Skip to main content

Advertisement

Log in

Autophagy in Multiple Sclerosis: Phagocytosis and Autophagy of Oligodendrocyte Precursor Cells

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract  

Multiple sclerosis (MS) is a leading cause of chronic neurological dysfunction in young to middle-aged adults, affecting approximately 2.5 million people worldwide. It is characterized by inflammation, multifocal demyelination, axonal loss, and white and gray matter gliosis. Autophagy is a highly conserved protein degradation pathway. Polymorphisms in autophagy-related genes have been implicated in a variety of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, psoriasis and MS. However, the significance of autophagy in MS remains to be elucidated. This paper aims to explore the potential role of autophagy-related genes in MS diseases by using bioinformatics combined with machine learning methods. Finally, we obtained 9 autophagy genes with the highest correlation with MS, and further changes in these autophagy genes were verified in the experimental autoimmune encephalomyelitis (EAE) model and oligodendrocyte precursor cells (OPCs) engulfed myelin debris (MD). Combined with bioinformatic analysis and experimental data, Becn1 showed obvious expression abnormalities suggesting that this gene has vital functions in autophagy and MD engulfed by OPCs. This work will be of great significance for the further exploration of autophagy-related genes in demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and Code Availability

This study analyzed publicly available data sets. These data can be found here: GSE131282, GSE135511 and GSE150562 were downloaded from the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/). Any additional information may be provided upon reasonable request.

Abbreviations

Pdgfrα:

Platelet-derived growth factor receptor α

Ng2:

Glial antigen 2

Becn1:

Beclin 1

Napsa:

Napsin A aspartic peptidase

Atm:

Ataxia telangiectasia mutated

Itgam:

Integrin alpha M

Src:

Rous sarcoma oncogene

Ntrk2:

Neurotrophic tyrosine kinase, receptor, type 2

Fgfr2:

Fibroblast growth factor receptor 2

Rab10:

Member RAS oncogene family

Atg5:

Autophagy related 5

Plk3c3:

Phosphatidylinositol 3-kinase catalytic subunit type 3

References

  1. Karussis D (2014) The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun 48–49:134–142. https://doi.org/10.1016/j.jaut.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  2. Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Larreategui I, Quirant-Sánchez B, Fondelli F, Djedovic N, Iwaszkiewicz-Grześ D, Chwojnicki K, Miljković Đ, Trzonkowski P, Ramo-Tello C, Martínez-Cáceres EM (2021) Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cell Mol Immunol 18:1353–1374. https://doi.org/10.1038/s41423-020-00618-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McGinley MP, Goldschmidt CH, Rae-Grant AD (2021) Diagnosis and treatment of multiple sclerosis: a review. JAMA 325:765–779. https://doi.org/10.1001/jama.2020.26858

    Article  CAS  PubMed  MATH  Google Scholar 

  4. Dobson R, Giovannoni G (2019) Multiple sclerosis - a review. Eur J Neurol 26:27–40. https://doi.org/10.1111/ene.13819

    Article  CAS  PubMed  MATH  Google Scholar 

  5. Ascherio A (2013) Environmental factors in multiple sclerosis. Expert Rev Neurother 13:3–9. https://doi.org/10.1586/14737175.2013.865866

    Article  CAS  PubMed  MATH  Google Scholar 

  6. Misrielal C, Mauthe M, Reggiori F, Eggen BJL (2020) Autophagy in multiple sclerosis: two sides of the same coin. Front Cell Neurosci 14:603710. https://doi.org/10.3389/fncel.2020.603710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42. https://doi.org/10.1016/j.cell.2018.09.048

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  8. Hassanpour M, Hajihassani F, Hiradfar A, Aghamohammadzadeh N, Rahbarghazi R, Safaie N, Nouri M, Panahi Y (2020) Real-state of autophagy signaling pathway in neurodegenerative disease; focus on multiple sclerosis. J Inflamm (Lond) 17:6. https://doi.org/10.1186/s12950-020-0237-8

    Article  PubMed  Google Scholar 

  9. Deretic V, Levine B (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243–251. https://doi.org/10.1080/15548627.2017.1402992

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  10. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737. https://doi.org/10.1038/nri3532

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  11. Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GE, Klionsky DJ (2023) The beneficial role of autophagy in multiple sclerosis: yes or no? Autophagy 15:1–16. https://doi.org/10.1080/15548627.2023.2259281

    Article  CAS  Google Scholar 

  12. Ceccariglia S, Sibilia D, Parolini O, Michetti F, Di Sante G (2023) Altered expression of autophagy biomarkers in hippocampal neurons in a multiple sclerosis animal model. Int J Mol Sci 25:13225. https://doi.org/10.3390/ijms241713225

    Article  CAS  MATH  Google Scholar 

  13. Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H, Chamling X, Tian S, Sullivan MLG, Calderon MJ, Fitting CS, Weiss J, Jayagopal A, Handa JT, Sahel JA, Zigler JS Jr, Kinchington PR, Zack DJ, Sinha D (2021) BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. Autophagy 17:3140–3159. https://doi.org/10.1080/15548627.2020.1871204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, Samudyata N, Floriddia EM, Vanichkina DP, Ffrench-Constant C, Williams A, Guerreiro-Cacais AO, Castelo-Branco G (2018) Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24:1837–1844. https://doi.org/10.1038/s41591-018-0236-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis S, Meltzer PS (2007) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23:1846–1847. https://doi.org/10.1093/bioinformatics/btm254

    Article  CAS  PubMed  MATH  Google Scholar 

  16. Enz LS, Zeis T, Schmid D, Geier F, van der Meer F, Steiner G, Certa U, Binder TMC, Stadelmann C, Martin R, Schaeren-Wiemers N (2020) Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15. Neurol Neuroimmunol Neuroinflamm 27:e656. https://doi.org/10.1212/nxi.0000000000000656

    Article  Google Scholar 

  17. Magliozzi R, Howell OW, Durrenberger P, Aricò E, James R, Cruciani C, Reeves C, Roncaroli F, Nicholas R, Reynolds R (2019) Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. J Neuroinflammation 16:259. https://doi.org/10.1186/s12974-019-1650-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeitelhofer M, Adzemovic MZ, Moessinger C, Stefanitsch C, Strell C, Muhl L, Brundin L, Fredriksson L, Olsson T, Eriksson U, Nilsson I (2020) Blocking PDGF-CC signaling ameliorates multiple sclerosis-like neuroinflammation by inhibiting disruption of the blood-brain barrier. Sci Rep 10:22383. https://doi.org/10.1038/s41598-020-79598-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  21. Xu Q, Xu H, Deng R, Wang Z, Li N, Qi Z, Zhao J, Huang W (2021) Multi-omics analysis reveals prognostic value of tumor mutation burden in hepatocellular carcinoma. Cancer Cell Int 21:342. https://doi.org/10.1186/s12935-021-02049-w

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  22. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  24. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J Roy Stat Soc: Ser B (Methodol) 58:267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  MathSciNet  MATH  Google Scholar 

  25. Deist TM, Dankers F, Valdes G, Wijsman R, Hsu IC, Oberije C, Lustberg T, van Soest J, Hoebers F, Jochems A, El Naqa I, Wee L, Morin O, Raleigh DR, Bots W, Kaanders JH, Belderbos J, Kwint M, Solberg T, Monshouwer R, Bussink J, Dekker A, Lambin P (2018) Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Med Phys 45:3449–3459. https://doi.org/10.1002/mp.12967

    Article  PubMed  PubMed Central  Google Scholar 

  26. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  27. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sun X, Wang X, Chen T, Li T, Cao K, Lu A, Chen Y, Sun D, Luo J, Fan J, Young W, Ren Y (2010) Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS ONE 5:e9380. https://doi.org/10.1371/journal.pone.0009380

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Lee JS, Feijen J (2012) Biodegradable polymersomes as carriers and release systems for paclitaxel using Oregon Green® 488 labeled paclitaxel as a model compound. J Control Release 158:312–318. https://doi.org/10.1016/j.jconrel.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  30. Xiao Y, Tian J, Wu WC, Gao YH, Guo YX, Song SJ, Gao R, Wang LB, Wu XY, Zhang Y, Li X (2022) Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis. Bioact Mater 9:373–384. https://doi.org/10.1016/j.bioactmat.2021.07.017

    Article  CAS  PubMed  MATH  Google Scholar 

  31. Yang T, Zhang Y, Chen J, Sun L (2023) Crosstalk between autophagy and immune cell infiltration in the tumor microenvironment. Front Med (Lausanne) 10:1125692. https://doi.org/10.3389/fmed.2023.1125692

    Article  PubMed  MATH  Google Scholar 

  32. Russell RC, Guan KL (2022) The multifaceted role of autophagy in cancer. Embo J 41:e110031. https://doi.org/10.15252/embj.2021110031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T, Li Y, Wang J, Zhang H, Li X, Xiao J (2020) Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 10:1649–1677. https://doi.org/10.7150/thno.40919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Kollenburg B, van Dijk J, Garbern J, Thomas AA, Scheper GC, Powers JM, van der Knaap MS (2006) Glia-specific activation of all pathways of the unfolded protein response in vanishing white matter disease. J Neuropathol Exp Neurol 65:707–715. https://doi.org/10.1097/01.jnen.0000228201.27539.50

    Article  PubMed  Google Scholar 

  35. Smith CM, Mayer JA, Duncan ID (2013) Autophagy promotes oligodendrocyte survival and function following dysmyelination in a long-lived myelin mutant. J Neurosci 33:8088–8100. https://doi.org/10.1523/jneurosci.0233-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berglund R, Guerreiro-Cacais AO, Adzemovic MZ, Zeitelhofer M, Lund H, Ewing E, Ruhrmann S, Nutma E, Parsa R, Thessen-Hedreul M, Amor S, Harris RA, Olsson T, Jagodic M (2020) Microglial autophagy-associated phagocytosis is essential for recovery from neuroinflammation. Sci Immunol 16:eabb5077. https://doi.org/10.1126/sciimmunol.abb5077

    Article  CAS  Google Scholar 

  37. Chang C, Young LN, Morris KL, von Bülow S, Schöneberg J, Yamamoto-Imoto H, Oe Y, Yamamoto K, Nakamura S, Stjepanovic G, Hummer G, Yoshimori T, Hurley JH (2019) Bidirectional control of autophagy by BECN1 BARA domain dynamics. Mol Cell 73:339–353. https://doi.org/10.1016/j.molcel.2018.10.035

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Wan W (2023) Acetylation in the regulation of autophagy. Autophagy 19:379–387. https://doi.org/10.1080/15548627.2022.2062112

    Article  CAS  PubMed  MATH  Google Scholar 

  39. Gelmetti V, De Rosa P, Torosantucci L, Marini ES, Romagnoli A, Di Rienzo M, Arena G, Vignone D, Fimia GM, Valente EM (2017) PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13:654–669. https://doi.org/10.1080/15548627.2016.1277309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peña-Martinez C, Rickman AD, Heckmann BL (2022) Beyond autophagy: LC3-associated phagocytosis and endocytosis. Sci Adv 8:eabn1702. https://doi.org/10.1126/sciadv.abn1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang XS, Tian Z, Zhang N, Han J, Guo HL, Zhao MG, Liu SB (2016) Protective effects of gastrodin against autophagy-mediated astrocyte death. Phytother Res 30:386–396. https://doi.org/10.1002/ptr.5538

    Article  CAS  PubMed  MATH  Google Scholar 

  42. Belgrad J, De Pace R, Fields RD (2020) Autophagy in myelinating glia. J Neurosci 40:256–266. https://doi.org/10.1523/jneurosci.1066-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Chinese National Natural Science Foundation (Grant Nos. 82271199, 31970771, 82071396), the Shaanxi Provincial Key R&D Foundation (Grant No. 2021ZDLSF03-09), the Fundamental Research Funds for the Central Universities (Grant Nos.GK202201013, GK202202006, LHRCCX23177).

Author information

Authors and Affiliations

Authors

Contributions

J.W. and Q.L. acquisition and interpretation of data. X.L. and Y.Z. participated in the conception and revision of the article. J.W., Q.L., J.H., F.Z. and Z.H. collated literatures. J.W. and Q.L. wrote the manuscript and made diagrams with feedback from all authors. X.L. and Y.Z. co-supervised the study and revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xing Li.

Ethics declarations

Ethical standards

All animal research has been approved by the appropriate ethics committee and is therefore carried out in accordance with the ethical standards set out in the 1964 Declaration of Helsinki and its later amendments.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Not applicable.

Conflict of Interest

The authors state that the study was conducted without any business or financial relationship.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JQ., Li, Q., He, JY. et al. Autophagy in Multiple Sclerosis: Phagocytosis and Autophagy of Oligodendrocyte Precursor Cells. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03996-x

Keywords

Navigation