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Abstract
Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the 
human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction 
protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital 
vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as 
well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, 
making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimen-
tally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on 
organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the 
human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit 
in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.

Keywords Pluripotent stem cells · Vascular system · Cerebral organoids · Vascular organoids · Circulation · 
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Introduction

Organoids are complex three-dimensional (3D) cellular 
systems derived from pluripotent stem cells (PSCs) or 
adult stem cells [1, 2]. Concerning the nervous system’s 

organoids, when the originating cells are cultured in sus-
pension under specific conditions that reproduce embryonic 
development, they form structures that mimic the organ 
architectures and functions, including the central nervous 
system (CNS) as a whole (whole-brain organoids) or specific 
CNS areas (regional organoids) [3]. As cells develop within 
brain organoids, they follow a developmental timeline that 
is similar to in vivo neurogenesis [3]. Brain organoids are 
able to generate spontaneous neural activity, form functional 
synapses, and support interneuron migration or axonal pro-
jection, as well as interact and fuse with adjacent organoids 
giving rise to assembloids, mimicking the architecture and 
complex interactions of CNS tissues [4, 5]. Additionally, 
transcriptomic and epigenetic studies confirmed that brain 
organoids recapitulate the key molecular features of the 
human embryonic/fetal brain [4].

The main source of cells used for brain organoid gen-
eration is induced pluripotent stem cells (iPSCs) [6] and 
embryonic stem cells (ESCs) [7], both widely employed. 
iPSCs are derived from somatic cells primarily of the skin 
or of the blood, which are reprogrammed into embryonic-
like states by administration of specific pluripotency 
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transcription factors. Unlike ESCs, iPSCs do not carry the 
ethical concerns associated with ESCs while fully reflect-
ing the patient’s genetic background [6, 8, 9]. Notably, 
iPSCs are able to differentiate in several cell types, includ-
ing neuronal cells, making them particularly suitable for 
studying neurodegenerative disorders.

To date, disease modeling has largely relied on two-
dimensional (2D) cell cultures, human biopsy specimens, 
and animal models. Nevertheless, the majority of human 
tissues are difficult to biopsy, and their use is strictly 
regulated, while 2D cell cultures do not fully mimic the 
structural organization and functions of human tissues, 
poorly attempting to replicate the real in vivo conditions 
[8]. As regards in vivo animal models, despite their abil-
ity to replicate the complexity of living organisms better 
than in vitro ones, their utility is limited by interspecies 
differences.

Recently, iPSC-derived 3D models, grown in a way that 
cells interact with each other and their surroundings more 
naturally, mimicking the in vivo conditions to a greater 
extent, have become key tool for disease modeling and 
for the development of new therapeutic strategies, closely 
resembling the in vivo microenvironment. In this context, 
iPSC-derived organoids, free floating 3D models, offer the 
chance to deeply investigate physiological and pathologi-
cal mechanisms in a specific genetic background. Particu-
larly, brain organoids have attracted huge interest to study 
neural development and as innovative tools for drug dis-
covery and regenerative medicine [10]. The exploitation 
of organoid potential can be further extended to the gen-
eration of multi-unit structure called assembloid, a more 
sophisticated in vitro model, which attempts to recapitu-
late intercellular interactions among different organ-like 
structures [11]. Assembloids are self-organizing cellular 
entities emerging from the integration of distinct orga-
noids or derived from the combination with specialized 
cell populations [5, 12].

So far, iPSC-derived brain organoids have been gen-
erated to model a large range of both developmental and 
degenerative brain disorders [13–17]. Nonetheless, their 
major limitation, as a model, is the lack of a vascular sys-
tem for transporting nutrients or drugs, which in vivo occurs 
through microvascular cells and structures. The absence of 
a neurovascular system limits organoid growth, neurogen-
esis, and functions, restricting their potential applications 
[18–22].

Because of that, vascularization of brain organoids is one 
of the main sought-after advancements in the field, allow-
ing their use for etiopathological studies and drug screening 
tests based on blood–brain barrier (BBB) permeability, as 
well as a platform for studying neurological disorders and 
particularly cerebrovascular diseases [14, 15, 23–25]. Here, 

we aim to review both the current state and future perspec-
tives of vascularized human brain organoids.

Neural Organoid Generation

One of the first attempts to generate brain organoids that 
resemble the human brain in 3D was performed in 2013 
by Lancaster and colleagues [13]. The original protocol 
relied on embedding PSCs in a basement membrane-like 
matrix to facilitate neuroepithelial development. The gen-
eration of brain organoids in this way primarily relied on 
intrinsic signals, thus requiring only a minimal number of 
growth factors and other substances for patterning, with 
basic fibroblast growth factor (bFGF) being used as the 
sole growth factor in the first 6 days. These self-developing 
organoids resulted in a stochastic mixture of different brain 
cellular components, spanning from the retina to the hind-
brain, implying low reproducibility and high variability. To 
overcome this aspect, subsequent protocols were developed 
progressively introducing inductive cues such as morpho-
gens and signaling molecules, capable of directing the 
neurodevelopmental specification in a timely manner [26, 
27]. Indeed, by using these protocols, 3D structures with a 
more specific regional identity such as the hypothalamus, 
midbrain, brainstem, and choroid plexus could be created 
[28, 29]. Organoids’ growth and maturation can continue 
over several months, reaching a width of several millim-
eters [16]. Eventually, they contain a variety of different 
cell populations of ectodermal origin, including multiple 
neuronal subtypes, astrocytes, oligodendrocytes, and outer 
radial glia cells [27, 30–35]. Notably, it has been described 
that microglia can develop within the brain organoid, simul-
taneously with neuroectodermal cell types, if dual SMAD 
inhibition is removed. Indeed, innately developed mesoder-
mal progenitors are capable of differentiating into mature 
microglia under the influence of the CNS microenvironment 
provided by neuroectodermal cells [36].

Human brain organoids have the advantage of being able 
to model unique human-specific characteristics, such as the 
development of outer radial glial cells which largely con-
tribute to the development of the human cerebral cortex and 
whose alteration can be responsible for pathological condi-
tions [15]. Different patterned CNS organoids’ derivation 
protocols have been implemented over the past few years. 
Telencephalic aggregates were first developed to segregate 
GABAergic and glutamatergic neurons, while cortical gluta-
matergic neurons and astrocytes have been derived through 
the generation of cortical spheroids [26, 37]. By modify-
ing the neurocortical induction protocol, the choroid plexus 
and the medial pallium-like tissues, precursors of the hip-
pocampal telencephalic area, were established [38]. Finally, 
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midbrain organoids containing dopaminergic neurons of the 
nigro-striatal pathway were generated [39–41].

The Neurovascular System

Under physiological conditions, the brain’s high metabolic 
demand is met by a network of capillaries that supply oxy-
gen and nutrients. Since CNS organoids are derived from 
neuroectodermal tissue, they lack cerebral blood vessels 
which are of mesodermal origin. As a result, organoids 
lacking proper vascularization have suboptimal nutrient 
supply, resulting in reduced cell proliferation and loss of 
cell viability in their inner regions, premature differentia-
tion, abnormal neurogenesis, and impairment of cortical 
development [13, 18–21].

Even though brain organoids can be maintained in 
culture in vitro for over a year, growth often ceases after 
a few months, with cells dying in the core. As a matter 
of fact, nutrients cannot reach cells located more than 
200–400 µm from the surface [13]. Specific devices such 
as orbital shakers or bioreactors have been used to promote 
oxygen and nutrient supply, even if these strategies cannot 
replace the development of a proper neurovascular system 
[13, 42]. The establishment of an efficient neurovascular 
system within brain organoids is a crucial advancement in 
the field, as it also allows the replication of early develop-
mental processes related to angiogenesis [14, 15, 23, 24].

In humans, brain vascularization occurs simultaneously 
with brain development. Vasculature defects may result in 
severe brain malformations at this stage, indicating how 
critical it is for the development of the human brain [43]. 
Brain blood vessels develop sequentially through accurate 
angiogenic processes in vertebrates, with new blood vessels 
stemming from pre-existing ones, as opposed to de novo 
vasculogenesis [44]. In the early stages of neuroepithelial 

development, endothelial cells (ECs) arise from mesoder-
mal angioblasts and colonize the neuroepithelium via the 
perineural vascular plexus [45]. Subsequently, ECs coalesce 
into primitive vessels to become mature blood vessels [46].

The neurovascular unit (NVU) is formed by blood vessels 
interacting with neural and glial cells in the CNS, consisting of 
microvascular ECs, surrounding neurons, astrocytes, pericytes, 
and matrisomes [47] (Fig. 1). It regulates blood flow through 
a process called neurovascular coupling, provides trophic sup-
port, produces growth factors and paracrine signals, guides 
neuronal differentiation, and recruits oligodendroglia [48, 49].

The NVU can be modeled in vitro using different cell 
types derived from human PSCs which can be grown in 
monocultures or co-cultures to mirror interactions or can be 
cultured on microfluidic devices that mimic complex micro-
environments [50]. These in vitro models can potentially 
be used to engineer artificial functional blood vessels [51]. 
Despite progress in the field, the generation of vascular-
ized organoids using PSCs remains a challenging task which 
requests the precise coordinated supply of signals from mul-
tiple germ layers and tissue-specific microenvironmental 
cues involved in organogenesis [52].

Fully vascularized human brain organoids may allow 
researchers to study how NVUs’ develop and function in 
humans. Indeed, the pathogenesis of neurological disorders, 
strokes, and tumors has been linked to neurovascular dys-
function [53, 54]. As regards neurodegenerative diseases, 
an altered vascular system in the brain has been linked to 
increased BBB permeability, neurovascular uncoupling, oxi-
dative stress, inflammation, and dysregulation of autophagy, 
all contributing to the development and maintenance of neu-
rodegenerative processes [55–57]. For instance, in Alzhei-
mer’s disease (AD) and vascular dementia, vascular damage 
and the breakdown of the BBB are associated with micro-
circulation damage and transcriptional changes in cerebro-
vascular cell types [58].

Fig. 1  Representation of the neurovascular unit’s structure (NVU) and its constituent cell populations. Created in BioRender.com



 Molecular Neurobiology

Methods for Generating Vascularized 
Human Brain Organoids

Different strategies have been employed to induce vas-
cularization within brain organoids. Some approaches 
involved the assembly of brain organoids with mesoder-
mal progenitors or vascular organoids or using microflu-
idic devices to mimic vessels (Fig. 2). In contrast, other 

approaches included in vivo steps, such as transplanting 
organoids into immunodeficient mice and allowing host 
blood vessels to migrate into the grafts (Fig. 3). Vascu-
larization strategies have multiple goals. Primarily, these 
techniques should allow the development of a branched 
vascular bed capable of adjusting changes in oxygen 
consumption, tissue growth, and metabolic needs of the 
organoid. Furthermore, organoid vascularization helps to 

Fig. 2  Schematic pictorial of different in vitro strategies for the gen-
eration of vascularized brain organoids. hESCs, human embryonic 
stem cells; iPSCs, induced pluripotent stem cells; hBMECs, human 
brain microvascular endothelial cells; hBVPs, human brain vascular 

pericytes; HUVECs, human umbilical vein endothelial cells; MSCs, 
mesenchymal stem cells; NPCs, neural progenitor cells; BVOs, blood 
vessel organoids; BOrs, brain organoids; VOrs, vessel organoids. Cre-
ated in BioRender.com

Fig. 3  Schematic representa-
tion of in vivo strategy for the 
generation of vascularized brain 
organoids. It is important to 
notice that the type of injection 
reported in the pictorial is an 
example of a region-specific 
targeted in vivo transplanta-
tion approach [73]. Created in 
BioRender.com



Molecular Neurobiology 

preserve the cytoarchitecture, as well as favors the forma-
tion of a functional neurovascular unit and of the BBB. 
The achievement of these criteria would be an ambitious 
task, but a combination, even partial, of these elements, 
would ensure a faithful reproduction of CNS circulation. 
Currently, most in vitro models that have been developed 
lack an active blood flow, despite the presence of branch-
ing vessels. Excluding the vascularized organoids trans-
planted in vivo, the majority have not been demonstrated 
to have perfusable vessels. Therefore, benefits of perfu-
sion and permeability could not be assessed, as well as 
biological processes in which blood flow or vascular tone 
is important, even though they reproduce early develop-
mental processes such as angiogenesis and model trophic 
interactions between the BBB and the neurons. A notable 
exception is the work of Salmon et al. where vasculariza-
tion and active perfusion of an iPSC-derived organoid is 
achieved with the aid of a custom designed 3D printed 
microfluidic chip [59]. Microfluidic devices and organ-
on-chip systems may be a promising approach to perfuse 
neurovascular organoids, as described below.

In Vitro Establishment of Vascularized Human Brain 
Organoids

As of today, many groups have developed methods for gen-
erating vascularized brain organoids in vitro (Table 1). A 
significant obstacle to the creation of vascularized brain 
organoids is the difficulty of coordinating induction factors 
for different germ layers and cell fates, as they often inhibit 
each other, such as ECs of the mesodermal origin and neural 
cells of ectodermal origin. As a result, many approaches 
have relied on separate cultures for the development of brain 
and vascular organoids [60].

Multi-lineage assemblies can be created also by adding 
non-ectodermal cells or their progenitors directly to brain 
organoids. A number of these approaches have been used, 
including the use of umbilical endothelial cells, mesodermal 
progenitors, and stem cells expressing a transcription factor 
for vascular lineage specification. With these experiments, 
organoids with tube-like vascular structures were generated 
[53, 61, 62]. Although, depending on the applied protocol, 
those multi-lineage approaches were variably able to origi-
nate perfusable vessels, they provided a model of human 
neurovascular interactions during development.

Pioneering work with multi-lineage assembly was from 
Pham and colleagues, which represents one of the first 
attempts to generate syngeneic structures. They generated 
both brain organoids and ECs from the same patient-derived 
iPSCs and then co-cultured them after differentiation [63]. 
Mesodermal cells were inducted with Wnt activation (e.g., 
CHIR99021) and differentiated into endothelial progenitors 
using BMP4, VEGF, and FGF2. On day 34, brain organoids 

were re-embedded in polymerized Matrigel droplets with 
endothelial progenitors and grown in vitro for 3–5 weeks, 
leading to robust vascularization. Hence, although the cyto-
architecture of the neuronal compartment was not very care-
fully described, organoids showed several penetrating and 
likely perfusable vessels expressing the human endothelial 
marker CD31, showing that patient-derived ECs can be used 
for brain organoids vascularization [63].

A couple of years later, Shi and colleagues used a similar 
co-culture strategy, but they grew human brain organoids 
with human umbilical vein endothelial cells (HUVECs) [61]. 
Of note, vascularization occurred first in the ventricular zone 
(VZ)-like region of the brain organoid populated by neu-
ral progenitor cells (NPCs), thus replicating the develop-
ment of the human brain vasculature. HUVEC-vascularized 
human brain organoids displayed a reduced number of cells 
expressing the hypoxia marker HIF1α (hypoxia inducible 
factor 1 subunit alpha) and of cells undergoing apoptosis 
as indicated by caspase3 positivity, suggesting that vascu-
larization is able to preserve cell survival. Furthermore, the 
authors observed in HUVECs the expression of different 
proteins involved in the development of vasculature com-
pared to HUVECs grown in monocultures. As a matter 
of fact, HUVECs embedded in brain organoids expressed 
P-glycoprotein, suggesting that neural cells can influence 
gene expression and NVU-forming EC commitment. Fur-
ther, according to single-cell RNA sequencing analysis of 
human brain organoids, vascularization appears to accelerate 
neurogenesis. Indeed, vascularized brain organoids, beside a 
cortical spatial cytoarchitecture that quite well recapitulated 
the cerebral compartment, contained more spontaneously 
firing neurons compared to non-vascularized ones [61].

A different strategy was tested by Cakir and colleagues, 
which exploited a genetic modification to induce EC differ-
entiation during brain organoid formation [53]. They gen-
erated human cortical organoids from human ESCs, engi-
neered to ectopically express human ETS variant 2 (ETV2). 
They used lentivirus-encoded ETV2 under doxycycline 
(dox)-inducible promoter to transduce hESCs. The activation 
of ETV2 started during neuronal induction at day 2 with low 
levels of doxycycline and was fully completed during corti-
cal differentiation at day 18. Cells expressing ETV2 formed 
a vasculature-like structure within the cortical organoids, 
supporting increased growth, reduced apoptosis levels, and 
accelerated maturation. Indeed, the neural cytoarchitecture 
was improved and ETV2-induced EC showed specific BBB-
like characteristics, including increased expression of spe-
cific proteins and nutrient transporters and trans-endothelial 
electrical resistance (TEER), which likely contributed to the 
functional maturation of neurons. An important feature of 
this model was that vessel-like structures were surrounded 
by astrocytes and pericytes, closely mimicking the composi-
tion of human NVU. Overall, a single inducible transcription 
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factor-mediated approach can overcome the problems asso-
ciated with the need for different culture conditions to induce 
vascularization as well as to control the precise timing of 
cell fate induction in intact organoids. Additionally, this 
approach may be used to refine the NVU model by generat-
ing proper BBB cell types [53]. The vascular system proved 
perfusable capacity upon in vivo grafting in mice.

Of note, in the last decade, the complex cell type arrange-
ment of the BBB has been deeply investigated, showing that 
spontaneously ECs, pericytes, and astrocytes self-organize 
in a multicellular structure suggesting that the formation 
and cellular architecture of the BBB are inherently encoded 
within individual cell types [64, 65].

With a different approach, the team led by Atala gener-
ated neural units starting from different cell types such as 
human astrocytes, microglia, oligodendrocytes, and neurons 
[66, 67]. Neuroglial compartments were allowed to form 
for 48 h, before the addition of human brain microvascular 
endothelial cells (HBMEC) and human pericytes (HBVP). 
Tight and adherens junctions as well as BBB transport pro-
teins were rapidly expressed in these vascularized cellular 
gatherings. By using this model, the authors were able to 
assess the neurotoxicity of molecules that cross or disrupt 
the BBB, albeit the neural cytoarchitecture was not charac-
terized [67].

As an alternative approach, Song and colleagues pro-
posed the combination of neural progenitor spheroids with 
EC spheroids and iPSC-derived mesenchymal stem cells 
both responsible of brain organoid vascularization [68]. 
They generated hybrid NVU assembloids with MAP2 + neu-
rons, GFAP + astrocytes, and CD31 + ECs. These structures 
expressed typical BBB markers including GLUT1 and efflux 
transporter breast cancer-resistant protein (BRCP), tight 
junction markers like zonula occludens-1 (ZO-1), the matrix 
metalloproteinase remodeling proteins (MMP)-2 and MMP-
3, collagen IV, laminin, and chondroitin sulfate proteogly-
can as well as other matrix metalloproteinase remodeling 
proteins [68]. The spheroid fusion strategy offers several 
advantages compared to the direct mixing method, because 
it eliminates the need for cell dissociation, it allows the crea-
tion of hybrid spheroid structures with carefully arranged 
compartments, giving researchers greater control over the 
process. Moreover, this controlled arrangement facilitates 
the secretion of VEGF-A through the assembly of corti-
cal spheroids, vascular spheroids, and mesenchymal cells, 
thereby accelerating cortical tissue development with hint 
of layer distribution.

Similarly, Kang’s group generated vascularized orga-
noids by fusing iPSC-derived brain organoids, with human 
dermal fibroblasts, human umbilical vein endothelial cells, 
and human umbilical cord blood-derived mesenchymal stem 
cells, through the use of a non-adherent microwell culture 
system. Immunostaining analysis demonstrated the presence 

of well-organized vascular structures, reduced apoptosis, and 
increased Wnt/β-catenin signaling, albeit perfusion was not 
properly ascertained [69].

Ham and colleagues used a different approach in which 
vascular differentiation cues were added early on to imma-
ture neuroectodermal spheroids [70]. During EB forma-
tion and neural induction stages, recombinant human 
vascular endothelial growth factor (VEGF) was added. It 
was observed that vascularization was enhanced, without a 
significant reduction in neuronal markers. After 2 months, 
Wnt7a was added in the presence of VEGF in order to 
induce maturation and penetration of blood vessels, lead-
ing to capillary embedment in smooth muscle actin-positive 
pericytes [70]. Albeit both neuronal and, primarily, vascular 
structures have been characterized and neuronal structure 
benefitted from vascularization, perfusion capacity was not 
properly tested.

Since during human development vascularization begins 
outside of the CNS, Ahn and colleagues attempted to gen-
erate blood vessels and to promote sprouting of differenti-
ated vessels within cortical organoids, rather than to induce 
typical vasculogenesis within the brain organoid [71]. Actu-
ally, after hBVOs were generated, they were dissociated into 
single cells to be co-cultured with cortical organoids and to 
create vessels that simulate embryonic neurovascular devel-
opment. After 13 days of co-culture, CD31 + vessel-like 
structures were detected on organoid surfaces. Although the 
authors do not provide a specific characterization of the neu-
ronal cytoarchitecture, beside tubulin beta-III positive cells, 
the expression of multiple BBB-specific markers indicated 
that hBVOs provided neural organoid vascularization [71].

A similar approach was recently tested by Sun and col-
leagues, who generated neurovascular assembloids by fusing 
brain and vascular organoids [72]. hBVOs were obtained 
upon mesodermal fate induction in H9 hESCs, followed 
by endothelial differentiation. Meanwhile, brain organoids 
were also differentiated from the same hESCs. The fusion 
process was initiated by positioning two young GFP-labeled 
hBVOs at opposite ends of one neuroectodermal body. After 
a few days, GFP-tagged cells coated and invaded the brain 
organoid. By day 40, the neurovascular assembloid with a 
vascular system embedded within the brain-like tissue was 
observed. The vascular system was able to positively pro-
mote neural development based on the number of neural 
progenitors present in the vascularized structures. No major 
consequences have been reported on the immunostained cor-
tical layers that were described. Of note, assembloids were 
colonized by BBB-like structures and some microglial cells, 
which were responsive to stimuli and were able to phagocyte 
synapses [72]. Nicely, microcapillary testing proved perfu-
sion properties.

Despite the presence of branching vessels in many of 
these models and of proved or predicted perfusion capacity, 
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the main limitation in all of them is the absence of active 
blood flow, albeit blood cells are of mesodermal origin as 
well. Another limitation is connected with the fact that vas-
cular development within the CNS occurs via an angiogenic 
process, rather than via primary vasculogenesis; therefore, 
models which consist in the fusion of pre-existing vessels 
with brain organoids are probably recapitulating more faith-
fully the physiological events occurring in human develop-
ment [70, 72]. Furthermore, in some of these studies, in vitro 
cultures were engrafted in vivo to test organoid perfusion 
[53, 61, 63]. Alternatively, microfluidic culture devices may 
be a promising in vitro approach to test those properties. All 
in all, in spite of these limitations, brain organoids can be 
vascularized, albeit without blood flow, to reproduce early 
developmental processes such as angiogenesis and vascular 
structures can promote neural development and BBB forma-
tion in human brain organoids.

Transplantation of Human Brain Organoids 
to Establish Circulation In Vivo

One of the first approaches to generate vascularized cer-
ebral organoids was via their engraftment in animal mod-
els (Table 2). A xenotransplant into a vascular-rich niche 
exploits the natural angiogenesis of the host blood vessels, 
which colonize the engrafted cerebral organoids [73]. To 
achieve this goal, brain organoids were transplanted into 
adult immunodeficient mice’s cortex, where they are then 
invaded by host blood vessels and actively nourished. 

Organoid grafts were able to survive for a long period of 
time, to lower cell death and to enhance their own function-
ality and survival. Similar approaches have been employed 
to vascularize other immature organoid systems such as the 
liver, gut, kidney, and lung organoids [74, 75].

In detail, Mansour and colleagues developed an in vivo 
functional vascularized model by engrafting hESC-derived 
brain organoids in the brain of immune-deficient non-obese 
diabetic/severe combined immunodeficiency (NOD-SCID) 
mice [73]. After implantation into the retrosplenial cortex, 
grafts survived for several months. During this time, there 
was a gradual differentiation and maturation of neurons with 
axons sprouting into host tissue, synaptogenesis, and glio-
genesis, including microglial invasion. Interestingly, murine 
vessels started to migrate toward the donor graft 1 week after 
implantation. A retro-orbital injection of dextran dye con-
firmed the existence of a perfused vascular network. Among 
engrafted organoids, 85.4% were vascularized, whereas non-
vascularized did not survive, suggesting that blood flow sup-
ported their survival by delivering oxygen and nutrients. In 
addition, the engrafted ones had a larger size, a lower level 
of apoptosis, and more mature NeuN + neurons compared to 
those grown in vitro. Furthermore, in vivo imaging indicated 
the presence of functional neuronal networks and blood ves-
sels, as well as synaptic neuronal activity between graft and 
host as assessed with extracellular recording combined with 
optogenetics [73]. Recently, Wilson and colleagues trans-
planted human cortical organoids into the retrosplenial cor-
tex of adult mice and monitored their longitudinal function 

Table 2  In vivo strategies for transplantation of vascularized human brain organoids

Mouse model Site of transplantation Vascularized brain organoid Organoid maturation 
day at transplantation

Results Ref

NOD-SCID Retrosplenial cortex (Brain) hESC-derived human cer-
ebral organoids

DIV40-50 The engrafted organoids 
generated a system of 
vessels perfused with host 
blood

[73]

Immunodeficient mouse Brain hiPSC-derived endothelial 
cells (ECs) co-cultured 
with whole-brain orga-
noids

DIV54 Vascularization was found 
in the core of the orga-
noids after transplantation, 
while in vitro remains 
external

[63]

Rag2−/−/GammaC−/− 
immunodeficient 
mouse

Subcutaneous injection in 
the hind limbs

Organoid generation with at 
least 20% ETV2-express-
ing hiPSCs

DIV40-50 Pre-vascularization of the 
organoids extended their 
survival up to 30 days 
after transplantation

[53]

NOD-SCID S1 cortex Human brain organoids co-
cultured with HUVECs

DIV60 Pre-vascularized organoids 
enhanced vasculature 
formation and attenuated 
apoptosis

[61]

NOD-SCID Retrosplenial cortex (Brain) hiPSC-derived human brain 
organoids transplanted 
with a graphene micro-
electrode array

DIV60 Functional integration 
between the organoid and 
the host brain

[76]
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using a multimodal combination of transparent microelec-
trodes and imaging with two-photon confocal microscopy. 
These experiments confirmed the functional integration and 
the vascularization of the organoid by the host mouse brain 
[76]. Other groups transplanted brain organoids pre-vascu-
larized through different co-culture methods with ECs or 
EC-like cells [53, 61, 63].

For instance, Pham and colleagues co-cultured whole-
brain organoids with iPSC-derived ECs for 54 days and 
transplanted them into the brain of immunodeficient mice. 
In vivo, organoids survived up to 2 weeks, and vasculariza-
tion was observed inside and between rosettes within the 
center, in contrast to non-transplanted organoids showing 
only external vascular structure [63].

Similarly, Shi and colleagues developed in vitro vascular-
ized human brain organoids by co-culturing ESC- or iPSC-
derived brain organoids with HUVECs for 2 months and 
then implanted them into the cortex of NOD-SCID mice. 
In transplanted brain organoids, both HUVEC-derived and 
mouse-derived ECs coexisted within capillaries, which 
demonstrated graft vessel integration into the host vascular 
system. The injection of fluorescent dextran dye confirmed 
structural integration [61].

Cakir and colleagues vascularized brain organoids 
through ETV2-transcription factor-mediated iPSC differ-
entiation into ECs and then transplanted them into immu-
nodeficient mice hind limbs. MRI images showed that 
pre-vascularized organoids survived for a month after trans-
plantation, while non-vascularized control organoids disap-
peared between 10 and 30 days, being grafted in the hind 
limb and suggesting that in vitro generated vascular system 
is needed for connection with host blood flow network. A 
dye injection revealed infiltration and functional perfusion 
by the host vessels [53].

Overall, brain organoid engraftment in vivo overcomes 
the necrotic core limitation, providing perfusion and improv-
ing organoid viability. Although blood vessels in these 
models are partially murine, limiting their translatability to 
humans and restricting their use for high-throughput drug 
screening, all these studies support the significance of the 
engraftment of human brain organoids in vivo to create novel 
disease models.

Development of Vascular Networks Through 
Microfluidic Devices

Over the past decade, many experiments have been con-
ducted to recreate vascular structures in vitro using micro-
fluidic devices [77]. Most vascular models were created 
in vitro using either vascular templating models, wherein 
a network of microfluidic channels is coated with ECs 

[78–80], or self-assembly, which prompts a microvessel 
network that self-organize lead to the establishment of a 
stable anastomosis with neighboring microfluidic chan-
nels [81, 82].

Recently, many studies have provided additional imple-
mentations on modeling blood vessel networks through 
synthetic devices [83–86]. Salmon and colleagues showed 
that cortical organoids (COs) can be vascularized through 
an avascular hydrogel matrix placed between two per-
fusing microfluidic channels [59]. In this environment, 
thanks to gradients of signaling cues, ECs can prolifer-
ate, move toward the organoids, and create a network of 
highly branched vessels. Albeit an increased expression 
of functional vascular markers, only in few COs’ vessels 
were able to penetrate their core. Nonetheless, an active 
perfusion of the neurovascular network was performed at 
day 20 and day 25, and while fluorescein-40-kDa dextran 
and 1-μm red fluorescent-beads underwent quick diffusion, 
bigger beads remained in the vessels, ascertaining vessel 
functional perfusion and permeability to small compounds 
[59].

Surely, organ-on-chip is an innovative technique that 
exploits multi-channel microfluidic systems to reproduce 
some biological and functional features of human parental 
tissues, such as the vascular system [87]. These devices are 
typically composed of transparent polymeric microchannels 
accessible to perfusing cells that will organize in 2D or 3D. 
This is a well-established technology for the intestine, bone 
marrow, liver, pancreas, heart, and brain organoids, which 
can be vascularized on chips [81, 86, 88–90].

Maoz and colleagues recently developed a linked organ-
on-chip model of the NVU. This model was used to show 
metabolic coupling between neurons and vessels, with 
increased flux of neurotransmitters, especially the GABA 
one [91]. Being most of the common neurological diseases, 
including Parkinson’s disease (PD), AD, and Huntington’s 
disease (HD), linked to a dysfunction in the BBB [92], a 
vascularized brain model will certainly be a great advance-
ment for studying and understanding the pathophysiological 
mechanisms of these diseases. Further, organ-on-chip could 
be extremely useful to analyze the NVU cells using calcium 
imaging and electrophysiology. One of the main advantages 
of organ-on-chip technology is that it allows the genera-
tion and maintenance of vascularized brain organoids that 
have human both neural and vascular structures, unlike the 
approach of transplanting human brain organoids into mice, 
which results in the incorporation of murine vessels. Fur-
thermore, genome editing techniques, such as CRISPR-Cas9 
technology, can be more easily implemented to study the 
biological pathways underlying vascular and BBB functions. 
The future use of on-chip devices will provide many advan-
tages in the field of neurological medicine. Nevertheless, to 
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fully utilize these artificial models in the biomedical field, 
further technological improvements are required.

Future Perspectives and Applications

Here, we have presented a review on the approaches used 
to create vasculature in human brain organoids. Their 
relevance and their advantages over non-vascularized 
organoids have been cited and discussed. By creating a 
vascularized human brain organoid, researchers may over-
come limitations due to interspecies differences such as 
the number and distribution of neuronal cells, their bio-
chemical properties, BBB permeability, and angiogenic 
processes [93–96]. Moreover, iPSC-derived organoids are 
patient-specific, and thus, data production can be matched 
across patients with common genetic background in a for-
ward-looking perspective. Indeed, vascularized organoids 
closely mimic the in vivo setting, and they may become 
one of the most promising approaches for drug discovery 
or personalized medicine [97].

Moreover, understanding the molecular mechanisms 
underlying various diseases, including cerebrovascular 
disorders, neurodegeneration but also chronic-acquired 
diseases such as diabetes and hypertension, could be 
improved using a more amenable human NVU model. 
Indeed, several mechanisms are altered at NVU level 
and associated with AD, vascular dementia, and diabe-
tes-induced neurodegeneration [48, 92, 98]. Moreover, 
different components of the NVU have been associated 
with cognitive impairment, including pericytes [99, 100]. 
Excluding in vivo animal NVU models, current human in 
vitro NVU models have been and are very useful [101, 
102]; nonetheless, as 2D models, they (i) lack the oppor-
tunity to mimic the blood flow and shear stress, key com-
ponents of the vascular cytoarchitecture and (ii) are unable 
to form perivascular cell–brain endothelial cell interaction 
and to reproduce BBB complexity. As 3D models with 
chips or microfluidic system, they suffer from (i) mem-
brane porosity that limits cell–cell interaction; (ii) use of 
rigid extracellular matrix that impairs perivascular cell 
organization and viability; (iii) incapability to reproduce 
capillary dimensions and to recapitulate hierarchical in 
vivo branching; (iv) need of very specialized equipment; 
and (v) no possibility to measure trans-endothelial electri-
cal resistance (TEER) [103].

In addition, vascularized organoids may also be use-
ful for studying the development and plasticity of human 
NVU. In the developing brain, NVU cells secrete several 
factors that drive neuronal differentiation, migration, and 
synaptic plasticity [104, 105]. Research on rodent models 
has demonstrated that ECs could attract recently differ-
entiated neurons to migrate along vessels and reach areas 

affected by ischemia [106]. The influence of neurovascular 
interactions on developmental (angiogenesis, BBB forma-
tion, mural and vascular cell development, regulation of 
neuronal and glial development) and reparative events in 
humans remains unclear since there is no relevant human 
model or there are models with poor human translatability. 
Indeed, in vitro conventional cell culture models [107], 
microphysiological systems [108, 109], tissue-engineered 
3D models, or bioprinting [110] do not properly fulfill 
conditions of the human NVU microenvironment. Recreat-
ing the intricate microenvironment and the cellular inter-
actions within the neurovascular unit becomes pivotal in 
comprehending its functioning and, further, in devising 
CNS-targeted pharmaceuticals that can effectively pen-
etrate the brain for experimental testing. The development 
of vascularized organoids could overcome this obstacle. 
Additionally, gene expression analysis, including single-
cell profiles, may reveal new players in neurovascular 
mechanisms.

Further, organoids could also prove extremely useful for 
regenerative therapies. Indeed, a differentiated human brain 
organoid, containing appropriate cell populations, active 
neural circuits, and an adequate vasculature may facilitate 
their use as a cell source for transplantation strategy for CNS 
tissue regeneration [73, 111]. Finally, vascularized human 
brain organoids hold the potential for application in drug 
screening, discovery of new potential disease biomarkers, 
and advancement of cutting-edge diagnostics and therapies 
[63, 73]. As clinical avatar, patient-specific organoids can 
be used for diagnostic interventions, tested with therapeutic 
strategies, and personalized medicine could eventually be 
achieved in the next future [97].

Overall, it appears clear that brain organoids, especially 
vascularized organoids, could prove to be a fundamen-
tal resource for understanding and treating neurological 
diseases.

Conclusions

Vascularized human brain organoids are still imperfect 
tools, and they need to be further optimized before they are 
able to precisely recapitulate the development, function, 
and pathology of the neurovascular system. Several stud-
ies demonstrated that vascularizing human brain organoids 
allowed for a better maturation and survival of neural cells. 
More specifically, better functional circuit and firing rate 
[61] and increased number of mature neurons [73] have been 
observed. Furthermore, some key aspects of the interactions 
between vascular cells and neural cells in health and pathol-
ogy have been clarified [53, 69], including the regulation of 
the BBB maturation by neural cues [72].
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Current research suggests that vascularized brain orga-
noids provide better pathophysiological models compared to 
non-vascularized ones [61, 68]. Indeed, compared to other in 
vitro models, neurovascular organoids can better reproduce 
the cytoarchitecture of the brain, providing functional and 
synaptic connectivity data. Nevertheless, the generation of 
vascularized brain organoids requires more resources with 
consequent lower accessibility than non-vascularized orga-
noids, hindering their applicability. For an extensive use of 
brain organoids for disease modeling and drug discovery, 
substantial advancements in automation and scaling up are 
needed.

The pathophysiology of brain diseases is influenced by 
blood flow, cellular composition, vascular cell-derived fac-
tors, and microglia. Recent advances in cell culture technol-
ogy allowed the growth of brain organoids for long periods, 
paving the way to model late-onset diseases such as neurode-
generative diseases [17]. Indeed, long-term cultures of vas-
cularized brain organoids may be very useful for modeling 
aging-associated diseases such as stroke or AD, while young 
organoids used to model fetal brain development may not 
accurately reproduce stroke-relevant phenotypes.

Since vascularized organoids can more easily integrate 
into the host tissues and may promote healing better than 
non-vascularized organoids, they may be an excellent source 
for cell transplantation in regenerative medicine approaches. 
Nonetheless, more studies are required to evaluate the 
chance to perfuse vascularized brain organoids without 
transplanting them in vivo. Indeed, a controlled perfusion 
method could assess the vessel permeability through a direct 
injection of blood cells into the organoid as well as reduce 
the characteristic necrotic core of organoids [112, 113]. 
Additionally, biomechanical properties of the brain tissue 
and its vascular system such as stiffness, viscoelasticity, and 
spatial organization influence physiological processes such 
as proliferation, migration, differentiation, and cell functions 
[114].

Overall, all these studies have emphasized the signifi-
cance of vascularized organoids in faithfully recapitulat-
ing different aspects of the neurovascular microenviron-
ment, paving the way for a deeper understanding of the 
molecular mechanisms underlying neurodegeneration in a 
forward-looking perspective of identifying new therapeutic 
strategies.
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