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Abstract

Major depressive disorder (MDD) is a prevalent psychiatric condition often accompanied by severe impairments in cognitive
and functional capacities. This research was conducted to identify RNA modification-related gene signatures and associated
functional pathways in MDD. Differentially expressed RNA modification-related genes in MDD were first identified. And a
random forest model was developed and distinct RNA modification patterns were discerned based on signature genes. Then,
comprehensive analyses of RNA modification-associated genes in MDD were performed, including functional analyses and
immune cell infiltration. The study identified 29 differentially expressed RNA modification-related genes in MDD and two
distinct RNA modification patterns. TRMT112, MBD3, NUDT21, and IGF2BP1 of the risk signature were detected. Func-
tional analyses confirmed the involvement of RNA modification in pathways like phosphatidylinositol 3-kinase signaling
and nucleotide oligomerization domain (NOD)-like receptor signaling in MDD. NUDT?21 displayed a strong positive cor-
relation with type 2 T helper cells, while IGF2BP1 negatively correlated with activated CD8 T cells, central memory CD4
T cells, and natural killer T cells. In summary, further research into the roles of NUDT21 and IGF2BP1 would be valuable
for understanding MDD prognosis. The identified RNA modification-related gene signatures and pathways provide insights
into MDD molecular etiology and potential diagnostic biomarkers.

Keywords RNA modification - Diagnostic - Major depressive disorder - Immune - Gene cluster analysis - NUDT21 -
IGF2BP1

Introduction

Xin Ren and Zhuxiao Feng contributed equally to this work. Major depressive disorder (MDD) is widely encountered

Highlights

o The study showed 29 differentially expressed RNA modification-
related genes in MDD identified by bioinformatics and two
distinct RNA modification patterns identified by the signature
genes for the first time.

e We constructed a risk signature containing 8 hub genes
(ZC3H13, YTHDC2, TRMT112, MBD3, TRMT6, IGF2BP1,
NUDT21, and XRN).

e We detected four genes (TRMT112, MBD3, NUDT21, and
IGF2BP1) in the blood samples.

o NUDT?21 displayed a paramount positive correlation with type
2 T helper cells. IGF2BP1 manifested a prominent negative
association with activated CD8 T cell, central memory CD4 T
cell, and natural killer T cell.

o RNA modification patterns, which may be regulated among the
mo6A writer METTL3/5/14 and the partner TRMT112, eraser
FTO/ ALKBHS, and readers IGF2BP, XRN, YTHDC2, and
NUDT?21.
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in psychiatric practice, exhibiting a formidable global
12-month incidence rate of 4.4% [1]. This multifaceted
syndrome is characterized by diverse symptoms, including
a pervasive sense of melancholy, a pronounced reduction
in pleasure-seeking tendencies, fluctuations in weight and
sleep patterns, heightened fatigue, self-deprecatory cogni-
tion, and notable cognitive challenges, particularly in areas
of focus and decision-making. Additionally, it is associated
with an increased predisposition toward morbid ideation or
suicidal thoughts [2]. Despite its prevalence, effective treat-
ment and prevention strategies for MDD remain elusive.
Contemporary diagnostic approaches largely rely on sub-
jective symptomatology reported by patients and clinician
assessments, lacking concrete biological markers [3]. Such
an approach not only complicates differential diagnosis but
also increases the risk of oversight. Given these challenges,
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there is a compelling need to elucidate the molecular under-
pinnings of MDD and identify groundbreaking biomarkers
to enhance diagnostic precision and therapeutic outcomes.

Recent research emphasizes the pivotal role of epigenetic
mechanisms, influenced by environmental and developmen-
tal cues, in modulating gene activity. Numerous epigenetic
aberrations have been identified in MDD, notably including
DNA methylation, RNA modifications, chromatin restruc-
turing, the involvement of noncoding RNAs, and histone
adjustments [4]. These alterations often target genes crucial
for the formation, operation, and adaptability of neuronal
networks within the central nervous system (CNS) [5, 6].
Despite their significance, RNA modifications in the epi-
genetic landscape of MDD have received relatively little
attention. These modifications, which play a critical role
in influencing RNA—protein interactions, underlie essential
post-transcriptional gene expression regulation processes
[7]. Notably, the most frequently observed RNA modifica-
tions include N6-adenylate methylation (m6A), N1-ade-
nylate methylation (m1A), and cytosine hydroxylation
(m5C) [8]. Particularly, m6A levels have been observed to
increase in the murine cerebral cortex following stress, cor-
relating with transcriptional variations in neuronal genes.
These stress-induced m6A alterations significantly overlap
with genomic regions associated with neuropsychiatric dis-
orders [9]. In MDD patients, the regulatory dynamics of
m6A are found to be compromised after exposure to gluco-
corticoids. The orchestration of the m6A epitranscriptome
is principally mediated by the methyltransferase methyl-
transferase-like protein 3 (METTL3) and the demethylase
fat mass and obesity-associated protein (FTO), both playing
a central role in modulating fear-associated transcriptional
responses [10]. Unlike m6A, m1A methylates adenylate at
the N1 position. Previous studies have revealed that dysregu-
lation of m1A is closely associated with psychiatric disor-
ders [11]. The m5C RNA modification plays an instrumental
role in modulating mRNA stability, expression, and transla-
tional mechanisms. Specifically, m5C’s influence on tRNAs,
particularly tRNASY, adds another layer of epitranscriptomic
regulation significant for the mature brain’s neurobiological
functions and behavioral tendencies [12]. It is worth noting
that there is a gap in the bioinformatics domain concern-
ing m6A/m5C/m1A in the context of MDD. Therefore, a
comprehensive study of genes related to m6A/m5C/m1A in
MDD is crucial for developing a refined prognostic frame-
work and identifying potential diagnostic markers.

In our investigation, RNA sequencing data specific to
MDD patients were obtained from GEO repositories, with
the aim of exploring the implications of genes linked to
m6A/m5C/m1A in MDD. Following the development of
both forest and nomogram models, validation was per-
formed using additional Gene Expression Omnibus (GEO)
datasets and clinical specimens from individuals diagnosed
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with MDD. Utilizing the Uniform Manifold Approximation
and Projection (UMAP) algorithm, distinct RNA modifica-
tion profiles anchored on m6A/m5C/m1A-definitive genes
were discerned. Furthermore, through functional enrichment
analysis, dichotomous patterns of RNA modification-asso-
ciated genes within MDD were revealed. Simultaneously, a
patient and public involvement (PPI) framework was estab-
lished, and the associative dynamics between transcription
factors (TFs) and central genes were delineated, leveraging
both the Search Tool for the Retrieval of Interacting Genes
(STRING) and miRNet databases. In conclusion, we con-
ducted a comprehensive analysis, emphasizing the interplay
between RNA modification-associated genetic signatures
and immune cell integration.

Given the urgent need to unravel the intricate etiology
and molecular underpinnings of MDD, our findings provide
insights into the molecular pathways and prognostic indica-
tors associated with RNA modifications in MDD.

Materials and Methods
Data Download

As the analysis flow diagram (Fig. 1), we embarked on a
comprehensive evaluation. With the aim of identifying
genes expressed in MDD and matched controls, the GEO
repository—one of the world’s most extensive collections
of gene chips—was utilized to acquire and integrate four
gene expression profiles (GSE32280 [13], GSE98793 [14],
GSE19738 [15], and GSE190518 [16]). Homo sapiens were
selected as the subject, and the platforms used were GPL570
and GPL6848. Specifically, GSE32280 contained 16 depres-
sion samples and 8 control samples; GSE98793 contained
128 depression samples and 64 control samples; GSE19738
comprised 38 depression samples and 37 control samples;
GSE190518 included 38 depression samples and 37 control
samples. Subsequently, GSE32280 and GSE98793 data-
sets were combined as the training set for the diagnostic
model, and GSE19738 and GSE190518 were combined as
the validation set for the diagnostic model. Batch effects
were normalized and removed using the R sva package
[17]. Simultaneously, RNA modification-related genes
were extracted from the literature [18], encompassing m1A-,
m5C-, and m6A-related genes (Supplementary Table 1). Box
plots (Table 1) were employed to visualize the expression
distribution.

Identification of RNA Modification-related
Differentially Expressed Genes

To examine the impact of RNA modification-associated
gene expression magnitudes on MDD, the R package
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Fig. 1 Flowchart of the study design. DEGs, differentially expressed
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; PPI, protein—protein interaction; GSEA, Gene Set

Table 1 Summary of the GEO dataset information
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Enrichment Analysis; GSEA, gene set enrichment analysis; ssGSEA,
single-sample gene set enrichment analysis

Data set classification GSE GPL Species Organization source ~ Sample num- Sample num- Reference
ber of MDD  ber of control
Training set GSE32280  GPL570 Homo sapiens  Peripheral blood 16 8 PMID: 22,348,066
GSE98793  GPL570 Homo sapiens  Whole blood 128 64 PMID: 28,688,579
Test set GSE19738 GPL6848 Homo sapiens Whole blood 38 37 PMID: 20,471,630
GSE190518 GPL20301 Homo sapiens Cubital vein Periph- 4 4 PMID: 35,431,783

eral whole blood

“limma” (version 3.58.1) was utilized for conducting a
comparative gene analysis between MDD specimens and
their standard counterparts within the combined data-
set [19]. Criteria for identifying differentially expressed
genes (DEGs) included an absolute fold change (FC)
value exceeding 1.2 and a significance level (P) below
0.05. DEGs with FC greater than 1.2 and P less than 0.05

were categorized as upregulated, while those with FC less
than — 1.2 and P below 0.05 were classified as downregu-
lated. The identified set of DEGs was subsequently com-
pared with RNA modification-associated genes to derive
a set of differentially expressed RNA-modified genes
(DERMG). Visual representation of DERMG outcomes
was achieved through a volcanic plot.
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Development of the Forest and Nomogram
Frameworks

The forest model was employed to select candidate signature
genes from the DERMGs and predict the onset of MDD. The
signature genes were incorporated into the model, and the
risk score formula was formulated as follows:

Risk score = Z Coefficient (genei) * mRNA Expression (genei)

A nomogram framework was constructed using the
selected signature genes to predict the occurrence of MDD.
Subsequently, an independent validation set was utilized to
verify the accuracy of the model.

Functional Enrichment Analysis (FEA) of DERMGs
in MDD

The Gene Ontology (GO) framework continues to be a cru-
cial tool in FEA for conducting comprehensive investiga-
tions, covering dimensions such as biological processes (BP),
cellular components (CC), and molecular functions (MF)
[20]. Kyoto Encyclopedia of Genes and Genomes (KEGG)
is widely recognized as a repository that provides detailed
information on biological pathways, genomic data, therapeu-
tic agents, and associated disorders [21]. To enable GO anno-
tations and KEGG enrichment assessments of DERMGs, the
Cluster Profiler toolkit in R (version 4.10.0) was employed
[22, 23]. A false discovery rate (FDR) value below 0.05 was
considered indicative of statistical significance.

Appraisal and Association Study of Inmune Cell
Penetration in MDD

The immune milieu, a complex assembly, is predomi-
nantly constituted by immune cells, inflammatory agents,
fibroblasts, a spectrum of chemokines and cytokines, and
the extracellular matrix. A profound understanding of the
extent to which tissues are infiltrated by immune cells is of
paramount importance in both disease research and prognos-
tic prediction. Single-sample gene set enrichment analysis
(ssGSEA), an advanced adaptation of the GSEA methodol-
ogy, provides insights into this aspect. Additionally, Cell-type
Identification by Estimating Relative Subsets of RNA Tran-
scripts (CIBERSORT), employing the linear support vector
regression paradigm, deciphers the transcriptional signatures
of various immune cell subtypes. This algorithm facilitates
the quantification of immune cell prevalence within tissues
through RNA-Seq data analysis [24]. Using the CIBERSORT
algorithm in the R environment, the relative abundance of 22
distinct immune cells was determined in both high-risk and
low-risk sample sets. Subsequently, boxplot representations
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were used to visualize these immune cell distributions in both
pathological and control specimens [25]. The Wilcoxon rank-
sum test was employed to detect disparities in immune cell
distribution between the diseased and healthy cohorts, with
a significance threshold of P <0.05.

The ESTIMATE methodology, designed to assess
immune responsiveness (the degree of immune cell infil-
tration) within tumor specimens based on transcriptional
data, offers insights into the concentration of stromal and
immune-specific gene signatures [26].

To elucidate the complex interplay of RNA modifica-
tion patterns in patients, the ssGSEA methodology was
employed, enabling the quantification of 28 distinct immune
cell types [24]. Furthermore, by leveraging the CIBERSORT
algorithm within the R platform, the relative concentrations
of 22 specific immune cells were discerned in the patient
cohorts [25]. To delineate the relationship between depres-
sion-associated key genes and diverse immune signatures,
the R corrplot package (version 1.29) was utilized to con-
textualize the findings from our immune infiltration assess-
ments [27]. Subsequent analyses utilized the “estimate”
package within R (version 1.0.13) to compare immune scor-
ing across patient groups defined by their RNA modification
profiles [26]. This was complemented by correlation studies
examining the connection between central gene transcrip-
tional levels and ESTIMATE values.

Molecular Subtypes of MDD

The advanced dimensionality minimization technique,
UMAP, has the capability to separate or streamline a cohort
of patients into distinct clusters based on specific attributes.
Utilizing the UMAP package (version 0.2.10.0) within R
[28], varied RNA modification patterns rooted in character-
istic genes were identified. These characteristic genes were
designated as central RNA modulatory genes associated
with MDD. These genes were defined as key RNA modifi-
cation genes related to MDD.

Analysis of Biological Traits Across Patients
Exhibiting Distinct RNA Modification Profiles

The R package cluster was utilized for GO functional annota-
tion and KEGG pathway analysis of DEGs among the MDD
cohort with varying RNA modification patterns [22, 23].
This was done to highlight significantly enriched biologi-
cal processes. An enrichment analysis was carried out, with
a predefined significance threshold set at a P value <0.05.
GSEA is employed as an analytical technique to deter-
mine whether a preselected group of genes exhibits signifi-
cant differences between two distinct biological conditions.
This method is commonly used to identify variations in
pathway and biological function involvement within gene
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expression datasets [29]. To elucidate the differences in
biological processes among patients with distinct RNA
modification patterns, gene expression profile datasets were
obtained. Following this, reference gene collections “c5.
go.v7.4.entrez.gmt” and “C2.cp.keg.v7.4.Entrez.gmt” were
sourced from the MSigDB database [30]. The GSEA proto-
col, integrated into the R package cluster Profiler (version
2.1.6), facilitated the enrichment analysis and subsequent
data visualization. An adjusted P value <0.05 was consid-
ered indicative of statistical significance.

GSVA, a non-parametric unsupervised method, primar-
ily enables the conversion of gene expression matrices from
various samples into corresponding matrices for gene sets.
This allows for an assessment of transcriptomic enrichment,
revealing potential differential engagement of metabolic
pathways across samples [31]. To explore the differences in
biological functions among patients characterized by distinct
RNA modification profiles, the “GSVA” R package (version
1.50.0) was employed [31]. This facilitated a comprehensive
analysis of variations based on the gene expression profiles of
the specified patient cohorts. The reference compilation “h.all.
v7.4.symbols.gmt” was sourced from the MSigDB reposi-
tory [30], aiding in the determination of enrichment scores for
each patient per hallmark within the dataset. Subsequently, an
analysis was conducted to identify correlations among dysreg-
ulated pathways within the patient population. A predefined
criterion of P value < 0.05 indicated statistical significance.

Interplay Within PPl Framework

The gene expression landscape is known for its complexity,
often involving the collaboration of specific genes, espe-
cially when they regulate similar biological pathways. To
decipher these associations among patients characterized
by distinct RNA modification patterns, PPI networks were
constructed based on their DEGs. The STRING repository
was utilized [32], setting a stringent comprehensive score of
700 as the threshold for creating PPI networks around key
RNA-modified genes in MDD patients. This constructed net-
work was subsequently imported into Cytoscape for further
analysis [33].

Within Cytoscape’s Cytohubba plugin, 12 computational
methods (including betweenness, bottleneck, closeness, clus-
tering coefficient, degree, DMN, eccentricity, EPC, MCC,
MNC, radiality, and stress [34]) were employed to identify
the top 30 hub nodes in each method. Genes identified in at
least five of these methods were designated as central hubs.
Due to their extensive interconnectedness, these pivotal hubs
are believed to exert significant influence over the overall
biological processes, warranting in-depth exploration.

MicroRNAs (miRNAs), inherently non-coding and sin-
gle-stranded RNA molecules encoded within our genome,
play crucial roles in various biological processes, including

tumorigenesis, biological growth, organogenesis, and epi-
genetic regulation, as well as defense against viral entities.
The regulatory networks involving miRNAs are complex, as
a single miRNA can regulate numerous target genes, while
a specific gene can be targeted by several miRNAs [35]. To
gain deeper insights into the core genes and their interactions
with microRNAs, we identified associated miRNAs for these
hub genes using the Starbase platform. Starbase utilizes a
combination of seven prediction tools (including miRmap,
RNA22, microT, PITA, picTar, miRNAda, and TargetScan)
to provide insights into potential miRNA-gene connections.
By requiring confirmation from at least two of these algo-
rithms, we enhanced our understanding of miRNA-mRNA
interactions, resulting in the creation of a complex mRNA-
miRNA regulatory network. This network was then visual-
ized using Cytoscape for better accessibility.

Transcription factors (TFs), by nature, regulate gene
expression by forming associations with specific target
genes. To elucidate the regulatory influence exerted by
these core genes, we obtained TF-to-hub gene connections
from the miRNet repository. This allowed us to establish a
comprehensive interaction framework encompassing both
hub genes and TFs. Once again, for improved accessibility
and comprehension, this interaction network was visualized
using the Cytoscape tool.

Determination and Associative Analysis of Inmune
Cells’ Infiltration Based on RNA Modification
Diversities

Utilizing the ssGSEA methodology, the prevalence of 28
distinct immune cell types was quantified in subjects with
varying RNA modification profiles [30]. Subsequently,
within the R environment [29], the representation of 22
specific immune cells was assessed among patients, each
characterized by unique RNA modification characteristics
in the dataset, using the CIBERSORT algorithm.

Analytical Methodology

The R software suite (version 4.1.1) was utilized for the
computational analysis and subsequent data processing. To
assess continuous variables between the paired cohorts, the
independent ¢-test was employed to determine the signifi-
cance level of normally distributed variables. For non-nor-
mally distributed variables, the Wilcoxon rank-sum test was
employed to compare independent variables between these
groups. To measure the degree of association between differ-
ent genes, the Pearson correlation method was applied. ROC
curves were generated using a dedicated R package (Project
home page: http://expasy.org/tools/pROC/), with both ROC
and AUC measurements serving as metrics for assessing
diagnostic accuracy [36]. All calculated P-values were two
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tailed, with a threshold of P <0.05 used as the criterion for
statistical significance.

Analytical Methodology for Hub Gene Validation

Comprehensive information regarding the central genes,
including nomenclature, symbolic representations, and bio-
logical roles, was obtained from the National Center for Bio-
technology Information (NCBI) repository. Subsequently,
the differential expression of eight crucial genes was deter-
mined by conducting qRT-PCR on blood specimens from a
cohort consisting of six individuals diagnosed with MDD
and an equal number of matched controls.

The initial step involved the extraction of total RNA from
these specimens, following the protocol provided, using
the RNeasy Plus Mini Kit (QIAGEN). This was followed
by cDNA synthesis, which was facilitated by the TransS-
cript All-in-One First-Strand cDNA Synthesis SuperMix
(TRANSGEN). The thermal regimen included an ini-
tial phase at 25 °C for 5 min, a secondary phase at 55 °C
for 15 min, and a final phase at 85 °C for 5 min. Subse-
quently, the amplification of this synthesized cDNA was
achieved using the PerfectStartTM Green qPCR SuperMix
(TRANSGEN) with a thermal cycling protocol consisting
of an initial step at 94 °C for 30 s, followed by 40 iterative
cycles at 94 °C for 5 s, and a final elongation step at 60 °C
for 30 s. The differential expression of these eight genes of
interest was quantified using the 2 — AACt method, with
GAPDH serving as the reference gene (Table 2).

Results

Analysis of Gene Transcription Pertaining to RNA
Modification in MDD-afflicted Patients

The initial phase involved the integration of datasets
from GSE32280 and another unspecified dataset, denoted
as GSE98793 (Fig. 2A). This amalgamation revealed

significant batch discrepancies between the two datasets
(Fig. 2E). By addressing and rectifying these batch effects,
a consistent gene transcription profile was generated, as elu-
cidated in Fig. 2B. The consolidated dataset comprised tran-
scriptional data from 144 MDD specimens and 72 controls,
as represented in Fig. 2F.

Subsequently, an integration was performed with
GSE19738 and another unspecified dataset, GSE190518
(Fig. 2B). This combination also exhibited prominent batch
inconsistencies between the datasets, as observed in Fig. 2G.
Upon addressing these discrepancies, a harmonized gene
transcription profile emerged (Fig. 2D). This curated dataset
included 41 samples from MDD-afflicted patients and 39
from control cohorts (Fig. 2H).

In our analysis, 450 DEGs were identified when com-
paring MDD samples with controls. Among these, 23
DEGs exhibited increased expression, while 427 showed
diminished expression. Regarding GO classifications, these
DEGs were predominantly associated with processes such
as protein phosphopantetheinylation, cell cycle checkpoint
regulation, and modulation of protein degradation pathways
(Fig. 3A). At the cellular level, these genes were localized
to compartments like the outer organelle membrane, pri-
mary outer membrane, and early endosome membranes
(Fig. 3B). Functionally, these genes played key roles in
kinase regulatory mechanisms, cyclin-driven protein ser-
ine/threonine kinase modulation, and phosphatidylinositol
3-kinase functions (PI3KAKT), among others (Fig. 3C).
Additionally, KEGG pathway analysis indicated significant
enrichment in areas such as sphingolipid metabolism, phos-
phatidylinositol signal transduction, and pathways associated
with NOD-like receptor signaling. The analysis of RNA-
modification-related DEGs resulted in the identification of
29 uniquely expressed genes (Fig. 3E), with 9 exhibiting
increased expression and 20 demonstrating reduced expres-
sion (Fig. 3D). The chromosomal localization of these RNA
modification-linked genes was annotated using the RCircos
package in R [37], revealing a notable clustering of these
genes in analogous chromosomal regions (Fig. 3F-H).

Table 2 Primer sequences

Reverse primer (5'-3")

Gene Forward primer (5'-3")

ZC3H13 CGGACACTAACTCCACCTTTAC
YTHDC2 GTGGCAGGCATGTATCCTAAT
TRMTI112 CATGAAACTGCTTACCCACAATC
MBD3 CCTGTCTCTATCTCTCCCTCTT
TRMT6 AAGAAGCGGGCACTGATAAT
IGF2BP1 GGGATTAGGGTGTGGTGTTT
NUDT21 GTAAGTACGTGAGCCAGTCATC
XRN1 CGAGGCACCATCATAGGAATAA
GAPDH GTATCGTGGAAGGACTCATGAC

TCCCTAGTATCTCTGGCATCTC
TTCTATGGGCTCTGGTCATTTC
GGTCCTCAGAAACTCCTCATTC
CCTCTAGCAAAGGCCAGTATT
TCTGGGCTAGTGTATCGTATCT
CAGTTTGGCAGAGGGTATGT
AGTGCCCTTATACCCTCTTCTA
GCCCAGAGGAAACTGATGAA
ACCACCTTCTTGATGTCATCAT
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«Fig.2 Data set integration. A, C Integrated sample gene expression
level plot; horizontal axis is the sample and vertical axis is the gene
expression level. B, D Gene expression level plot of integrated sam-
ples after removing batch effect; horizontal axis is sample and verti-
cal axis is gene expression level. E, G Cluster plots of samples before
removing batch effects. F, H Sample clustering plots after removing
batch effects

Risk Model Construction

Epigenetic modifications of RNAs are increasingly recog-
nized for their roles in various biological functions. Dif-
ferential gene expression analysis was conducted between
MDD and normal samples (Fig. 4A), encompassing RNA
modifier genes related to m1A, m6A, and m5C. Subse-
quently, the expression level correlations among RNA
epigenetically modified genes, as well as among the m1A,
m6A, and m5C gene sets in all samples, were analyzed sep-
arately. The results revealed significant negative correla-
tions between YTHDC1 and NSUNS5, PRRC2A, and TDG
(P<0.05, Fig. 4B), while NXF1 and MECP2, NXF1, and
NSUNS exhibited strong positive correlations (P <0.05,
Fig. 4B). Additionally, a robust positive association was
identified between ZBTB33 and TRMT10C, as well as
between NSUNS and ALKBH3 (P <0.05, Fig. 4C). Con-
versely, pronounced negative relationships were observed
between X3 and XA, and between UHRF1 and TRMT61A
(P <0.05, Fig. 4C). Moreover, a significant positive link-
age was detected between NSUN3 and TRMT61A, and
between UHRF1 and TRMT61A (P <0.05, Fig. 4D). In
contrast, marked negative interconnections were observed
between SRSF10 and TRMT61B, and between NXF1 and
TRMT61A (P <0.05, Fig. 4D).

To explore the impact of genes associated with RNA
modifications on MDD, a generalized linear model function
in R was employed to identify 8 hallmark genes out of the 29
differentially expressed RNA-modifying genes. These iden-
tified genes were labeled as ZC3H13, YTHDC2, TRMT112,
MBD3, TRMT6, IGF2BP1, NUDT21, and XRN. Utilizing
the coefficients derived from the glm function for these eight
pivotal genes (Fig. 5SA), gene expression was multiplied by
the corresponding coefficients, establishing a prognostic risk
metric for MDD. Subsequently, the ultimate prognostic risk
index for each sample was computed. Using this risk met-
ric, an ROC analysis was conducted, revealing an AUC of
0.716 for the training dataset (Fig. 5B) and an AUC of 0.626
for the validation set (Fig. 5C). These results indicate the
model’s commendable capacity to distinguish MDD cases.
Furthermore, when analyzing the ROC curves of these 8
hallmark genes for MDD prediction individually, the data
suggested that each of these genes exhibited robust prog-
nostic potential (Fig. 5D).
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To assess variations in immune cell infiltration levels
between the control and MDD specimens, comprehensive
sSGSEA was performed on both sets. Notably, compared to
controls, MDD specimens displayed significantly reduced
infiltration of immune cells such as eosinophils and gamma
delta T lymphocytes (Fig. SE). Subsequently, correlations
between the expression levels of these immune cells and the
hallmark genes were computed. Intriguingly, IGF2BP1 gene
expression inversely correlated with numerous immune cell
types (r<0, P<0.05, Fig. 5F). Most prominently, a direct
association was discerned between NUDT21 and immune
cells like type 2 T helper cells, effector memory CD4 T cells,
and activated CD4 T cells (P <0.05, Fig. 5G). Conversely,
IGF2BP1 exhibited the most pronounced inverse relation-
ship with natural killer T cells, central memory CD4 T cells,
and activated CD8 T cells (P <0.05, Fig. 5G).

A nomogram, incorporating both the predicted risk score
and the eight significant genes, was developed to predict the
incidence of depression (Fig. 6A). Notably, the anticipated
risk score demonstrated substantial predictive capability.
Within the decision curve analysis (DCA), the prognostic
trajectory consistently outperformed the reference (purple
line), suggesting that clinical decisions guided by this nomo-
gram may offer therapeutic advantages for individuals deal-
ing with depression (Fig. 6B, C).

Identification of Two Unique RNA Modification
Profiles

To increase the sample size of MDD, the test set and
training set data were combined using the R package sva
(Fig. 7A), resulting in a total of 182 MDD samples. Two
distinct RNA modification archetypes, labeled as cluster
1 and cluster 2, were identified using the octet of RNA-
modification-associated genes through the UMAP ana-
lytical technique (Fig. 7B). Cluster 1 encompassed 101
specimens, while cluster 2 included 81 specimens. An
examination of these clusters revealed significant dif-
ferences in the signature genes between the two clusters
(Fig. 7C). The expression patterns of m1A, m5C, and m6A
affiliated genes were cataloged across these RNA modula-
tion archetypes. The evaluation revealed marked differen-
tial expression of the majority of signature genes associ-
ated with RNA modification in both clusters (Fig. 7D-F).

Functional and Network Analysis of RNA
Modification Profiles

To identify variances in biological processes among individuals
with two distinct RNA modification profiles, an initial compar-
ative evaluation of gene expression dynamics was conducted,
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«Fig. 3 Functional enrichment analysis of differentially expressed
genes. A-D BP, CC, MF analysis and KEGG enrichment analysis
in GO terms of differentially expressed genes related to depression;
horizontal axis is generation, vertical axis is GO terms, node size
indicates the number of genes included in the current GO term, and
node color indicates significance level. E MDD-related differentially
expressed RNA modified genes volcano plot abscise is log2 fold
change, ordinate is — loglO(P value), red nodes represent up-regu-
lated differentially expressed genes, blue nodes represent down-reg-
ulated differentially expressed genes, and gray nodes represent genes
that are not significantly differentially expressed. F, G Distribution
of m1A-, m5C-, and m6A-related RNA modification-related genes in
chromosomes. MDD, major depressive disorder; BP, biological pro-
cess; CC, cellular component; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MF, molecular function

resulting in the identification of 898 DEGs. A comprehen-
sive GO categorization of these DEGs highlighted their roles
in various cellular operations (Fig. 8A, Table 3). These genes
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Fig.4 Correlation analysis. A The difference in expression levels
of depression-related differentially expressed RNA modifier genes
between MDD samples and control samples; the horizontal axis is the
depression-related differentially expressed RNA modifier genes and
the vertical axis is the gene expression levels. B Correlation analysis
of gene expression levels of RNA modification-related genes related
to m5C and m6A in all samples; node size indicates significance, and
line node color indicates correlation. C Correlation analysis of gene
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were notably enriched in processes such as protein synthesis
initiation, membrane-associated SRP-mediated cotranslational
protein localization, and protein transport to the endoplasmic
reticulum (Fig. 8B). At the cellular level, they were associated
with cytosolic ribosomal assemblies and larger ribosomal frac-
tions (Fig. 8C). Additionally, these genes were significant in
modulating ribosomal structure, regulating translation, and
facilitating prenyltransferase functionalities (Fig. 8D). Pathway
enrichment analysis revealed their involvement in key biologi-
cal pathways, including responses to Herpes simplex virus 1,
ribosomal architecture, and pathways related to Coronavirus
disease (Fig. 8E, P < 0.05, Table 4).

Subsequently, GSEA was performed on individuals repre-
senting the two distinct RNA modification patterns, reveal-
ing that most of these genes exhibited elevated expression
levels primarily in the clusterl cohort, thereby enhancing
numerous cellular and metabolic activities. Specifically, the
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cates correlation. MDD, major depressive disorder; * denotes signifi-
cance less than 0.05; ** denotes significance less than 0.01; and **%**
denotes significance less than 0.001



Molecular Neurobiology

A

Gene Sample  OR P
o] o]
ZC3H13  n=216 (case=144) 0.28 . 0.011 - -
@] o |
YTHDC2 =216 (case=144) 0.36 N 0019 S s
TRMT112 n=216 (case=144) 6.5 s 0014 o
2o
2
MBD3  n=216 (case=144) 4.74 - 0.005 2.
& 37
TRMT6  n=216 (case=144) 3.9 — 0013
o o
o . P / y
IGF2BP1 =216 (case=144) 14.39 - 0.016 AUC:0.716 AUC:0.626
S / 95% Cl: 0.641-0.791 o]
NUDT21  n=216 (case=tas) 9.14 . 0.003 ° T T T ° - T T
1.0 05 00 1.0 05 00
XRN1  n=216 (case=144) 0.09 = 0013 Specificity Specificity
¢ 7234567 o1
IGF2BP1 MBD3 NUDT21 TRMT6
z o z s z s z o
£ £z £ £z
] 2 2 2
85 8 5] 85 85
AUC: 0.606 AUC: 0595 AUC: 0580 AUC: 0.599
W% ob b os o b o o o6 o oF  ob o o o6 o oF  ob W% ob b os o5 b
‘Specificity ‘Specificity ‘Specificity Specificity
TRMT112 XRN1 YTHDC2 ZC3H13
z o o 2.
H H 5 H
3 5| 8 5 8 5 3 5|
AUC: 0.573 AUC: 0.608 AUC: 0.608 AUC: 0.609
1 o8 o5 o+ o2  o0b 1 o8 os os oz 00 1 o8 o5 o4 02 00 1 o8 o5 o4 o2  o0b
‘Specificity ‘Specificty ‘Specificity Specificity
@MDD @ normal
“ % ns ns s ns ns st oms t ons v ons " ons cons ns ns ons ns ns s ns L oe e . ®e coe o O
ﬁ YTHDC2 [ ] o [ X ] ©e@®@ceo@®® o @ corelaton
o7 *
. # " - - T - xRNt o N eee 04
H # 00
2
TRMTE . .
£ #ﬁ * * = * m 6 e-000 L] “04
< y
§ ! # *# . - TRMT112{® ® ° @ec: oo
g oo = ~log10Pvalue
£ NUDT21 cee o ®5
*H ® 0
000 MBD3 e® ¢ - o @ O
P E T E E E EE E E R E N E ] = == = =
EREEEEEEEEEEEE X EE SR 1GF2BP1 ° °
mb—b—g;a—,l—r—l—b—gb—mggggmzal—g - 55 5 5 -
s o £ ® ¥R G S 5 9 28 3 3 2o o gaag 3 3 R
%883%%5888&35335 gszs2ggezze 8 8 g3 388388
233355z2z2z =288= 8 S35 8$3s5rFrkE @ 4 g8 £E>88823
fg3zifegss EEc = 5% 3833t g 8 §= BEEre:
z 2z < §E &5 € E E = 3 zZ 35 Sx 238y % ] o 8 gsf£2s
S58 22255 8 g z 3 R - g z = - Rl
< <go2g - - EE £ 8 s = 2 g 2RITEY
258 EFEE 55 E £ 2 S£2385%8
88 L£Ls5s g 5 T 8585
B0 3 83 8 S [
8 [SRRC R a £ g FTF
o 55 5 &
2 K
£ a
b

R=0.68, p<2.2e-16

NUDT21

R=0.68, p<2.2e-16

IGF2BP1

Natural killer T cell

IGF2BP1

R=0.73, p<2.2e-16

IGF2BP1

oS
Central memory CD4 T cell

@ Springer



Molecular Neurobiology

«Fig.5 Construction of the depression model. A Forest plot of signa-
ture genes in patients with depression. B ROC 10.1007/s12035-024-
04042-6 curve for predicting risk scores in depression training set
diagnosis. C ROC curve for predicting risk score in depression test
set diagnosis. D ROC curves for the eight signature genes in the diag-
nosis of depression. E The enrichment box plot of immune cells in
control samples and MDD samples; the horizontal axis is immune
cells, the vertical axis is immune score, orange represents MDD, and
blue represents control group. F Correlation between characteristic
gene expression level and immune cell content; node size indicates
significance and node color indicates correlation. The horizontal axis
is the immune cell, and the vertical axis is the characteristic gene. G
The first three relationship pairs of positive and negative correlations,
with immune cells on the horizontal axis and characteristic genes on
the vertical axis. ROC, receiver operating characteristic curve; AUC,
represents the area under the curve; MDD, major depressive disorder.
* represents significance less than 0.05, ** represents significance
less than 0.01, and **** represents significance less than 0.001

analysis highlighted their pivotal roles in processes such as
the biosynthesis of reactive oxygen species, peptide anti-
gen affinities, metabolism associated with reactive nitrogen
species, and the dynamics of microparticles within blood
plasma (Fig. 9, Table 5).

GSVA was then conducted to further investigate func-
tional differences in patients with the two RNA modifica-
tion patterns. The results revealed associations between the
expression levels of numerous RNA-modifying genes and
biological processes such as apical junction, apical surface,
mitotic spindle, and mammalian target of rapamycin com-
plex 1 (mTORC1) signaling (Fig. 10A). In patients exhibiting
both RNA modification patterns, notable distinctions were
observed in various biological processes, including androgen
responsiveness, allograft rejection, adipogenesis, and apical
junction dynamics (Fig. 10B). Additionally, we examined
the correlation between patient signature genes of both RNA
modification patterns and hallmark biological processes.
TRMT112 exhibited a notable association with mTORC1
signaling and showed a significant positive correlation with
cholesterol homeostasis (P <0.05). Conversely, the unfolded
protein response displayed a significant inverse relationship
with XRN1 but manifested a pronounced positive affiliation
with PI3K AKT mTOR signaling (P <0.05, Fig. 10C).
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Fig.6 Line and column diagram (nomogram). A Nomogram of the
eight signature genes for the diagnosis of patients with depression. B
Model evaluation curve; gray for immediate diagnosis and orange for
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risk score model. C Model evaluation curve; gray indicates immedi-
ate diagnosis and blue indicates signature gene combination
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Fig. 7 Consistent clustering of feature genes for patients with depres-
sion. A PCA plot before and after debatching; the horizontal axis
and the vertical axis are the two principal components, respectively,
orange represents the training set, blue represents the test set, the top
panel is PCA after debatching, and the bottom panel is PCA before
debatching. B UMAP clustering result plot; orange denotes clusterl
and blue denotes cluster 2. C Heat map of the expression levels of
the feature genes in the two clusters; orange for cluster] and blue for
cluster 2. D Difference in m6A expression levels between cluster 1
and cluster 2 samples; orange denotes cluster 1 and blue denotes clus-

Network Analysis of RNA Modification Profiles

To evaluate the impact of DEGs in patients with two distinct
RNA modification profiles on biologically relevant functions
associated with MDD, a PPI network involving these differ-
entially expressed genes was initially established and visu-
alized using Cytoscape. The PPI network comprised 1597
interaction pairs and involved 507 differentially expressed
genes. Notably, high node genes included UBA52, RPS2,
and RPS11, which interacted with 58, 51, and 50 genes,
respectively (Fig. 11A). Using 12 analytical methodologies
available in Cytohubba, we systematically assessed and
identified the top 30 nodes for each method. Subsequently,
31 genes that appeared in at least five methodologies were
identified as central nodes (Fig. 11B).

To explore the functional relevance of these central genes,
we utilized the “GOSemSim” package in R to determine their
GO semantic similarities [38]. It became evident that genes
like RPL19, RPS11, and RPL10A exhibited significant func-
tional associations with numerous other genes (Fig. 11C).

A comprehensive mRNA-miRNA interaction net-
work involving these central genes was constructed,

mmmmmmmmmmm

mmmmmm

ALKBH1
ALKBH3
TRMTE
TRMT61A

ter 2, horizontal axis is the characteristic gene, and vertical axis is the
gene expression level. E Difference in m5C expression levels between
cluster]l and cluster2 samples; orange indicates cluster 1, blue indi-
cates cluster 2, horizontal axis is the characteristic gene, and vertical
axis is the gene expression level. F Difference in m1A expression lev-
els between cluster] and cluster 2 samples; orange indicates cluster 1,
blue indicates cluster 2, horizontal axis is the characteristic gene, and
vertical axis is the gene expression level. PCA, principal component
analysis; UMAP, uniform manifold approximation and projection

encompassing 91 relational interactions, which involved
16 mRNA sequences and 75 miRNA sequences. Notably,
a principal RNA modifying gene, referred to as UBAS52,
established interactions with 37 miRNAs, while UBA52
formed interactions with 16 miRNAs (Fig. 11D).

Furthermore, an mRNA-TF interaction framework
involving the central genes was delineated, comprising
17 interactions that involved 4 mRNAs and 17 TFs. The
pivotal transcription factor gene RB1 was identified as it
forged interactions with 10 TFs (Fig. 1 1E).

Comparative Inmune Profiling Across RNA
Modification Patterns

The ssGSEA and CIBERSORT computational methods were
employed to meticulously assess disparities in immune cell
infiltration between the divergent RNA modification frame-
works. The insights garnered from ssGSEA indicated that
the cluster2 ensemble exhibited a significantly heightened
presence of immune constituents, such as activated CD4 T
cells and activated CD8 T cells, when compared to the clus-
ter]l cohort (Fig. 12A).
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Fig.8 Functional analysis of differentially expressed genes. A GO
functional enrichment analysis of differentially expressed genes, the
ordinate is the significance of enrichment results, and the abscissa
is the Z-score. B-D The first five items of BP, CC, and MF are dis-
played, node size indicates the number of currently functionally
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enriched genes, and the color of the line indicates different biological

Subsequently, a correlative evaluation of immune cell
densities across both groupings was undertaken. Within the
clusterl landscape, a prominent inverse relationship was
observed between the presence of activated B cells and the
predominance of other cellular entities (Fig. 12B). In con-

trast, within the cluster2 domain, a multitude of cells, includ-

ing eosinophils, CD56 luminescent natural killer entities,
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functions. E KEGG pathway enrichment analysis results; node color
indicates the expression level of the gene and quadrangle color indi-
cates the KEGG pathway Z-score. BP, biological process; CC, cellu-
lar component; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MF, molecular function

myeloid-derived suppressor cells (MDSCs), nascent dendritic
cells, gamma delta T cells, natural killer T cells, T follicular
auxiliary cells, effector memory CDS8 T cells, type 2 T helper
cells, and activated CD4 T cells, demonstrated discernible
negative correlations among themselves (Fig. 12C).

In an effort to elucidate the potential interplay between

salient genes and immune cellular entities, an exhaustive
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Table 3 GO enrichment analysis

Category ID Description P value
BP GO:0006413 Translational initiation 1.24E-16
BP GO:0006614 SRP-dependent cotranslational protein targeting to membrane 3.50E—-13
BP GO:0006613 Cotranslational protein targeting to membrane 1.13E—-12
BP GO:0045047 protein targeting to ER 1.46E—12
BP GO0:0072599 Establishment of protein localization to endoplasmic reticulum 336E—-12
BP GO:0019080 Viral gene expression 6.96E —12
BP GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 9.53E-12
BP GO:0019083 Viral transcription 1.12E—-11
BP GO:0070972 Protein localization to endoplasmic reticulum 1.73E—-11
BP GO:0000956 Nuclear-transcribed mRNA catabolic process 2.85E-11
MF GO:0140297 DNA-binding transcription factor binding 1.27E-10
MF GO:0003735 Structural constituent of ribosome 1.13E-08
MF G0:0045182 Translation regulator activity 1.56E—-05
MF GO0:0004659 Prenyltransferase activity 6.94E - 05
MF GO:0003697 Single-stranded DNA binding 7.03E-05
MF GO:0019956 Chemokine binding 8.84E—05
MF GO0:0016747 Transferase activity, transferring acyl groups other than amino-acyl groups 9.47E-05
MF GO0:0016746 Transferase activity, transferring acyl groups 9.80E —-05
MF GO:0090079 Translation regulator activity, nucleic acid binding 0.000108315
CC G0:0022626 Cytosolic ribosome 5.72E-13
CC G0:0022625 Cytosolic large ribosomal subunit 1.81E—-10
CcC GO0:0005840 Ribosome 2.06E—09
CcC GO0:0044391 Ribosomal subunit 2.92E-09
CcC GO:0015934 Large ribosomal subunit 1.21E-07
CC GO:0042788 Polysomal ribosome 6.36E—06
CcC GO0:0005925 Focal adhesion 1.60E—05
CcC GO0:0030055 Cell-substrate junction 2.33E-05
CcC GO0:0016282 Eukaryotic 43S preinitiation complex 5.63E—-05
Table‘.l KEGG enrichment Category ID Description P value
analysis
KEGG_PATHWAY hsa05168 Herpes simplex virus 1 infection 1.40E—12
KEGG_PATHWAY hsa03010 Ribosome 1.48E-09
KEGG_PATHWAY hsa05171 Coronavirus disease—COVID-19 1.65E—-08
KEGG_PATHWAY hsa04216 Ferroptosis 0.000112847
KEGG_PATHWAY hsa05140 Leishmaniasis 0.001066957
KEGG_PATHWAY hsa03030 DNA replication 0.001414174
KEGG_PATHWAY hsa05145 Toxoplasmosis 0.002730708
KEGG_PATHWAY hsa05169 Epstein-Barr virus infection 0.003911116
KEGG_PATHWAY hsa04064 NF-kappa B signaling pathway 0.004120469
KEGG_PATHWAY hsa04659 Th17 cell differentiation 0.005595246

correlation assessment was conducted within both the cluster demographic (P <0.05, Fig. 12D, E). Furthermore, an intri-
1 and cluster 2 patient subsets. Surprisingly, within the clus-  cate analysis was executed to understand the relationship
ter 1 milieu, gene YTHDC2 exhibited a pronounced asso-  between pivotal genes and immune cells across the two
ciation with a vast majority of the immune cells, in stark  defined clusters. Within the realm of cluster 1, the predomi-
contrast to its inconspicuous linkage within the cluster 2  nance of activated CD4 T cells demonstrated a substantial

@ Springer



Molecular Neurobiology

go blood microparticle
go reactive nitrogen species metabolic process
go peptide antigen binding ] [
go reactive oxygen species biosynthetic process
go tetrapyrrole binding |
go oxidoreductase activity J [
go toll like receptor binding ] [
go cytosolic large ribosomal subunit _’ [

go positive regulation of nitric oxide metabolic process

go !l L

go autc ]

go cellular oxidant detoxification

go secondary lysosome

go cellular response to toxic substance

[ p.adjust
—

go positive regulation of t cell mediated cytotoxicity ]
[

0.04
0.03

L I 0.02
0.01

go antioxidant activity

go endocytic vesicle

go sequestering of metal ion | [

go oxygen binding

go tertiary granule lumen J —

go renal absorption

go oxygen transport

go endocytic vesicle lumen

go gas transport

go myeloid leukocyte mediated immunity

il

il

20 22 24 26 28

NES p.adjust
id_leukocyte_mediated_immunity 2418 1e-04 NES  padjust

NES  p.adjust
go_endocytic_vesicle_lumen 2461  3e-04

NES p.adjust
go_oxygen_transport 2316 3604

go_gas_transport 1, oo © T

Running Enrichment Score

L R A i S [ A T

Ranked List Metric

%00 750 % 250 500 750 750 500 7500
Rank in Ordered Dataset Rank in Ordered Dataset Rank in Ordered Dataset Rank in Ordered Dataset

Fig.9 GSEA analysis. A GSEA-GO analysis; the abscissa is the enrichment score, a score greater than O indicates activation, the ordinate is the
GO terms, and the color table P value. B Top 4 GO terms presented. GSEA, gene set enrichment analysis; GO, Gene Ontology

Table 5 GSEA enrichment D ES NES P value
analysis
go_myeloid_leukocyte_mediated_immunity 0.828058 2.418731 1.41E-08
go_gas_transport 0.993889 2.386485 3.60E — 08
go_endocytic_vesicle_lumen 0.994225 2461468 1.57E-07
go_oxygen_transport 0.994563 2.316307 2.05E-07
go_renal_absorption 0.993434 2.412077 3.22E-07
go_tertiary_granule_lumen 0.981281 2.755318 6.11E-07
go_oxygen_binding 0.992154 2.456341 7.33E-07
go_sequestering_of_metal_ion 0.950524 221374 2.55E-06
go_endocytic_vesicle 0.90377 2.676805 7.99E - 06
go_antioxidant_activity 0.977022 2.753334 8.14E-06
go_positive_regulation_of_t_cell_mediated_cytotoxicity 0.86509 2211771 8.80E - 06
go_cellular_response_to_toxic_substance 0.964193 2.77193 9.11E-06
go_secondary_lysosome 0.902767 2.235041 1.06E—-05
go_cellular_oxidant_detoxification 0.969475 2.763461 2.22E-05
go_autolysosome 0.928951 2.163498 391E-05
go_detoxification 0.961006 2.77699 5.08E-05
go_positive_regulation_of_nitric_oxide_metabolic_process 0.980921 2.627245 5.89E - 05
go_cytosolic_large_ribosomal_subunit 0.696208 1.95529 6.96E — 05
go_toll_like_receptor_binding 0.913944 2.194524 7.17E-05
go_oxidoreductase_activity 0.810987 2.370706 7.28E—-05
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denotes cluster 1, blue denotes cluster 2. C Correlation between
signature genes and hallmark; the color of the line indicates differ-

Fig. 10 GSVA analysis. A Correlation between hallmark and genes

related to RNA modification in GSVA analysis; the abscissa is hall-

ent signature genes, the node indicates hallmark, and the contour line
indicates the level of correlation. GSVA, gene set variation analysis
* significance less than 0.05; **, significance less than 0.01; **%%*,

significance less than 0.001

mark, the vertical axis is RNA modification related genes, node size

)

indicates significance, and node color indicates correlation. B Hall-
mark difference between patients with two RNA modification pat-

terns, coordinate is hallmark, vertical axis is GSVA score, orange

Utilizing the CIBERSORT algorithm, it became discern-
ibly clear that the associative dynamics of immune cellular

negative association with several core genes. Conversely,
within the cluster 2 framework, this particular correlation

appeared to be marginal (P <0.05, Fig. 12F, G).

constituents for individuals within the cluster] assembly
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Fig. 11 Correlation network of differentially expressed genes. A PPI
network of differentially expressed genes; blue nodes are differen-
tially expressed genes and orange nodes are hub genes. B Gene fre-
quency table in the algorithm in 12; the horizontal axis is the gene
and the vertical axis is the frequency. C GO semantic similarity score
of hub genes in the protein-protein interaction network of differen-

starkly deviated from those observed within the cluster 2
composition (P <0.05, Fig. 13A, B). Simultaneously, an
intricate evaluation was employed to dissect the relational
intricacies between eight signature genes manifesting within
the distinct RNA modification paradigms and the propor-
tional makeup of immune entities. Astonishingly, the T cells,
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nodes are hub genes and orange nodes are miRNAs. E mRNA-TF
network of hub genes; blue nodes are hub genes and orange nodes
are TFS. GO, Gene Ontology; PPI, protein-protein interaction; TFS,
transcription factors

specifically the regulatory T cells (Tregs), evinced a potent
association with the expression metrics of numerous signa-
ture genes. Furthermore, the relational fabric between these
signature genes and immune constituents unveiled marked
differences when juxtaposed across the two RNA modifica-
tion spectra (P <0.05, Fig. 13C).
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«Fig. 12 Immune signatures between the two RNA modification
patterns ssGSEA. A Bar graph of immune cell content in cluster 1
and cluster 2 group patients; blue denotes cluster 2 samples, orange
denotes cluster 1 samples, horizontal axis denotes immune cells,
and vertical axis denotes cellular content. B, C Correlation analysis
between immune cell content in cluster 1 and cluster 2; red denotes
negative correlation and blue denotes positive correlation. D-F Cor-
relation between feature genes and immune cells in cluster 1 and
cluster 2; the horizontal axis 10.1007/s12035-024-04042-6 represents
immune cells, the vertical axis represents feature genes, the node
color represents the correlation size, and the node size represents the
significance level. G, H Correlation between hub genes and immune
cells in cluster 1 and cluster 2; node size indicates significance and
node color indicates correlation level. Immune cells are on the hori-
zontal axis and hub genes are on the vertical axis. ssGSEA, single-
sample gene set enrichment analysis

In our quest to assess the discriminative potential of
central genes across contrasting RNA modification para-
digms, ROC curves were meticulously constructed for 31
such genes, followed by the computation of the AUC met-
rics. Remarkably, RPL37A, EIF3F, MRPL13, RPL5, RB1,
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Fig. 13 Immune signatures between the two RNA modification pat-
terns CIBERSORT. A Bar graph of immune cell content between
patients in the cluster 1 group and those in the cluster 2 group, with
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C Correlation of immune cell content between patients in cluster 1
group and patients in cluster 2 group; pink indicates positive correla-
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represents significance and node color represents correlation. The
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among several other genes, adeptly differentiated between
these two RNA modulatory archetypes (Fig. 14A). Con-
currently, a discerning observation highlighted that the
immunological indices of individuals within the cluster 1
configuration marginally surpassed those within the clus-
ter 2 assemblage (P <0.05, Fig. 14B). Delving further,
an in-depth relational analysis was conducted between
the expression magnitude of these central genes and
the aforementioned immunological index. The outcome
underscored a noticeable inverse association between
RPL10, RPL35A, RPS3A, RPLP1, RPLP2, along with
several other pivotal genes, and the immunological score
(P <0.05, Fig. 14C).

Validation of Central Genes

The transcriptional abundance of eight central genes was
assessed in MDD and control blood specimens using
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quantitative PCR (qPCR) techniques. Among these genes, four
distinct ones (TRMT112, MBD3, NUDT21, IGF2BP1) were
identified, with NUDT21 and IGF2BP1 being notably signifi-
cant, while the others were not detected. Among the two upreg-
ulated genes, TRMT112 and MBD3 exhibited statistical sig-
nificance, and among the two downregulated genes, NUDT21
and IGF2BP1 displayed statistical significance (Fig. 15).

Discussion
MDD, a widely observed psychiatric condition [1], is char-

acterized by multifaceted symptoms such as mood perturba-
tions, diminished pleasure or interest, as well as variations

cluster2 0 o2
correlation

cluster 1, and blue denotes cluster 2. C Correlation between immune
score and hub gene in all MDD samples, horizontal axis is correla-
tion; vertical axis is hub gene. MDD, major depressive disorder;
ROC, receiver operating characteristic curve; AUC, area under the
curve

in physiological processes, cognitive functions, and psycho-
motor dynamics [2]. Contemporary research increasingly
underscores the pivotal role of epigenetic modulation in
MDD, with a specific emphasis on RNA-based epigenetic
modifications. These RNA adjustments can influence nucle-
otide pairing, modulate RNA secondary conformation, and
alter RNA’s propensity to interact with proteins [7]. There-
fore, to construct a refined predictive model and identify
potential prognostic indicators, it is imperative to compre-
hensively explore m6A/m5C/m1A-associated genes in the
context of MDD.

In this study, we identified 29 differentially expressed RNA
modification-associated genes (DERMGs) in MDD through
bioinformatics analysis and unveiled two distinct RNA modi-
fication patterns based on signature genes for the first time.
Subsequently, we constructed a risk signature comprising
eight hub genes (ZC3H13, YTHDC2, TRMT112, MBD3,
TRMT6, IGF2BP1, NUDT21, and XRN), of which four genes
(TRMT112, MBD3, NUDT21, IGF2BP1) were detected
in the blood samples, while the others were not detected.
Additionally, we performed various analyses, including GO,
KEGG, GSEA, and GSVA, to evaluate the enrichment asso-
ciations of these genes with relevant pathways. Our findings
indicated that these genes were enriched in processes such as
reactive oxygen species biosynthesis, PI3K activity, NOD-like
receptor signaling pathway, and mTORCI1 signaling, confirm-
ing the role of RNA modification in MDD. Furthermore, we
observed a significant positive correlation between IGF2BP1
and immune cells, specifically natural killer T cells, central
memory CD4 T cells, and activated CD8 T cells, which has
implications for depression immunotherapy.

Previous research has highlighted the significance of
RNA modifications, including m6A, m5C, and m1A, in
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neurodegenerative disorders [39]. These modifications are
introduced, removed, and recognized by specific proteins
known as “writers,” “erasers,” and “readers.” For instance,
m6A modifications involve writers such as METTL3/14,
Wilms’ tumor 1-associating protein (WTAP), and ZC3H13,
erasers like FTO and ALKBHS, and readers including
YTHDC1/2, YTHDF1/2/3, and IGF2BP1/2/3. Similarly,
RNA m1A modifications involve writers like TRMT61A/B,
TRMT10C, and TRMT®6, erasers such as ALKBH1/3/7 and
FTO, and readers like YTHDF1/2/3 and YTHDC1 [40, 41].
Additionally, RNA m5C modifications are governed by
NSUN enzymes, TET proteins, and YBX1 as writers, erasers,
and readers, respectively [12]. These modifications have been
implicated in synaptic plasticity, neural proliferation, cogni-
tive processes, and stress responses within the brain [42].
To date, the demethylation of m6A facilitated by FTO
in depressive conditions has garnered substantial academic
scrutiny. An escalating volume of empirical works cor-
roborate the instrumental functions of FTO across myriad
biological paradigms [43, 44]. In our risk signature, among
the eight hub genes, ZC3H13 and WTAP was the writer
of m6A and IGF2BP, NUDT21, TRMT112, XRN, and
YTHDC2 were m6A readers. They might play a key role
in depression. First, as a writer of m6A, ZC3H13 together
with WTAP is essential for assembling the ZC3H13-WTAP-
VIRMA-HAKAI complex into the nucleus [44]. Moreover,
previous studies showed that not only METTL3 [10] but
also METTL14 [45] plays a crucial role in synaptic plastic-
ity and stress-related disorders such as depressive behavior.
Consequently, it stands to reason that ZC3H13, integral to
our risk signature, could hold significant relevance in the
context of MDD. However, the mechanism of ZC3H13 need
to be further investigated in MDD. Furthermore, as the hub
genes in our risk signature, NUDT21, TRMT112, IGF2BP,
XRN, and YTHDC2 were m6A readers. Within this con-
text, NUDT21, colloquially termed CFIm25, engages in the
orchestration and subsequent production of circular RNAs
(circRNAs), modulating both alternative splicing and the
nuanced process of alternative polyadenylation (APA) [46].
Contemporary research posits that perturbations in the
mechanisms driven by CFIm25, especially those concerning
3'-UTR-APA, might be implicated in neural anomalies and
fibrotic manifestations [47]. After that, TRMT112 is a small
evolutionarily conserved protein and current studies revealed
that METTLS5 and its partner TRMT112 are upregulated
in various cancers [48, 49]. In addition, IGF2BP1 worked
with c-MYC mRNA and E2F transcription factors, which
was a transcriptional regulator adept at augmenting MIF
transcription and played critical immunological roles, and
then regulated T cells [50, 51]. Then, a recent bioinformat-
ics analysis revealed similar evidence with our results, they
found that elevated METTL16, YTHDC1, and YTHDC2
expression in prefrontal cortex of depressed patients and low
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IGF2BP1/2 expression in both normal and MDD patients
[52]. And another study also, like our results, showed that
the lack of association between XRN1 and YTHDC2 in
the hypothalamus may contribute to metabolic disorders
[53]. So we suppose that the m6A status of MDD is deli-
cately balanced by the dynamic regulation among the m6A
writer METTL3/5/14 and the partner TRMT112, eraser
FTO/ALKBHS, and readers IGF2BP, XRN, YTHDC2,
NUDT?21. Besides that, as the hub genes in our risk, TRMT6
was m1A writer, which catalyzed m1AS58 in tRNA together
with TRMT61A [54]. Consequently, methyl-CpG-binding
domain 3 proteins (MBD3) serve as interpreters for m5C,
offering foundational and DNA-affinity characteristics to
the nucleosome reorganization and deacetylation (NuRD)
assembly, associating with CpG domains [55]. Therefore,
the central genes within our hazard assessment could be
instrumental in the molecular dynamics of MDD.

Furthermore, to analyze the effects of DEGs between
patients with two RNA modification patterns on the bio-
logical-related functions of MDD patients, we first con-
structed a PPI related to differentially expressed genes.
The PPI network included 1597 interaction pairs and 507
differentially expressed genes. Functioning as an transcrip-
tional repressor, retinoblastoma 1(RB1), it modulates the
transcription of cell-cycle-related genes via its synergy with
the E2F transcription factor lineage, inhibiting transcription
amid differentiation and stress situations [56]. And UBAS52
(ubiquitin-60S ribosomal protein L40, RPL40) encodes one
UB unit fused to a ribosomal protein, which plays a role in
enhancing ribosome biogenesis and mitochondrial homeo-
stasis-induced cell death [57]. Then, we first constructed a
risk signature related to differentially expressed genes. The
findings revealed that RPL37A, EIF3F, MRPL13, RPLS, and
RB1, along with other genes, adeptly differentiated between
two distinct RNA modification templates. Concurrently,
evidence indicated a negative association between RPL10,
RPL35A, RPS3A, RPLP1, RPLP2 and several pivotal genes
with the immune metric (P <0.05). Positioned as a central
gene in this risk profile, RB1 orchestrates cell-cycle gene
expression by interfacing with the E2F transcription fac-
tor lineage [56]. In addition, EIF3 plays an oncogenic role
through the regulation of PI3K/Akt/NF-kB signaling. It is
also consistent with our results about GO and KEGG analy-
sis in hub gene. Furthermore, RPL10, RPL35A, RPS3A,
RPLPI1, and RPLP2 belong to the ribosomal protein (RP)
family, promoted tumorigenesis and aging in brain among
them [58], and RPL5 functions as a monitor for ribosomal
disruptions and potentially influences E2F transcription fac-
tor 1 (E2F1) [59]. Our data corroborates the notion that it
holds a pivotal function in MDD. So our study establishes a
model that reveals how an m6A/m1A/m5C-modified RNA
epigenetic translational though two RNA modification pat-
terns on the biological related functions of MDD.
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Research has demonstrated that the PI3K, NOD, and
mTORCI signaling pathways are involved in the develop-
ment of depression. Our experiments, utilizing functional
enrichment analysis, have revealed that key genes are also
primarily concentrated in the PI3K, NOD, and mTORC1
signaling pathways. In prior research, both YTHDF2 and
FTO were observed to enhance the self-renewal and pro-
liferation capacities of NSCs via modulation of the PI3K/
AKT and JAK/STAT signaling cascades [60]. Moreover,
mTORC1 augments the stabilization of the MTC that
encompasses METTL3, METTL14, WTAP, and RMB15/
RBM15B [56]. Additionally, within the brain, the PI3K/
Akt/mTOR signaling cascade holds significant importance
in the etiology and treatment of MDD [61]. Moreover, some
studies reported that METTL 14 represses colorectal cancer
(CRC) development via the PI3K/Akt signaling, upregu-
lated by brain-derived neurotrophic factor (BDNF), which
revealed similar evidence with our GO results. Subsequently,
BDNEF intricately orchestrates not merely the MAPK/ERK
and PI3K/Akt cascades but also stimulates the mTOR path-
way [60, 61]. Evidently, the HPA axis critically oversees
oxidative stress (OS), with its regulation steered by GR,
dictating epigenetic inscription and structuring in MDD
[7]. Our findings corroborate the pivotal influence of m6A
modification within the context of depression.

Our research may contribute to depression immunother-
apy. At present, immunotherapy approaches have yielded
great success in MDD, but the outcomes for the majority
of patients remain unsatisfactory. In our results, immune
infiltration and correlation analysis between experimental
and control group revealed the most significantly positively
correlated were IGF2BP1 and natural killer T cells, central
memory CD4 T cells, and activated CD8 T cell (P <0.0.5).
Moreover, the immune integration and interrelation assess-
ment, focusing on dual RNA modification patterns in MDD
sufferers, indicated a pronounced correlation of YTHDC2
with the majority of immune cells for individuals in the
cluster 1 category. Conversely, the association of YTHDC2
with immune cells in those belonging to the cluster 2 group
appeared to be insubstantial (P <0.05, Fig. 12D, E). Con-
currently, the interdependence between pivotal genes and
Tregs was distinctly associated with the expression metrics
of several distinguishing genes. And current studies also
like our results showed that T cell have been indicated to be
related to depression and mainly through epigenetic control
[62]. During penetration, brain-native T cells exhibit link-
age with autoantigens present in the cerebral domain and are
preconditioned to express anti-inflammatory agents along
with neural growth elements [62, 63]. And another study
indicated that T cell was closely related to the IGF2BP1
[64] which is same with our result that significant positive
correlation between IGF2BP1 and T cell. It is consistent
with our results. Consequently, our research formulates a

paradigm elucidating the orchestration of m6A/m1A/m5C-
modified RNA epigenetic translational regulators in modu-
lating overall translation within expanding T cells. Addi-
tionally, our findings potentially illuminate an uncharted
therapeutic nexus, potentially mitigating a myriad of T cell-
associated inflammatory conditions, introducing a novel
tactic for MDD immunotherapeutic interventions.

Consequently, a nomographic representation encompassing
eight pivotal genes was devised, identifying four within the
context of MDD. Simultaneously, AUC values were assessed,
and ROC trajectories for the 31 central genes were delineated
to appraise their potential in differentiating disparate RNA
modification profiles. The data suggest that the projected
risk quotient manifests noteworthy predictive efficacy. The
prognostic line consistently surpassed the lavender threshold,
alluding to the potential clinical advantages of utilizing this
nomographic model for MDD patients. However, the roles
of other m6A-associated proteins remain under-explored and
warrant deeper scrutiny within the MDD spectrum.

In the context of MDD, m6A modifications have gar-
nered substantial attention, especially the role of FTO in
m6A demethylation. Our risk signature includes ZC3H13
and WTAP as writers of m6A, and IGF2BP1, NUDT21,
TRMT112, XRN, and YTHDC2 as m6A readers. These
genes may play crucial roles in depression, but further
investigation is needed to fully understand their mechanisms.
Additionally, our study highlights the potential therapeutic
implications of targeting these RNA modifications in MDD.

A protein—protein interaction (PPI) network of differen-
tially expressed genes was also constructed, identifying cen-
tral genes such as RB1 and UBAS52. Subsequently, a risk sig-
nature related to these central genes was devised, with genes
like RPL37A, EIF3F, MRPL13, RPLS, and RB1 showing the
ability to differentiate between distinct RNA modification pat-
terns. Additionally, a negative association between some of
these central genes and an immunological score was observed,
indicating their potential relevance in the context of MDD.

In conclusion, our study sheds light on the role of RNA
modifications in MDD and provides insights into potential
therapeutic targets and prognostic indicators. The complex
interplay between RNA modification-associated genes and
immune cells further underscores the potential of immu-
notherapy in MDD. However, further research is needed to
fully elucidate the roles of these genes and their implications
for MDD treatment.

Limitations
Several limitations are present in this study. Firstly, due to the

high costs of sequencing and the relatively small sample size,
the results may lack sufficient representativeness. Secondly,
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since the study primarily relied on bioinformatics analysis, the
findings remain largely theoretical, and their accuracy requires
confirmation through experiments. Thirdly, owing to the lack
of adequate clinical data, only a small sample consisting of six
depression patients and six normal individuals was analyzed,
and the specific roles of genes related to m6A/m5C/m1A in
MDD have not been conclusively determined. Therefore, fur-
ther studies with larger sample sizes are necessary.

Conclusions

In summary, a nomogram model was developed, incorporating
eight hub genes, and two distinct RNA modification patterns
were distinguished. These patterns may have been regulated
by various factors, including m6A writers (METTL3/5/14)
and their partner (TRMT112), erasers (FTO/ALKBHY), and
readers (IGF2BP, XRN, YTHDC2, NUDT21). However, the
mechanisms underlying RNA modification in MDD are still
relatively unexplored and warrant further investigation.
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