05.

The ESTIMATE methodology, designed to assess 
immune responsiveness (the degree of immune cell infil-
tration) within tumor specimens based on transcriptional 
data, offers insights into the concentration of stromal and 
immune-specific gene signatures [26].

To elucidate the complex interplay of RNA modifica-
tion patterns in patients, the ssGSEA methodology was 
employed, enabling the quantification of 28 distinct immune 
cell types [24]. Furthermore, by leveraging the CIBERSORT 
algorithm within the R platform, the relative concentrations 
of 22 specific immune cells were discerned in the patient 
cohorts [25]. To delineate the relationship between depres-
sion-associated key genes and diverse immune signatures, 
the R corrplot package (version 1.29) was utilized to con-
textualize the findings from our immune infiltration assess-
ments [27]. Subsequent analyses utilized the “estimate” 
package within R (version 1.0.13) to compare immune scor-
ing across patient groups defined by their RNA modification 
profiles [26]. This was complemented by correlation studies 
examining the connection between central gene transcrip-
tional levels and ESTIMATE values.

Molecular Subtypes of MDD

The advanced dimensionality minimization technique, 
UMAP, has the capability to separate or streamline a cohort 
of patients into distinct clusters based on specific attributes. 
Utilizing the UMAP package (version 0.2.10.0) within R 
[28], varied RNA modification patterns rooted in character-
istic genes were identified. These characteristic genes were 
designated as central RNA modulatory genes associated 
with MDD. These genes were defined as key RNA modifi-
cation genes related to MDD.

Analysis of Biological Traits Across Patients 
Exhibiting Distinct RNA Modification Profiles

The R package cluster was utilized for GO functional annota-
tion and KEGG pathway analysis of DEGs among the MDD 
cohort with varying RNA modification patterns [22, 23]. 
This was done to highlight significantly enriched biologi-
cal processes. An enrichment analysis was carried out, with 
a predefined significance threshold set at a P value < 0.05.

GSEA is employed as an analytical technique to deter-
mine whether a preselected group of genes exhibits signifi-
cant differences between two distinct biological conditions. 
This method is commonly used to identify variations in 
pathway and biological function involvement within gene 
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expression datasets [29]. To elucidate the differences in 
biological processes among patients with distinct RNA 
modification patterns, gene expression profile datasets were 
obtained. Following this, reference gene collections “c5.
go.v7.4.entrez.gmt” and “C2.cp.keg.v7.4.Entrez.gmt” were 
sourced from the MSigDB database [30]. The GSEA proto-
col, integrated into the R package cluster Profiler (version 
2.1.6), facilitated the enrichment analysis and subsequent 
data visualization. An adjusted P value < 0.05 was consid-
ered indicative of statistical significance.

GSVA, a non-parametric unsupervised method, primar-
ily enables the conversion of gene expression matrices from 
various samples into corresponding matrices for gene sets. 
This allows for an assessment of transcriptomic enrichment, 
revealing potential differential engagement of metabolic 
pathways across samples [31]. To explore the differences in 
biological functions among patients characterized by distinct 
RNA modification profiles, the “GSVA” R package (version 
1.50.0) was employed [31]. This facilitated a comprehensive 
analysis of variations based on the gene expression profiles of 
the specified patient cohorts. The reference compilation “h.all.
v7.4.symbols.gmt” was sourced from the MSigDB reposi-
tory [30], aiding in the determination of enrichment scores for 
each patient per hallmark within the dataset. Subsequently, an 
analysis was conducted to identify correlations among dysreg-
ulated pathways within the patient population. A predefined 
criterion of P value < 0.05 indicated statistical significance.

Interplay Within PPI Framework

The gene expression landscape is known for its complexity, 
often involving the collaboration of specific genes, espe-
cially when they regulate similar biological pathways. To 
decipher these associations among patients characterized 
by distinct RNA modification patterns, PPI networks were 
constructed based on their DEGs. The STRING repository 
was utilized [32], setting a stringent comprehensive score of 
700 as the threshold for creating PPI networks around key 
RNA-modified genes in MDD patients. This constructed net-
work was subsequently imported into Cytoscape for further 
analysis [33].

Within Cytoscape’s Cytohubba plugin, 12 computational 
methods (including betweenness, bottleneck, closeness, clus-
tering coefficient, degree, DMN, eccentricity, EPC, MCC, 
MNC, radiality, and stress [34]) were employed to identify 
the top 30 hub nodes in each method. Genes identified in at 
least five of these methods were designated as central hubs. 
Due to their extensive interconnectedness, these pivotal hubs 
are believed to exert significant influence over the overall 
biological processes, warranting in-depth exploration.

MicroRNAs (miRNAs), inherently non-coding and sin-
gle-stranded RNA molecules encoded within our genome, 
play crucial roles in various biological processes, including 

tumorigenesis, biological growth, organogenesis, and epi-
genetic regulation, as well as defense against viral entities. 
The regulatory networks involving miRNAs are complex, as 
a single miRNA can regulate numerous target genes, while 
a specific gene can be targeted by several miRNAs [35]. To 
gain deeper insights into the core genes and their interactions 
with microRNAs, we identified associated miRNAs for these 
hub genes using the Starbase platform. Starbase utilizes a 
combination of seven prediction tools (including miRmap, 
RNA22, microT, PITA, picTar, miRNAda, and TargetScan) 
to provide insights into potential miRNA-gene connections. 
By requiring confirmation from at least two of these algo-
rithms, we enhanced our understanding of miRNA-mRNA 
interactions, resulting in the creation of a complex mRNA-
miRNA regulatory network. This network was then visual-
ized using Cytoscape for better accessibility.

Transcription factors (TFs), by nature, regulate gene 
expression by forming associations with specific target 
genes. To elucidate the regulatory influence exerted by 
these core genes, we obtained TF-to-hub gene connections 
from the miRNet repository. This allowed us to establish a 
comprehensive interaction framework encompassing both 
hub genes and TFs. Once again, for improved accessibility 
and comprehension, this interaction network was visualized 
using the Cytoscape tool.

Determination and Associative Analysis of Immune 
Cells’ Infiltration Based on RNA Modification 
Diversities

Utilizing the ssGSEA methodology, the prevalence of 28 
distinct immune cell types was quantified in subjects with 
varying RNA modification profiles [30]. Subsequently, 
within the R environment [29], the representation of 22 
specific immune cells was assessed among patients, each 
characterized by unique RNA modification characteristics 
in the dataset, using the CIBERSORT algorithm.

Analytical Methodology

The R software suite (version 4.1.1) was utilized for the 
computational analysis and subsequent data processing. To 
assess continuous variables between the paired cohorts, the 
independent t-test was employed to determine the signifi-
cance level of normally distributed variables. For non-nor-
mally distributed variables, the Wilcoxon rank-sum test was 
employed to compare independent variables between these 
groups. To measure the degree of association between differ-
ent genes, the Pearson correlation method was applied. ROC 
curves were generated using a dedicated R package (Project 
home page: http://​expasy.​org/​tools/​pROC/), with both ROC 
and AUC measurements serving as metrics for assessing 
diagnostic accuracy [36]. All calculated P-values were two 

http://expasy.org/tools/pROC/
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tailed, with a threshold of P < 0.05 used as the criterion for 
statistical significance.

Analytical Methodology for Hub Gene Validation

Comprehensive information regarding the central genes, 
including nomenclature, symbolic representations, and bio-
logical roles, was obtained from the National Center for Bio-
technology Information (NCBI) repository. Subsequently, 
the differential expression of eight crucial genes was deter-
mined by conducting qRT-PCR on blood specimens from a 
cohort consisting of six individuals diagnosed with MDD 
and an equal number of matched controls.

The initial step involved the extraction of total RNA from 
these specimens, following the protocol provided, using 
the RNeasy Plus Mini Kit (QIAGEN). This was followed 
by cDNA synthesis, which was facilitated by the TransS-
cript All-in-One First-Strand cDNA Synthesis SuperMix 
(TRANSGEN). The thermal regimen included an ini-
tial phase at 25 °C for 5 min, a secondary phase at 55 °C 
for 15 min, and a final phase at 85 °C for 5 min. Subse-
quently, the amplification of this synthesized cDNA was 
achieved using the PerfectStartTM Green qPCR SuperMix 
(TRANSGEN) with a thermal cycling protocol consisting 
of an initial step at 94 °C for 30 s, followed by 40 iterative 
cycles at 94 °C for 5 s, and a final elongation step at 60 °C 
for 30 s. The differential expression of these eight genes of 
interest was quantified using the 2 − △△Ct method, with 
GAPDH serving as the reference gene (Table 2).

Results

Analysis of Gene Transcription Pertaining to RNA 
Modification in MDD‑afflicted Patients

The initial phase involved the integration of datasets 
from GSE32280 and another unspecified dataset, denoted 
as GSE98793 (Fig.  2A). This amalgamation revealed 

significant batch discrepancies between the two datasets 
(Fig. 2E). By addressing and rectifying these batch effects, 
a consistent gene transcription profile was generated, as elu-
cidated in Fig. 2B. The consolidated dataset comprised tran-
scriptional data from 144 MDD specimens and 72 controls, 
as represented in Fig. 2F.

Subsequently, an integration was performed with 
GSE19738 and another unspecified dataset, GSE190518 
(Fig. 2B). This combination also exhibited prominent batch 
inconsistencies between the datasets, as observed in Fig. 2G. 
Upon addressing these discrepancies, a harmonized gene 
transcription profile emerged (Fig. 2D). This curated dataset 
included 41 samples from MDD-afflicted patients and 39 
from control cohorts (Fig. 2H).

In our analysis, 450 DEGs were identified when com-
paring MDD samples with controls. Among these, 23 
DEGs exhibited increased expression, while 427 showed 
diminished expression. Regarding GO classifications, these 
DEGs were predominantly associated with processes such 
as protein phosphopantetheinylation, cell cycle checkpoint 
regulation, and modulation of protein degradation pathways 
(Fig. 3A). At the cellular level, these genes were localized 
to compartments like the outer organelle membrane, pri-
mary outer membrane, and early endosome membranes 
(Fig. 3B). Functionally, these genes played key roles in 
kinase regulatory mechanisms, cyclin-driven protein ser-
ine/threonine kinase modulation, and phosphatidylinositol 
3-kinase functions (PI3KAKT), among others (Fig. 3C). 
Additionally, KEGG pathway analysis indicated significant 
enrichment in areas such as sphingolipid metabolism, phos-
phatidylinositol signal transduction, and pathways associated 
with NOD-like receptor signaling. The analysis of RNA-
modification-related DEGs resulted in the identification of 
29 uniquely expressed genes (Fig. 3E), with 9 exhibiting 
increased expression and 20 demonstrating reduced expres-
sion (Fig. 3D). The chromosomal localization of these RNA 
modification-linked genes was annotated using the RCircos 
package in R [37], revealing a notable clustering of these 
genes in analogous chromosomal regions (Fig. 3F–H).

Table 2   Primer sequences Gene Forward primer (5′–3′) Reverse primer (5′–3′)

ZC3H13 CGG​ACA​CTA​ACT​CCA​CCT​TTAC​ TCC​CTA​GTA​TCT​CTG​GCA​TCTC​
YTHDC2 GTG​GCA​GGC​ATG​TAT​CCT​AAT​ TTC​TAT​GGG​CTC​TGG​TCA​TTTC​
TRMT112 CAT​GAA​ACT​GCT​TAC​CCA​CAATC​ GGT​CCT​CAG​AAA​CTC​CTC​ATTC​
MBD3 CCT​GTC​TCT​ATC​TCT​CCC​TCTT​ CCT​CTA​GCA​AAG​GCC​AGT​ATT​
TRMT6 AAG​AAG​CGG​GCA​CTG​ATA​AT TCT​GGG​CTA​GTG​TAT​CGT​ATCT​
IGF2BP1 GGG​ATT​AGG​GTG​TGG​TGT​TT CAG​TTT​GGC​AGA​GGG​TAT​GT
NUDT21 GTA​AGT​ACG​TGA​GCC​AGT​CATC​ AGT​GCC​CTT​ATA​CCC​TCT​TCTA​
XRN1 CGA​GGC​ACC​ATC​ATA​GGA​ATAA​ GCC​CAG​AGG​AAA​CTG​ATG​AA
GAPDH GTA​TCG​TGG​AAG​GAC​TCA​TGAC​ ACC​ACC​TTC​TTG​ATG​TCA​TCAT​
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Risk Model Construction

Epigenetic modifications of RNAs are increasingly recog-
nized for their roles in various biological functions. Dif-
ferential gene expression analysis was conducted between 
MDD and normal samples (Fig. 4A), encompassing RNA 
modifier genes related to m1A, m6A, and m5C. Subse-
quently, the expression level correlations among RNA 
epigenetically modified genes, as well as among the m1A, 
m6A, and m5C gene sets in all samples, were analyzed sep-
arately. The results revealed significant negative correla-
tions between YTHDC1 and NSUN5, PRRC2A, and TDG 
(P < 0.05, Fig. 4B), while NXF1 and MECP2, NXF1, and 
NSUN5 exhibited strong positive correlations (P < 0.05, 
Fig. 4B). Additionally, a robust positive association was 
identified between ZBTB33 and TRMT10C, as well as 
between NSUN5 and ALKBH3 (P < 0.05, Fig. 4C). Con-
versely, pronounced negative relationships were observed 
between X3 and XA, and between UHRF1 and TRMT61A 
(P < 0.05, Fig. 4C). Moreover, a significant positive link-
age was detected between NSUN3 and TRMT61A, and 
between UHRF1 and TRMT61A (P < 0.05, Fig. 4D). In 
contrast, marked negative interconnections were observed 
between SRSF10 and TRMT61B, and between NXF1 and 
TRMT61A (P < 0.05, Fig. 4D).

To explore the impact of genes associated with RNA 
modifications on MDD, a generalized linear model function 
in R was employed to identify 8 hallmark genes out of the 29 
differentially expressed RNA-modifying genes. These iden-
tified genes were labeled as ZC3H13, YTHDC2, TRMT112, 
MBD3, TRMT6, IGF2BP1, NUDT21, and XRN. Utilizing 
the coefficients derived from the glm function for these eight 
pivotal genes (Fig. 5A), gene expression was multiplied by 
the corresponding coefficients, establishing a prognostic risk 
metric for MDD. Subsequently, the ultimate prognostic risk 
index for each sample was computed. Using this risk met-
ric, an ROC analysis was conducted, revealing an AUC of 
0.716 for the training dataset (Fig. 5B) and an AUC of 0.626 
for the validation set (Fig. 5C). These results indicate the 
model’s commendable capacity to distinguish MDD cases. 
Furthermore, when analyzing the ROC curves of these 8 
hallmark genes for MDD prediction individually, the data 
suggested that each of these genes exhibited robust prog-
nostic potential (Fig. 5D).

To assess variations in immune cell infiltration levels 
between the control and MDD specimens, comprehensive 
ssGSEA was performed on both sets. Notably, compared to 
controls, MDD specimens displayed significantly reduced 
infiltration of immune cells such as eosinophils and gamma 
delta T lymphocytes (Fig. 5E). Subsequently, correlations 
between the expression levels of these immune cells and the 
hallmark genes were computed. Intriguingly, IGF2BP1 gene 
expression inversely correlated with numerous immune cell 
types (r < 0, P < 0.05, Fig. 5F). Most prominently, a direct 
association was discerned between NUDT21 and immune 
cells like type 2 T helper cells, effector memory CD4 T cells, 
and activated CD4 T cells (P < 0.05, Fig. 5G). Conversely, 
IGF2BP1 exhibited the most pronounced inverse relation-
ship with natural killer T cells, central memory CD4 T cells, 
and activated CD8 T cells (P < 0.05, Fig. 5G).

A nomogram, incorporating both the predicted risk score 
and the eight significant genes, was developed to predict the 
incidence of depression (Fig. 6A). Notably, the anticipated 
risk score demonstrated substantial predictive capability. 
Within the decision curve analysis (DCA), the prognostic 
trajectory consistently outperformed the reference (purple 
line), suggesting that clinical decisions guided by this nomo-
gram may offer therapeutic advantages for individuals deal-
ing with depression (Fig. 6B, C).

Identification of Two Unique RNA Modification 
Profiles

To increase the sample size of MDD, the test set and 
training set data were combined using the R package sva 
(Fig. 7A), resulting in a total of 182 MDD samples. Two 
distinct RNA modification archetypes, labeled as cluster 
1 and cluster 2, were identified using the octet of RNA-
modification-associated genes through the UMAP ana-
lytical technique (Fig. 7B). Cluster 1 encompassed 101 
specimens, while cluster 2 included 81 specimens. An 
examination of these clusters revealed significant dif-
ferences in the signature genes between the two clusters 
(Fig. 7C). The expression patterns of m1A, m5C, and m6A 
affiliated genes were cataloged across these RNA modula-
tion archetypes. The evaluation revealed marked differen-
tial expression of the majority of signature genes associ-
ated with RNA modification in both clusters (Fig. 7D–F).

Functional and Network Analysis of RNA 
Modification Profiles

To identify variances in biological processes among individuals 
with two distinct RNA modification profiles,  an initial compar-
ative evaluation of gene expression dynamics was conducted, 

Fig. 2   Data set integration. A, C Integrated sample gene expression 
level plot; horizontal axis is the sample and vertical axis is the gene 
expression level. B, D Gene expression level plot of integrated sam-
ples after removing batch effect; horizontal axis is sample and verti-
cal axis is gene expression level. E, G Cluster plots of samples before 
removing batch effects. F, H Sample clustering plots after removing 
batch effects
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resulting in the identification of 898 DEGs. A  comprehen-
sive GO categorization of these DEGs highlighted their roles 
in various cellular operations (Fig. 8A, Table 3). These genes 

were notably enriched in processes such  as protein synthesis 
initiation, membrane-associated SRP-mediated cotranslational 
protein localization, and protein transport  to the endoplasmic 
reticulum (Fig. 8B). At the cellular level, they were associated  
with cytosolic ribosomal assemblies and larger ribosomal frac-
tions (Fig. 8C).  Additionally, these genes were significant in 
modulating ribosomal structure, regulating translation, and 
facilitating  prenyltransferase functionalities (Fig. 8D). Pathway 
enrichment analysis revealed their  involvement in key biologi-
cal pathways, including responses to Herpes simplex virus 1, 
ribosomal architecture, and pathways  related to Coronavirus 
disease (Fig. 8E, P < 0.05, Table 4).

Subsequently, GSEA was performed on individuals repre-
senting the two distinct RNA modification patterns, reveal-
ing that most of these genes exhibited elevated expression 
levels primarily in the cluster1 cohort, thereby enhancing 
numerous cellular and metabolic activities. Specifically, the 

Fig. 3   Functional enrichment analysis of differentially expressed 
genes. A–D BP, CC, MF analysis and KEGG enrichment analysis 
in GO terms of differentially expressed genes related to depression; 
horizontal axis is generation, vertical axis is GO terms, node size 
indicates the number of genes included in the current GO term, and 
node color indicates significance level. E MDD-related differentially 
expressed RNA modified genes volcano plot abscise is log2 fold 
change, ordinate is −  log10(P value), red nodes represent up-regu-
lated differentially expressed genes, blue nodes represent down-reg-
ulated differentially expressed genes, and gray nodes represent genes 
that are not significantly differentially expressed. F, G Distribution 
of m1A-, m5C-, and m6A-related RNA modification-related genes in 
chromosomes. MDD, major depressive disorder; BP, biological pro-
cess; CC, cellular component; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; MF, molecular function

◂

Fig. 4   Correlation analysis. A The difference in expression levels 
of depression-related differentially expressed RNA modifier genes 
between MDD samples and control samples; the horizontal axis is the 
depression-related differentially expressed RNA modifier genes and 
the vertical axis is the gene expression levels. B Correlation analysis 
of gene expression levels of RNA modification-related genes related 
to m5C and m6A in all samples; node size indicates significance, and 
line node color indicates correlation. C Correlation analysis of gene 

expression levels of RNA modification-related genes related to m5C 
and m1A in all samples; node size indicates significance and node 
color indicates correlation. D Correlation analysis of gene expression 
levels of RNA modification-related genes related to m1A and m6A in 
all samples; node size indicates significance and line node color indi-
cates correlation. MDD, major depressive disorder; * denotes signifi-
cance less than 0.05; ** denotes significance less than 0.01; and **** 
denotes significance less than 0.001
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analysis highlighted their pivotal roles in processes such as 
the biosynthesis of reactive oxygen species, peptide anti-
gen affinities, metabolism associated with reactive nitrogen 
species, and the dynamics of microparticles within blood 
plasma (Fig. 9, Table 5).

GSVA was then conducted to further investigate func-
tional differences in patients with the two RNA modifica-
tion patterns. The results revealed associations between the 
expression levels of numerous RNA-modifying genes and 
biological processes such as apical junction, apical surface, 
mitotic spindle, and mammalian target of rapamycin com-
plex 1 (mTORC1) signaling (Fig. 10A). In patients exhibiting 
both RNA modification patterns, notable distinctions were 
observed in various biological processes, including androgen 
responsiveness, allograft rejection, adipogenesis, and apical 
junction dynamics (Fig. 10B). Additionally, we examined 
the correlation between patient signature genes of both RNA 
modification patterns and hallmark biological processes. 
TRMT112 exhibited a notable association with mTORC1 
signaling and showed a significant positive correlation with 
cholesterol homeostasis (P < 0.05). Conversely, the unfolded 
protein response displayed a significant inverse relationship 
with XRN1 but manifested a pronounced positive affiliation 
with PI3K AKT mTOR signaling (P < 0.05, Fig. 10C).

Fig. 5   Construction of the depression model. A Forest plot of signa-
ture genes in patients with depression. B ROC 10.1007/s12035-024-
04042-6 curve for predicting risk scores in depression training set 
diagnosis. C ROC curve for predicting risk score in depression test 
set diagnosis. D ROC curves for the eight signature genes in the diag-
nosis of depression. E The enrichment box plot of immune cells in 
control samples and MDD samples; the horizontal axis is immune 
cells, the vertical axis is immune score, orange represents MDD, and 
blue represents control group. F Correlation between characteristic 
gene expression level and immune cell content; node size indicates 
significance and node color indicates correlation. The horizontal axis 
is the immune cell, and the vertical axis is the characteristic gene. G 
The first three relationship pairs of positive and negative correlations, 
with immune cells on the horizontal axis and characteristic genes on 
the vertical axis. ROC, receiver operating characteristic curve; AUC, 
represents the area under the curve; MDD, major depressive disorder. 
* represents significance less than 0.05, ** represents significance 
less than 0.01, and **** represents significance less than 0.001

◂

Fig. 6   Line and column diagram (nomogram). A Nomogram of the 
eight signature genes for the diagnosis of patients with depression. B 
Model evaluation curve; gray for immediate diagnosis and orange for 

risk score model. C Model evaluation curve; gray indicates immedi-
ate diagnosis and blue indicates signature gene combination
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Network Analysis of RNA Modification Profiles

To evaluate the impact of DEGs in patients with two distinct 
RNA modification profiles on biologically relevant functions 
associated with MDD, a PPI network involving these differ-
entially expressed genes was initially established and visu-
alized using Cytoscape. The PPI network comprised 1597 
interaction pairs and involved 507 differentially expressed 
genes. Notably, high node genes included UBA52, RPS2, 
and RPS11, which interacted with 58, 51, and 50 genes, 
respectively (Fig. 11A). Using 12 analytical methodologies 
available in Cytohubba, we systematically assessed and 
identified the top 30 nodes for each method. Subsequently, 
31 genes that appeared in at least five methodologies were 
identified as central nodes (Fig. 11B).

To explore the functional relevance of these central genes, 
we utilized the “GOSemSim” package in R to determine their 
GO semantic similarities [38]. It became evident that genes 
like RPL19, RPS11, and RPL10A exhibited significant func-
tional associations with numerous other genes (Fig. 11C).

A comprehensive mRNA-miRNA interaction net-
work involving these central genes was constructed, 

encompassing 91 relational interactions, which involved 
16 mRNA sequences and 75 miRNA sequences. Notably, 
a principal RNA modifying gene, referred to as UBA52, 
established interactions with 37 miRNAs, while UBA52 
formed interactions with 16 miRNAs (Fig. 11D).

Furthermore, an mRNA-TF interaction framework 
involving the central genes was delineated, comprising 
17 interactions that involved 4 mRNAs and 17 TFs. The 
pivotal transcription factor gene RB1 was identified as it 
forged interactions with 10 TFs (Fig. 11E).

Comparative Immune Profiling Across RNA 
Modification Patterns

The ssGSEA and CIBERSORT computational methods were 
employed to meticulously assess disparities in immune cell 
infiltration between the divergent RNA modification frame-
works. The insights garnered from ssGSEA indicated that 
the cluster2 ensemble exhibited a significantly heightened 
presence of immune constituents, such as activated CD4 T 
cells and activated CD8 T cells, when compared to the clus-
ter1 cohort (Fig. 12A).

Fig. 7   Consistent clustering of feature genes for patients with depres-
sion. A PCA plot before and after debatching; the horizontal axis 
and the vertical axis are the two principal components, respectively, 
orange represents the training set, blue represents the test set, the top 
panel is PCA after debatching, and the bottom panel is PCA before 
debatching. B UMAP clustering result plot; orange denotes cluster1 
and blue denotes cluster 2. C Heat map of the expression levels of 
the feature genes in the two clusters; orange for cluster1 and blue for 
cluster 2. D Difference in m6A expression levels between cluster 1 
and cluster 2 samples; orange denotes cluster 1 and blue denotes clus-

ter 2, horizontal axis is the characteristic gene, and vertical axis is the 
gene expression level. E Difference in m5C expression levels between 
cluster1 and cluster2 samples; orange indicates cluster 1, blue indi-
cates cluster 2, horizontal axis is the characteristic gene, and vertical 
axis is the gene expression level. F Difference in m1A expression lev-
els between cluster1 and cluster 2 samples; orange indicates cluster 1, 
blue indicates cluster 2, horizontal axis is the characteristic gene, and 
vertical axis is the gene expression level. PCA, principal component 
analysis; UMAP, uniform manifold approximation and projection
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Subsequently, a correlative evaluation of immune cell 
densities across both groupings was undertaken. Within the 
cluster1 landscape, a prominent inverse relationship was 
observed between the presence of activated B cells and the 
predominance of other cellular entities (Fig. 12B). In con-
trast, within the cluster2 domain, a multitude of cells, includ-
ing eosinophils, CD56 luminescent natural killer entities, 

myeloid-derived suppressor cells (MDSCs), nascent dendritic 
cells, gamma delta T cells, natural killer T cells, T follicular 
auxiliary cells, effector memory CD8 T cells, type 2 T helper 
cells, and activated CD4 T cells, demonstrated discernible 
negative correlations among themselves (Fig. 12C).

In an effort to elucidate the potential interplay between 
salient genes and immune cellular entities, an exhaustive 

Fig. 8   Functional analysis of differentially expressed genes. A GO 
functional enrichment analysis of differentially expressed genes, the 
ordinate is the significance of enrichment results, and the abscissa 
is the Z-score. B–D The first five items of BP, CC, and MF are dis-
played, node size indicates the number of currently functionally 
enriched genes, and the color of the line indicates different biological 

functions. E KEGG pathway enrichment analysis results; node color 
indicates the expression level of the gene and quadrangle color indi-
cates the KEGG pathway Z-score. BP, biological process; CC, cellu-
lar component; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; MF, molecular function
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correlation assessment was conducted within both the cluster 
1 and cluster 2 patient subsets. Surprisingly, within the clus-
ter 1 milieu, gene YTHDC2 exhibited a pronounced asso-
ciation with a vast majority of the immune cells, in stark 
contrast to its inconspicuous linkage within the cluster 2 

demographic (P < 0.05, Fig. 12D, E). Furthermore, an intri-
cate analysis was executed to understand the relationship 
between pivotal genes and immune cells across the two 
defined clusters. Within the realm of cluster 1, the predomi-
nance of activated CD4 T cells demonstrated a substantial 

Table 3   GO enrichment analysis

Category ID Description P value

BP GO:0006413 Translational initiation 1.24E − 16
BP GO:0006614 SRP-dependent cotranslational protein targeting to membrane 3.50E − 13
BP GO:0006613 Cotranslational protein targeting to membrane 1.13E − 12
BP GO:0045047 protein targeting to ER 1.46E − 12
BP GO:0072599 Establishment of protein localization to endoplasmic reticulum 3.36E − 12
BP GO:0019080 Viral gene expression 6.96E − 12
BP GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 9.53E − 12
BP GO:0019083 Viral transcription 1.12E − 11
BP GO:0070972 Protein localization to endoplasmic reticulum 1.73E − 11
BP GO:0000956 Nuclear-transcribed mRNA catabolic process 2.85E − 11
MF GO:0140297 DNA-binding transcription factor binding 1.27E − 10
MF GO:0003735 Structural constituent of ribosome 1.13E − 08
MF GO:0045182 Translation regulator activity 1.56E − 05
MF GO:0004659 Prenyltransferase activity 6.94E − 05
MF GO:0003697 Single-stranded DNA binding 7.03E − 05
MF GO:0019956 Chemokine binding 8.84E − 05
MF GO:0016747 Transferase activity, transferring acyl groups other than amino-acyl groups 9.47E − 05
MF GO:0016746 Transferase activity, transferring acyl groups 9.80E − 05
MF GO:0090079 Translation regulator activity, nucleic acid binding 0.000108315
CC GO:0022626 Cytosolic ribosome 5.72E − 13
CC GO:0022625 Cytosolic large ribosomal subunit 1.81E − 10
CC GO:0005840 Ribosome 2.06E − 09
CC GO:0044391 Ribosomal subunit 2.92E − 09
CC GO:0015934 Large ribosomal subunit 1.21E − 07
CC GO:0042788 Polysomal ribosome 6.36E − 06
CC GO:0005925 Focal adhesion 1.60E − 05
CC GO:0030055 Cell-substrate junction 2.33E − 05
CC GO:0016282 Eukaryotic 43S preinitiation complex 5.63E − 05

Table 4   KEGG enrichment 
analysis

Category ID Description P value

KEGG_PATHWAY​ hsa05168 Herpes simplex virus 1 infection 1.40E − 12
KEGG_PATHWAY​ hsa03010 Ribosome 1.48E − 09
KEGG_PATHWAY​ hsa05171 Coronavirus disease—COVID-19 1.65E − 08
KEGG_PATHWAY​ hsa04216 Ferroptosis 0.000112847
KEGG_PATHWAY​ hsa05140 Leishmaniasis 0.001066957
KEGG_PATHWAY​ hsa03030 DNA replication 0.001414174
KEGG_PATHWAY​ hsa05145 Toxoplasmosis 0.002730708
KEGG_PATHWAY​ hsa05169 Epstein-Barr virus infection 0.003911116
KEGG_PATHWAY​ hsa04064 NF-kappa B signaling pathway 0.004120469
KEGG_PATHWAY​ hsa04659 Th17 cell differentiation 0.005595246
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Fig. 9   GSEA analysis. A GSEA-GO analysis; the abscissa is the enrichment score, a score greater than 0 indicates activation, the ordinate is the 
GO terms, and the color table P value. B Top 4 GO terms presented. GSEA, gene set enrichment analysis; GO, Gene Ontology

Table 5   GSEA enrichment 
analysis

ID ES NES P value

go_myeloid_leukocyte_mediated_immunity 0.828058 2.418731 1.41E − 08
go_gas_transport 0.993889 2.386485 3.60E − 08
go_endocytic_vesicle_lumen 0.994225 2.461468 1.57E − 07
go_oxygen_transport 0.994563 2.316307 2.05E − 07
go_renal_absorption 0.993434 2.412077 3.22E − 07
go_tertiary_granule_lumen 0.981281 2.755318 6.11E − 07
go_oxygen_binding 0.992154 2.456341 7.33E − 07
go_sequestering_of_metal_ion 0.950524 2.21374 2.55E − 06
go_endocytic_vesicle 0.90377 2.676805 7.99E − 06
go_antioxidant_activity 0.977022 2.753334 8.14E − 06
go_positive_regulation_of_t_cell_mediated_cytotoxicity 0.86509 2.211771 8.80E − 06
go_cellular_response_to_toxic_substance 0.964193 2.77193 9.11E − 06
go_secondary_lysosome 0.902767 2.235041 1.06E − 05
go_cellular_oxidant_detoxification 0.969475 2.763461 2.22E − 05
go_autolysosome 0.928951 2.163498 3.91E − 05
go_detoxification 0.961006 2.77699 5.08E − 05
go_positive_regulation_of_nitric_oxide_metabolic_process 0.980921 2.627245 5.89E − 05
go_cytosolic_large_ribosomal_subunit 0.696208 1.95529 6.96E − 05
go_toll_like_receptor_binding 0.913944 2.194524 7.17E − 05
go_oxidoreductase_activity 0.810987 2.370706 7.28E − 05
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negative association with several core genes. Conversely, 
within the cluster 2 framework, this particular correlation 
appeared to be marginal (P < 0.05, Fig. 12F, G).

Utilizing the CIBERSORT algorithm, it became discern-
ibly clear that the associative dynamics of immune cellular 
constituents for individuals within the cluster1 assembly 

Fig. 10   GSVA analysis. A Correlation between hallmark and genes 
related to RNA modification in GSVA analysis; the abscissa is hall-
mark, the vertical axis is RNA modification related genes, node size 
indicates significance, and node color indicates correlation. B Hall-
mark difference between patients with two RNA modification pat-
terns, coordinate is hallmark, vertical axis is GSVA score, orange 

denotes cluster 1, blue denotes cluster 2. C Correlation between 
signature genes and hallmark; the color of the line indicates differ-
ent signature genes, the node indicates hallmark, and the contour line 
indicates the level of correlation. GSVA, gene set variation analysis; 
*, significance less than 0.05; **, significance less than 0.01; ****, 
significance less than 0.001
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starkly deviated from those observed within the cluster 2 
composition (P < 0.05, Fig. 13A, B). Simultaneously, an 
intricate evaluation was employed to dissect the relational 
intricacies between eight signature genes manifesting within 
the distinct RNA modification paradigms and the propor-
tional makeup of immune entities. Astonishingly, the T cells, 

specifically the regulatory T cells (Tregs), evinced a potent 
association with the expression metrics of numerous signa-
ture genes. Furthermore, the relational fabric between these 
signature genes and immune constituents unveiled marked 
differences when juxtaposed across the two RNA modifica-
tion spectra (P < 0.05, Fig. 13C).

Fig. 11   Correlation network of differentially expressed genes. A PPI 
network of differentially expressed genes; blue nodes are differen-
tially expressed genes and orange nodes are hub genes. B Gene fre-
quency table in the algorithm in 12; the horizontal axis is the gene 
and the vertical axis is the frequency. C GO semantic similarity score 
of hub genes in the protein-protein interaction network of differen-

tially expressed genes; horizontal axis is the similarity level and verti-
cal axis is the gene. D mRNA-miRNA network of hub genes; blue 
nodes are hub genes and orange nodes are miRNAs. E mRNA-TF 
network of hub genes; blue nodes are hub genes and orange nodes 
are TFS. GO, Gene Ontology; PPI, protein-protein interaction; TFS, 
transcription factors
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In our quest to assess the discriminative potential of 
central genes across contrasting RNA modification para-
digms, ROC curves were meticulously constructed for 31 
such genes, followed by the computation of the AUC met-
rics. Remarkably, RPL37A, EIF3F, MRPL13, RPL5, RB1, 

among several other genes, adeptly differentiated between 
these two RNA modulatory archetypes (Fig. 14A). Con-
currently, a discerning observation highlighted that the 
immunological indices of individuals within the cluster 1 
configuration marginally surpassed those within the clus-
ter 2 assemblage (P < 0.05, Fig. 14B). Delving further, 
an in-depth relational analysis was conducted between 
the expression magnitude of these central genes and 
the aforementioned immunological index. The outcome 
underscored a noticeable inverse association between 
RPL10, RPL35A, RPS3A, RPLP1, RPLP2, along with 
several other pivotal genes, and the immunological score 
(P < 0.05, Fig. 14C).

Validation of Central Genes

The transcriptional abundance of eight central genes was 
assessed in MDD and control blood specimens using 

Fig. 13   Immune signatures between the two RNA modification pat-
terns CIBERSORT. A Bar graph of immune cell content between 
patients in the cluster 1 group and those in the cluster 2 group, with 
the cluster 2 samples in purple and the cluster 1 samples in blue. B, 
C Correlation of immune cell content between patients in cluster 1 
group and patients in cluster 2 group; pink indicates positive correla-
tion and blue indicates negative correlation. D Correlation between 
immune cells and characteristic genes in all MDD samples; node size 
represents significance and node color represents correlation. The 
horizontal axis is immune cells and the vertical axis is characteristic 

genes. E–H The first two terms of significant positive correlation and 
the first two terms of significant negative correlation of the correla-
tion between characteristic genes and immune cell content in cluster 1 
group patients, with immune cells on the horizontal axis and genes on 
the vertical axis. I–L The first two terms of significant positive cor-
relation and negative correlation of the correlation between character-
istic genes and immune cell content in cluster 1 group patients, with 
immune cells on the horizontal axis and genes on the vertical axis. 
MDD, major depressive disorder

Fig. 12   Immune signatures between the two RNA modification 
patterns ssGSEA. A Bar graph of immune cell content in cluster 1 
and cluster 2 group patients; blue denotes cluster 2 samples, orange 
denotes cluster 1 samples, horizontal axis denotes immune cells, 
and vertical axis denotes cellular content. B, C Correlation analysis 
between immune cell content in cluster 1 and cluster 2; red denotes 
negative correlation and blue denotes positive correlation. D–F Cor-
relation between feature genes and immune cells in cluster 1 and 
cluster 2; the horizontal axis 10.1007/s12035-024-04042-6 represents 
immune cells, the vertical axis represents feature genes, the node 
color represents the correlation size, and the node size represents the 
significance level. G, H Correlation between hub genes and immune 
cells in cluster 1 and cluster 2; node size indicates significance and 
node color indicates correlation level. Immune cells are on the hori-
zontal axis and hub genes are on the vertical axis. ssGSEA, single-
sample gene set enrichment analysis

◂
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quantitative PCR (qPCR) techniques. Among these genes, four 
distinct ones (TRMT112, MBD3, NUDT21, IGF2BP1) were 
identified, with NUDT21 and IGF2BP1 being notably signifi-
cant, while the others were not detected. Among the two upreg-
ulated genes, TRMT112 and MBD3 exhibited statistical sig-
nificance, and among the two downregulated genes, NUDT21 
and IGF2BP1 displayed statistical significance (Fig. 15).

Discussion

MDD, a widely observed psychiatric condition [1], is char-
acterized by multifaceted symptoms such as mood perturba-
tions, diminished pleasure or interest, as well as variations 

in physiological processes, cognitive functions, and psycho-
motor dynamics [2]. Contemporary research increasingly 
underscores the pivotal role of epigenetic modulation in 
MDD, with a specific emphasis on RNA-based epigenetic 
modifications. These RNA adjustments can influence nucle-
otide pairing, modulate RNA secondary conformation, and 
alter RNA’s propensity to interact with proteins [7]. There-
fore, to construct a refined predictive model and identify 
potential prognostic indicators, it is imperative to compre-
hensively explore m6A/m5C/m1A-associated genes in the 
context of MDD.

In this study, we identified 29 differentially expressed RNA 
modification-associated genes (DERMGs) in MDD through 
bioinformatics analysis and unveiled two distinct RNA modi-
fication patterns based on signature genes for the first time. 
Subsequently, we constructed a risk signature comprising 
eight hub genes (ZC3H13, YTHDC2, TRMT112, MBD3, 
TRMT6, IGF2BP1, NUDT21, and XRN), of which four genes 
(TRMT112, MBD3, NUDT21, IGF2BP1) were detected 
in the blood samples, while the others were not detected. 
Additionally, we performed various analyses, including GO, 
KEGG, GSEA, and GSVA, to evaluate the enrichment asso-
ciations of these genes with relevant pathways. Our findings 
indicated that these genes were enriched in processes such as 
reactive oxygen species biosynthesis, PI3K activity, NOD-like 
receptor signaling pathway, and mTORC1 signaling, confirm-
ing the role of RNA modification in MDD. Furthermore, we 
observed a significant positive correlation between IGF2BP1 
and immune cells, specifically natural killer T cells, central 
memory CD4 T cells, and activated CD8 T cells, which has 
implications for depression immunotherapy.

Previous research has highlighted the significance of 
RNA modifications, including m6A, m5C, and m1A, in 

Fig. 14   Calculation of the immune score. A AUC and 95 % AUC in 
the ROC curve of hub genes; green nodes are the lower 95 % AUC, 
blue is the upper 95 % AUC, orange is AUC, the horizontal axis is 
the AUC value, and the vertical axis is the lake hub gene. B Immune 
score of patients in cluster 1 group and cluster 2 group; the horizontal 
axis is grouping, the vertical axis is immune score, orange denotes 

cluster 1, and blue denotes cluster 2. C Correlation between immune 
score and hub gene in all MDD samples, horizontal axis is correla-
tion; vertical axis is hub gene. MDD, major depressive disorder; 
ROC, receiver operating characteristic curve; AUC, area under the 
curve

Fig. 15   Quantitative real-time PCR analysis of the differences in 
expression of mRNA of the hub gene between controls and patients in 
MDD. Four genes were detected in the blood samples and the others 
were not detected. * P < 0.05. MDD, major depressive disorder
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neurodegenerative disorders [39]. These modifications are 
introduced, removed, and recognized by specific proteins 
known as “writers,” “erasers,” and “readers.” For instance, 
m6A modifications involve writers such as METTL3/14, 
Wilms’ tumor 1-associating protein (WTAP), and ZC3H13, 
erasers like FTO and ALKBH5, and readers including 
YTHDC1/2, YTHDF1/2/3, and IGF2BP1/2/3. Similarly, 
RNA m1A modifications involve writers like TRMT61A/B, 
TRMT10C, and TRMT6, erasers such as ALKBH1/3/7 and 
FTO, and readers like YTHDF1/2/3 and YTHDC1 [40, 41]. 
Additionally, RNA m5C modifications are governed by 
NSUN enzymes, TET proteins, and YBX1 as writers, erasers, 
and readers, respectively [12]. These modifications have been 
implicated in synaptic plasticity, neural proliferation, cogni-
tive processes, and stress responses within the brain [42].

To date, the demethylation of m6A facilitated by FTO 
in depressive conditions has garnered substantial academic 
scrutiny. An escalating volume of empirical works cor-
roborate the instrumental functions of FTO across myriad 
biological paradigms [43, 44]. In our risk signature, among 
the eight hub genes, ZC3H13 and WTAP was the writer 
of m6A and IGF2BP, NUDT21, TRMT112, XRN, and 
YTHDC2 were m6A readers. They might play a key role 
in depression. First, as a writer of m6A, ZC3H13 together 
with WTAP is essential for assembling the ZC3H13-WTAP-
VIRMA-HAKAI complex into the nucleus [44]. Moreover, 
previous studies showed that not only METTL3 [10] but 
also METTL14 [45] plays a crucial role in synaptic plastic-
ity and stress-related disorders such as depressive behavior. 
Consequently, it stands to reason that ZC3H13, integral to 
our risk signature, could hold significant relevance in the 
context of MDD. However, the mechanism of ZC3H13 need 
to be further investigated in MDD. Furthermore, as the hub 
genes in our risk signature, NUDT21, TRMT112, IGF2BP, 
XRN, and YTHDC2 were m6A readers. Within this con-
text, NUDT21, colloquially termed CFIm25, engages in the 
orchestration and subsequent production of circular RNAs 
(circRNAs), modulating both alternative splicing and the 
nuanced process of alternative polyadenylation (APA) [46]. 
Contemporary research posits that perturbations in the 
mechanisms driven by CFIm25, especially those concerning 
3′-UTR-APA, might be implicated in neural anomalies and 
fibrotic manifestations [47]. After that, TRMT112 is a small 
evolutionarily conserved protein and current studies revealed 
that METTL5 and its partner TRMT112 are upregulated 
in various cancers [48, 49]. In addition, IGF2BP1 worked 
with c-MYC mRNA and E2F transcription factors, which 
was a transcriptional regulator adept at augmenting MIF 
transcription and played critical immunological roles, and 
then regulated T cells [50, 51]. Then, a recent bioinformat-
ics analysis revealed similar evidence with our results, they 
found that elevated METTL16, YTHDC1, and YTHDC2 
expression in prefrontal cortex of depressed patients and low 

IGF2BP1/2 expression in both normal and MDD patients 
[52]. And another study also, like our results, showed that 
the lack of association between XRN1 and YTHDC2 in 
the hypothalamus may contribute to metabolic disorders 
[53]. So we suppose that the m6A status of MDD is deli-
cately balanced by the dynamic regulation among the m6A 
writer METTL3/5/14 and the partner TRMT112, eraser 
FTO/ALKBH5, and readers IGF2BP, XRN, YTHDC2, 
NUDT21. Besides that, as the hub genes in our risk, TRMT6 
was m1A writer, which catalyzed m1A58 in tRNA together 
with TRMT61A [54]. Consequently, methyl-CpG-binding 
domain 3 proteins (MBD3) serve as interpreters for m5C, 
offering foundational and DNA-affinity characteristics to 
the nucleosome reorganization and deacetylation (NuRD) 
assembly, associating with CpG domains [55]. Therefore, 
the central genes within our hazard assessment could be 
instrumental in the molecular dynamics of MDD.

Furthermore, to analyze the effects of DEGs between 
patients with two RNA modification patterns on the bio-
logical-related functions of MDD patients, we first con-
structed a PPI related to differentially expressed genes. 
The PPI network included 1597 interaction pairs and 507 
differentially expressed genes. Functioning as an transcrip-
tional repressor, retinoblastoma 1(RB1), it modulates the 
transcription of cell-cycle-related genes via its synergy with 
the E2F transcription factor lineage, inhibiting transcription 
amid differentiation and stress situations [56]. And UBA52 
(ubiquitin-60S ribosomal protein L40, RPL40) encodes one 
UB unit fused to a ribosomal protein, which plays a role in 
enhancing ribosome biogenesis and mitochondrial homeo-
stasis-induced cell death [57]. Then, we first constructed a 
risk signature related to differentially expressed genes. The 
findings revealed that RPL37A, EIF3F, MRPL13, RPL5, and 
RB1, along with other genes, adeptly differentiated between 
two distinct RNA modification templates. Concurrently, 
evidence indicated a negative association between RPL10, 
RPL35A, RPS3A, RPLP1, RPLP2 and several pivotal genes 
with the immune metric (P < 0.05). Positioned as a central 
gene in this risk profile, RB1 orchestrates cell-cycle gene 
expression by interfacing with the E2F transcription fac-
tor lineage [56]. In addition, EIF3 plays an oncogenic role 
through the regulation of PI3K/Akt/NF-κB signaling. It is 
also consistent with our results about GO and KEGG analy-
sis in hub gene. Furthermore, RPL10, RPL35A, RPS3A, 
RPLP1, and RPLP2 belong to the ribosomal protein (RP) 
family, promoted tumorigenesis and aging in brain among 
them [58], and RPL5 functions as a monitor for ribosomal 
disruptions and potentially influences E2F transcription fac-
tor 1 (E2F1) [59]. Our data corroborates the notion that it 
holds a pivotal function in MDD. So our study establishes a 
model that reveals how an m6A/m1A/m5C-modified RNA 
epigenetic translational though two RNA modification pat-
terns on the biological related functions of MDD.
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Research has demonstrated that the PI3K, NOD, and 
mTORC1 signaling pathways are involved in the develop-
ment of depression. Our experiments, utilizing functional 
enrichment analysis, have revealed that key genes are also 
primarily concentrated in the PI3K, NOD, and mTORC1 
signaling pathways. In prior research, both YTHDF2 and 
FTO were observed to enhance the self-renewal and pro-
liferation capacities of NSCs via modulation of the PI3K/
AKT and JAK/STAT signaling cascades [60]. Moreover, 
mTORC1 augments the stabilization of the MTC that 
encompasses METTL3, METTL14, WTAP, and RMB15/
RBM15B [56]. Additionally, within the brain, the PI3K/
Akt/mTOR signaling cascade holds significant importance 
in the etiology and treatment of MDD [61]. Moreover, some 
studies reported that METTL14 represses colorectal cancer 
(CRC) development via the PI3K/Akt signaling, upregu-
lated by brain-derived neurotrophic factor (BDNF), which 
revealed similar evidence with our GO results. Subsequently, 
BDNF intricately orchestrates not merely the MAPK/ERK 
and PI3K/Akt cascades but also stimulates the mTOR path-
way [60, 61]. Evidently, the HPA axis critically oversees 
oxidative stress (OS), with its regulation steered by GR, 
dictating epigenetic inscription and structuring in MDD 
[7]. Our findings corroborate the pivotal influence of m6A 
modification within the context of depression.

Our research may contribute to depression immunother-
apy. At present, immunotherapy approaches have yielded 
great success in MDD, but the outcomes for the majority 
of patients remain unsatisfactory. In our results, immune 
infiltration and correlation analysis between experimental 
and control group revealed the most significantly positively 
correlated were IGF2BP1 and natural killer T cells, central 
memory CD4 T cells, and activated CD8 T cell (P < 0.0.5). 
Moreover, the immune integration and interrelation assess-
ment, focusing on dual RNA modification patterns in MDD 
sufferers, indicated a pronounced correlation of YTHDC2 
with the majority of immune cells for individuals in the 
cluster 1 category. Conversely, the association of YTHDC2 
with immune cells in those belonging to the cluster 2 group 
appeared to be insubstantial (P < 0.05, Fig. 12D, E). Con-
currently, the interdependence between pivotal genes and 
Tregs was distinctly associated with the expression metrics 
of several distinguishing genes. And current studies also 
like our results showed that T cell have been indicated to be 
related to depression and mainly through epigenetic control 
[62]. During penetration, brain-native T cells exhibit link-
age with autoantigens present in the cerebral domain and are 
preconditioned to express anti-inflammatory agents along 
with neural growth elements [62, 63]. And another study 
indicated that T cell was closely related to the IGF2BP1 
[64] which is same with our result that significant positive 
correlation between IGF2BP1 and T cell. It is consistent 
with our results. Consequently, our research formulates a 

paradigm elucidating the orchestration of m6A/m1A/m5C-
modified RNA epigenetic translational regulators in modu-
lating overall translation within expanding T cells. Addi-
tionally, our findings potentially illuminate an uncharted 
therapeutic nexus, potentially mitigating a myriad of T cell-
associated inflammatory conditions, introducing a novel 
tactic for MDD immunotherapeutic interventions.

Consequently, a nomographic representation encompassing 
eight pivotal genes was devised, identifying four within the 
context of MDD. Simultaneously, AUC values were assessed, 
and ROC trajectories for the 31 central genes were delineated 
to appraise their potential in differentiating disparate RNA 
modification profiles. The data suggest that the projected 
risk quotient manifests noteworthy predictive efficacy. The 
prognostic line consistently surpassed the lavender threshold, 
alluding to the potential clinical advantages of utilizing this 
nomographic model for MDD patients. However, the roles 
of other m6A-associated proteins remain under-explored and 
warrant deeper scrutiny within the MDD spectrum.

In the context of MDD, m6A modifications have gar-
nered substantial attention, especially the role of FTO in 
m6A demethylation. Our risk signature includes ZC3H13 
and WTAP as writers of m6A, and IGF2BP1, NUDT21, 
TRMT112, XRN, and YTHDC2 as m6A readers. These 
genes may play crucial roles in depression, but further 
investigation is needed to fully understand their mechanisms. 
Additionally, our study highlights the potential therapeutic 
implications of targeting these RNA modifications in MDD.

A protein–protein interaction (PPI) network of differen-
tially expressed genes was also constructed, identifying cen-
tral genes such as RB1 and UBA52. Subsequently, a risk sig-
nature related to these central genes was devised, with genes 
like RPL37A, EIF3F, MRPL13, RPL5, and RB1 showing the 
ability to differentiate between distinct RNA modification pat-
terns. Additionally, a negative association between some of 
these central genes and an immunological score was observed, 
indicating their potential relevance in the context of MDD.

In conclusion, our study sheds light on the role of RNA 
modifications in MDD and provides insights into potential 
therapeutic targets and prognostic indicators. The complex 
interplay between RNA modification-associated genes and 
immune cells further underscores the potential of immu-
notherapy in MDD. However, further research is needed to 
fully elucidate the roles of these genes and their implications 
for MDD treatment.

Limitations

Several limitations are present in this study. Firstly, due to the 
high costs of sequencing and the relatively small sample size, 
the results may lack sufficient representativeness. Secondly, 
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since the study primarily relied on bioinformatics analysis, the 
findings remain largely theoretical, and their accuracy requires 
confirmation through experiments. Thirdly, owing to the lack 
of adequate clinical data, only a small sample consisting of six 
depression patients and six normal individuals was analyzed, 
and the specific roles of genes related to m6A/m5C/m1A in 
MDD have not been conclusively determined. Therefore, fur-
ther studies with larger sample sizes are necessary.

Conclusions

In summary, a nomogram model was developed, incorporating 
eight hub genes, and two distinct RNA modification patterns 
were distinguished. These patterns may have been regulated 
by various factors, including m6A writers (METTL3/5/14) 
and their partner (TRMT112), erasers (FTO/ALKBH5), and 
readers (IGF2BP, XRN, YTHDC2, NUDT21). However, the 
mechanisms underlying RNA modification in MDD are still 
relatively unexplored and warrant further investigation.
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